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Transmit without Regrets: Online Optimization in
MIMO–OFDM Cognitive Radio Systems
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Abstract—In this paper, we examine cognitive radio systems
that evolve dynamically over time due to changing user and
environmental conditions. To combine the advantages of or-
thogonal frequency division multiplexing (OFDM) and multiple-
input, multiple-output (MIMO) technologies, we consider a
MIMO–OFDM cognitive radio network where wireless users with
multiple antennas communicate over several non-interfering fre-
quency bands. As the network’s primary users (PUs) come and go
in the system, the communication environment changes constantly
(and, in many cases, randomly); accordingly, the network’s unli-
censed, secondary users (SUs) must adapt their transmit profiles
“on the fly” in order to maximize their data rate in a rapidly
evolving environment over which they have no control. In this dy-
namic setting, static solution concepts (such as Nash equilibrium)
are no longer relevant, so we focus on dynamic transmit policies
that lead to no regret, i.e. that perform at least as well as (and typ-
ically outperform) even the best fixed transmit profile throughout
the entire transmission horizon, and irrespective of the systems’
evolution over time. Drawing on the method of matrix exponential
learning, we derive a no-regret transmit policy for the system’s
SUs which relies only on local channel state information (CSI);
as a result, the system’s SUs are able to track their individually
optimum transmit profiles as they evolve over time remarkably
well, even under rapidly (and randomly) changing conditions.
Importantly, the proposed augmented exponential learning (AXL)
policy retains its no-regret properties even if the SUs’ channel
measurements are subject to arbitrarily large observation errors
(the imperfect CSI case), thus ensuring the method’s robustness in
the presence of uncertainties.

Index Terms—Cognitive radio; exponential learning; MIMO;
OFDM; regret minimization; online optimization.

I. Introduction

THE explosive spread of Internet-enabled mobile devices
has turned the radio spectrum into a scarce resource

which, if not managed properly, may soon be unable to ac-
commodate the soaring demand for wireless broadband and the
ever-growing volume of data traffic and cellphone calls. Exac-
erbating this issue, studies by the US Federal Communications
Commission (FCC) and the National Telecommunications and
Information Administration (NTIA) have shown that this vital
commodity is effectively squandered through underutilization
and inefficient use: only 15% to 85% of the licensed radio
spectrum is used on average, leaving ample spectral voids that
could be exploited for opportunistic radio access [1, 2].

In view of the above, the emerging paradigm of cognitive
radio (CR) has attracted considerable interest as a promising
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counter to spectrum scarcity [3–6]. At its core, this paradigm
is simply a two-level hierarchy between communicating users
induced by spectrum licensing: on the one hand stand the
network’s primary users (PUs) who have purchased spectrum
rights but allow others to access it (provided that the resulting
interference remains below a certain threshold); on the other
hand, the network’s secondary users (SUs) are free-riding on
the licensed part of the spectrum and try to communicate under
the constraints imposed by the PUs (the downside being that
the SUs have no quality of service (QoS) guarantees since
the PUs’ protection is paramount). In this way, by opening
up the unfilled “white spaces” of the licensed spectrum to
opportunistic radio access, the overall utilization of the wireless
medium can be greatly increased without compromising the
performance guarantees that the network’s licensed users have
already paid for.

Orthogonally to the above, the seminal prediction that the use
of multiple-input and multiple-output (MIMO) technologies
can lead to substantial gains in information throughput [7, 8]
opens up additional ways for overcoming spectrum scarcity. In
particular, by employing multiple antennas for communication,
it is possible to exploit spatial degrees of freedom in the
transmission and reception of radio signals, the only physical
limit being the number of antennas that can be deployed on a
portable device. As a result, the existing wireless medium can
accommodate greater volumes of data traffic per Hertz without
requiring the reallocation (and subsequent re-regulation) of
additional frequency bands.

In this paper, we combine these two approaches and focus
on dynamic MIMO cognitive radio systems comprising several
wireless users (primary and secondary alike) who communicate
over multiple non-interfering channels. In this evolving (and
unregulated) context, the intended receiver of a message has
to cope with unwarranted interference from a large number of
transmitters, a factor which severely limits the capacity of the
wireless system in question. As a result, given that the system’s
SUs cannot rely on contractual QoS guarantees to achieve their
desired throughput levels, the maximization of their achievable
transmission rates under the operational constraints imposed by
the network’s PUs becomes a critical issue.

On that account, and given that the theoretical performance
limits of MIMO systems still elude us (even in basic network
models such as the interference channel), a widespread ap-
proach is to treat the interference from other users as additive
colored noise, and to use the mutual information for Gaussian
input and noise as a unilateral performance metric [8]. How-
ever, since users cannot be assumed to have full information
on the wireless system as it evolves over time (due e.g. to the
arrival of new users, fluctuations in the PUs’ demand, etc.),
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they must optimize their signal characteristics “on the fly”,
based only on locally available information. Our overall aim
will thus be to derive a dynamic transmit policy that allows the
system’s SUs to adapt to changes in the wireless medium and
to track their individually optimum transmission profiles using
only local (and possibly imperfect) channel state information
(CSI).

This setting is fairly general in scope as it involves cognitive
SUs with significant control over both spatial and spectral
degrees of freedom: in the spatial (MIMO) component, the
users can control the covariance of their transmit directions
(essentially the spread of their symbols over the transmitting
antennas), whereas in the frequency domain (the OFDM com-
ponent), they control the allocation of their transmit power
over the different channels at their disposal. To the best of
our knowledge, only special cases of this problem have been
considered in a CR setting: for instance, [9–11] analyzed the
case where there is only one channel and the environment is
static (i.e. the system’s SUs only react to each other and the
PUs’ spectrum utilization is fixed); in this context, [9] charac-
terized the best spatial covariance profile for the interacting SUs
whereas [10, 11] described how to reach a Nash equilibrium
in the resulting non-cooperative game. On the other hand,
in dynamic environments where the PUs’ evolving behavior
cannot be anticipated by the system’s SUs, [12–15] proposed
different learning schemes for optimal channel selection, but
they only considered the case where the SUs are equipped with
a single antenna and cannot split power across subcarriers.

Extending the above considerations, our goal in this paper
will be to derive an adaptive transmit policy for SU rate
optimization in dynamically evolving MIMO–OFDM cogni-
tive radio networks. In this online optimization framework,
the most widely used performance criterion is that of regret
minimization, a concept which was first introduced by Hannan
[16] and which has since given rise to a vigorous literature
at the interface of optimization, statistics, game theory, and
machine learning – see e.g. [17, 18] for a comprehensive survey.
Specifically, in the language of game theory, the notion of
regret compares the cumulative payoff obtained by an agent
who changes actions based on how his environment evolves
over time to the cumulative payoff that he would have obtained
by constantly playing the same action. Accordingly, the purpose
of regret minimization is to devise learning policies that lead to
vanishingly small regret against any fixed action and irrespec-
tive of how the agent’s environment evolves over time.

We will thus focus on no-regret policies that perform at least
as well as the asymptotically best fixed policy in terms of each
user’s achievable transmission rate – despite the fact that the lat-
ter cannot be determined by the SUs when they have no means
to anticipate the PUs’ behavior. Motivated by the no-regret
properties of the so-called exponential weight (EW) algorithm
for problems with discrete action sets [17, 19–21], we propose
an augmented exponential learning (AXL) approach that can
be applied to the continuous regret minimization problem at
hand with minimal information requirements. A key challenge
here is that any learning algorithm must respect the problem’s
semidefiniteness constraints; as such, an important component
of the AXL algorithm is the continuous-time technique of

matrix exponential learning that was recently introduced for
ordinary (as opposed to online) rate optimization problems in
MIMO multiple access channels (MACs) [22] – and which is
in turn related to the matrix regularization techniques of [23].

Of course, since the SUs’ optimal transmit profile varies over
time, the notions of convergence and/or convergence speed are
no longer applicable; instead, the figure of merit will be the
rate at which the SUs attain a no-regret state. In that respect,
AXL guarantees a worst-case average regret of O(T−1/2) af-
ter T epochs, a bound which is well known to be optimal
in machine learning [17]. Additionally, AXL retains its no-
regret properties even if the SUs’ channel measurements are
subject to arbitrarily large observation errors (the imperfect CSI
case), thus providing significant performance improvements
over more traditional water-filling methods that are critically
sensitive to perfect CSI. As a result, the system’s SUs are able
to track their individually optimum transmit profile as it evolves
over time remarkably well, even under rapidly (and randomly)
changing conditions.

Paper Outline and Summary of Results

The breakdown of our paper is as follows: in Section II, we
introduce our MIMO–OFDM cognitive radio network model
and the notion of a no-regret transmission policy in the context
of optimizing the SUs’ individual transmission rates. In Section
III, we decompose this online rate optimization problem in two
components, and we propose a no-regret algorithm for each
one: specifically, in Section III-A we propose an adaptive power
allocation policy for the problem’s OFDM component, whereas
in Section III-B, we derive a dynamic signal covariance policy
based on matrix exponential learning for the problem’s MIMO
component. These components are merged in Section IV where
we present our augmented exponential learning method for
the general MIMO-OFDM setting and we show that it leads
to no regret (Theorem 1). Importantly, we also show that the
AXL algorithm retains its no-regret properties even when the
user only has imperfect CSI at his disposal (Theorem 2). This
theoretical analysis is validated and supplemented by numerical
simulations in Section V where we also examine the users’ abil-
ity to track their individually optimum transmit characteristics.
To facilitate presentation, proofs and technical details have been
delegated to a series of appendices at the end of the paper.

II. SystemModel

A. The Network Model

The cognitive radio system that we will focus on consists
of a set of non-cooperative wireless MIMO users (primary and
secondary alike) that communicate over several non-interfering
channels (frequency bands) by means of an OFDM scheme [24,
25]. Specifically, let Q = P ∪ S denote the set of the system’s
users with P (resp. S) representing the system’s primary (resp.
secondary) users; assume further that each user q ∈ Q is equ-
ipped with mq transmit antennas and that the radio spectrum is
partitioned into a set K = {1, . . . ,K} of K orthogonal frequency
bands [24]. Then, the aggregate signal ys

k ∈ Cns on the k-th
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subcarrier at the intended receiver of the secondary user s ∈ S

(assumed equipped with ns receive antennas) will be:

ys
k = Hss

k xs
k +

∑
p∈P

Hps
k xp

k +
∑

r∈S,r,s
Hrs

k xr
k + zs

k, (1)

where xq
k ∈ Cmq is the transmitted message of user q ∈ Q (pri-

mary or secondary) over the k-th subcarrier, Hqs
k is the channel

matrix between the q-th transmitter and the intended receiver
of user s, and zs

k ∈ Cns is the noise in the channel, including
thermal, atmospheric and other peripheral interference effects
(and modeled as a non-singular, zero-mean Gaussian vector).
Accordingly, if we focus for simplicity on a specific SU and
drop the user index s ∈ S in (1), we obtain the signal model

yk = Hkxk + wk, (2)

where wk denotes the multi-user interference-plus-noise over
subcarrier k ∈ K at the intended receiver.

The covariance of wk in (2) obviously changes over time
e.g. due to modulations in the PUs’ behavior.1 In this setting,
employing sophisticated successive interference cancellation
(SIC) techniques at the receiver is highly nontrivial, especially
with regards to the system’s unregulated secondary users; as
such, we will assume that interference by other users (primary
and secondary alike) is treated as additive, colored noise. In this
single user decoding (SUD) regime, the transmission rate of a
user under the signal model (2) will be given by the familiar
expression [8, 24]:

Φ(P) =
∑

k
[
log det

(
Wk + HkPkH†k

)
− log det Wk

]
, (3)

where:
1) Wk = E

[
wkw†k

]
is the multi-user interference-plus-noise

covariance matrix over subcarrier k.
2) Pk = E[xkx†k] is the covariance matrix of the user’s trans-

mitted signal on subcarrier k and P = diag(P1, . . . ,PK)
denotes the user’s transmit profile over all subcarriers.2 In
particular, we will write for convenience:

Pk = pkQk, (4)

where pk = E[x†kxk] denotes the user’s transmit power over
subcarrier k and Qk = E

[
xkx†k

]/
E

[
x†kxk

]
is the correspond-

ing normalized signal covariance matrix.
Hence, given that Wk might change over time due to evolving

user conditions, we obtain the time-dependent objective:

Φ(P; t) =
∑

k log det
[
I + H̃k(t) Pk H̃†k(t)

]
, (5)

where the effective channel matrices H̃k are given by

H̃k(t) = Wk(t)−1/2 Hk(t), (6)

and the time variable t = 1, 2, . . . will be assumed discrete (for
instance, corresponding to the epochs of a time-slotted system).
Obviously, since we are putting no constraints on the behavior
of the system’s users (who may connect and disconnect from
the system and/or otherwise modulate their transmit profiles

1In all cases, we will be assuming that such changes occur at a sufficiently
slow rate relative to the coherence time of the channel so that the standard
results of information theory continue to hold [8].

2Throughout this paper, diag(A1, . . . ,AK ) will denote the block-diagonal
(direct) sum of the matrices Ak .

based on arbitrary criteria), the evolution of the effective chan-
nel matrices H̃k(t) over time can be quite arbitrary as well; the
only assumption that we will make is that the matrices H̃k(t)
remain bounded for all time.

In light of the above, and motivated by the “white-space
filling” paradigm advocated (e.g. by the FCC) as a means
to minimize interference by unlicensed users in MIMO CR
networks [1, 2, 10, 26, 27], we will consider the following
constraints for the SUs’ transmit profiles:

1) Constrained total transmit power:

tr(P) =
∑

k pk ≤ P. (7a)

2) Constrained transmit power per subcarrier:

tr(Pk) = pk ≤ Pk. (7b)

3) Null-shaping constraints:

U†kPk = 0, (7c)

for some tall complex matrix Uk with full column rank.
Of the constraints above, (7a) is a physical constraint on

the user’s total transmit power, (7b) imposes a limit on the
interference level that can be tolerated on a given subcarrier,
and (7c) is a “hard”, spatial version of (7b) which guarantees
that certain spatial dimensions per subcarrier (the columns of
Uk) will only be open to licensed, primary users (see e.g. [25]
for a more detailed discussion).

Of course, to maximize (5) in the absence of energy aware-
ness considerations, the user will saturate his total power
constraint (7a) by transmitting at the highest possible (total)
power.3 Thus, after a suitable change of basis, the set of
admissible transmit profiles for the rate function (5) may be
expressed as:

X =
{
diag(P1, . . . ,PK) : Pk ∈ Cmk×mk ,

Pk < 0, 0 ≤ tr(Pk) ≤ Pk and
∑

k tr(Pk) = P
}
, (8)

where mk ≡ nullity(Uk) is the number of spatial dimen-
sions that are open to SUs on subcarrier k. Accordingly,
writing Pk in the decoupled form Pk = pkQk as in (4), we
obtain the decomposition X = X0 ×

∏
k Dk where X0 ={

p ∈ RK : 0 ≤ pk ≤ Pk,
∑

k pk = P
}

denotes the set of admissi-
ble power allocation vectors and Dk =

{
Qk ∈ Cmk×mk : Qk <

0, tr(Qk) = 1
}

is the set of admissible normalized covariance
matrices for subcarrier k. The individual objective of the focal
SU at time t will thus be given by the online rate maximization
problem:

maximize Φ(P; t)

subject to

P = diag(p1Q1, . . . , pKQK),
(p1, . . . , pK) ∈ X0, Qk ∈ Dk.

(ORM)

Remark. In the following sections, we will need the derivatives
of the rate function Φ; to that end, some matrix calculus yields

∂Φ

∂P∗k
≡Mk = H̃†k

[
I + H̃kPkH̃†k

]−1H̃k, (9)

3The online optimization techniques that we will present can be extended to
more general energy-aware objectives where (7a) is not saturated, but we will
not do so due to space limitations.
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where P∗k denotes the complex conjugate of Pk. Since the
effective channel matrices H̃k(t) are assumed bounded for all
t, the derivatives of Φ(·; t) with respect to pk and Qk will also
remain bounded. Quantitatively, we will thus assume that there
exists some M > 0 such that

‖Mk‖ ≤ M for all k ∈ K and for all P ∈ X, (10)

where ‖ · ‖ ≡ ‖ · ‖∞ denotes the uniform norm on Cmk×mk .

B. Online Optimization and Regret Minimization
In our setting, there is no direct causal link between the PUs’

behavior and the choices of the SUs, so the effective channel
matrices H̃k (and, hence, the objective function Φ) may change
arbitrarily over time. This leads to a “game against nature”
which evolves as follows:

1) At each time slot t = 1, 2 . . . , the agent (i.e. the focal SU)
selects an action (transmit profile) P(t) ∈ X.

2) The agent’s payoff (transmission rate) Φ(P(t); t) is deter-
mined by nature and/or the behavior of other users (via the
effective channel matrices H̃k).

3) The agent employs some decision rule (dynamic transmit
policy) to pick a new transmit profile P(t + 1) ∈ X at stage
t + 1, and the process is repeated ad infinitum (or until the
user’s transmission ends).

In this setting, the worst-case scenario for the user – and one
which has attracted considerable interest in the literature – is
when the environment cannot be assumed to follow some fixed
probability law. In particular, Cover’s impossibility result [28]
shows that the cumulative payoff difference between an oracle
(a decision rule which prescribes an action based on knowledge
of the future) and any adaptive policy (a decision rule which
only relies on past observations) can become arbitrarily large,
even in relatively simple problems (such as trying to predict a
binary sequence). As a result, in the absence of absolute perfor-
mance guarantees, and given that static solution concepts (such
as Nash equilibria) are no longer applicable, the most widely
used online optimization criterion is that of regret minimization,
a notion which was first introduced by Hannan [16] and which
has since given rise to an extremely active field of research at
the interface of optimization, statistics and theoretical computer
science – see e.g. [17, 18] for a survey.

Roughly speaking, the regret of a dynamic policy compares
the average payoff obtained by an agent that follows it to
the average payoff that he would have obtained by constantly
choosing the same action over the entire transmission hori-
zon. Specifically, the cumulative regret of the dynamic policy
P(t) ∈ X with respect to P0 ∈ X will thus be:

RegT (P0) =
∑T

t=1

[
Φ(P0; t) − Φ(P(t); t)

]
, (11)

i.e. RegT (P0) measures the cumulative transmission rate dif-
ference up to stage T between the benchmark transmit profile
P0 ∈ X and the dynamic policy P(t). The corresponding
average regret will then simply be T−1 RegT (P0) and the goal
of regret minimization is to devise a dynamic transmit policy
P(t) that leads to no regret, viz.

lim sup
T→∞

1
T

RegT (P0) ≤ 0, (12)

for all P0 ∈ X and irrespective of the evolution of the objective
Φ(·; t) as a function of the effective channel matrices H̃k(t).
In other words, if we interpret limT→∞ T−1 ∑T

t=1 Φ(P0; t) as the
long-term average transmission rate associated to P0, then (12)
means that the average data rate of the dynamic transmit policy
P(t) must be at least as good as that of any benchmark profile
P0 ∈ X.
Remark 1. Obviously, if the optimum transmit policy which
maximizes (ORM) could be predicted at every stage t =

1, 2, . . . in an oracle-like fashion, we would have RegT (P0) ≤ 0
in (11) for all P0 ∈ X. The no-regret requirement (12) is
thus fundamental for performance evaluation in the context of
online optimization because negative regret is a key indicator of
tracking the maximum of (ORM) as it evolves over time.
Remark 2. If the channel matrices are drawn at each realiza-
tion from an isotropic distribution, spreading power uniformly
across carriers and antennas is the optimal choice when nature
(including the network’s PUs) is actively choosing the worst
possible channel realization for the transmitter [29]. A no-
regret policy extends this “min-max” concept by ensuring that
no matter how the channels evolve over time (isotropically,
adversarially, or otherwise), the policy’s achieved transmission
rate will be asymptotically as good as that of any fixed transmit
profile, including the uniform one (as a special case where na-
ture is actively playing against the transmitter – e.g. jamming).

III. Online Power Allocation and Signal Covariance
Optimization

To build intuition step-by-step, we will break up the online
rate maximization problem (ORM) in simpler components and
we will derive adaptive transmit policies based on an exponen-
tial learning principle that leads to no regret in each one. This
analysis will then be merged into an adaptive transmit policy
for the full MIMO–OFDM problem in the following section.

A. The OFDM Component: Online Power Allocation

1) A gentle start – the case Pk ≥ P: For illustration pur-
poses, we first examine the case where the power-per-channel
constraints (7b) can be absorbed in the total power constraint
(7a), i.e. Pk ≥ P for all k ∈ K; also, for scaling purposes, it will
be more convenient to consider the normalized power variables

qk = pk/P. (13)

With this in mind, if the normalized signal covariance profile
Q = diag(Q1, . . . ,QK) of the focal SU is kept fixed, we obtain
the online power allocation problem:

maximize Φ(q; t),
subject to q ∈ ∆

(OPA)

where ∆ =
{
q ∈ RK

+ :
∑K

k=1 qk = 1
}

denotes the set of feasible
(normalized) power allocation profiles, and in a slight abuse of
notation, we write Φ(q; t) to highlight the dependence of the
rate function (5) on the normalized power allocation profile q ∈
∆ instead of P ∈ X.

A special case of this problem is when the user cannot split
power across subcarriers and can only choose one channel on
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which to transmit. Essentially, this channel selection framework
boils down to the well known “multi-armed bandit” problem
[30] which has given rise to a vast corpus of literature on
learning algorithms – see e.g. [17] and references therein. As
a result, much recent work on CR networks [13–15] has been
focused on no-regret channel selection algorithms that lead
to no regret by utilizing Q-learning [14] or upper confidence
bound (UCB) techniques [13].

Unfortunately, these techniques are inherently tied to discrete
problems, so it is not clear how to extend them to the continuous
context of (OPA). Instead, motivated by the exponential weight
algorithm introduced in [19–21] for sequence prediction, our
approach will consist of scoring each channel over time and
then allocating power proportionally to the exponential of these
scores. In particular, inspired by the analysis of [31], each
channel will be scored by means of the gradient payoffs:

vk =
∂Φ

∂qk
= P

∂Φ

∂pk
= P · tr

[
MkQk

]
, (14)

where Qk ∈ Dk is the user’s (fixed) covariance matrix and Mk is
given by (9). Our exponential learning power allocation policy
will then consist of the recursion:

yk(t) = yk(t − 1) + vk(t),

qk(t) =
exp

(
ηt−1/2yk(t)

)∑
` exp

(
ηt−1/2y`(t)

) , (XL-PA)

where η > 0 is a learning rate parameter and the
√

t factor has
been included to moderate very sharp score differences.

Our first result is that (XL-PA) performs asymptotically as
well as any fixed power allocation profile q0 ∈ ∆:

Proposition 1. If Pk ≥ P for all k ∈ K, (XL-PA) leads
to no regret in the online power allocation problem (OPA).
Specifically, for every q0 ∈ ∆, and independently of the system’s
evolution over time, the user’s regret is bounded by:

1
T

RegT (q0) ≤
1
√

T

(
log K
η

+ 4P2M2η

)
, (15)

with M given by (10).

Proof: See Appendices A and E.

Remark 1. Since the focal SU transmits with positive power on
every available subcarrier, we will assume that he can obtain the
relevant CSI needed to calculate the payoffs (14). That said, the
user’s CSI might well be imperfect, in which case Propositon 1
does not apply; we will study the case of imperfect CSI for the
full MIMO–OFDM problem in Section IV.

Remark 2. The use of the gradient-based payoffs (14) in the
exponential learning policy (XL-PA) can be compared to the
online gradient descent algorithm introduced in [32] where the
learner tracks the gradient of his evolving objective and projects
back to the problem’s feasible set when needed. We did not take
such an approach because projections are unstable numerical
operations [33] and they can also become quite costly from
a computational standpoint (the problem’s constraints would
have to be checked individually at every iteration).

2) The general case: The dynamic power allocation policy
(XL-PA) and Proposition 1 concern the case where the power-
per-channel constraints (7b) can be absorbed in the total power
constraint (7a). Otherwise, if Pk < P for some channel k ∈ K

(e.g. if certain PUs have very low interference tolerance on
their licensed channels), (XL-PA) cannot be employed “as is”
because it does not respect the constraint pk ≤ Pk. When this
is the case, the analysis of Appendix B yields the modified
exponential learning policy:

yk(t) = yk(t − 1) + vk(t),

pk(t) = Pk

(
1 + exp(λ − ηt−1/2yk)

)−1 (XL-PA′)

where λ > 0 is defined implicitly so that (7a) is satisfied:

P =
∑

k∈K Pk

(
1 + exp(λ − ηt−1/2yk)

)−1
. (16)

Just like (XL-PA), the (XL-PA′) policy exhibits exponential
sensitivity to the scores yk modulo a normalization factor cor-
responding to the constraints (7a) and (7b). Since the RHS of
(16) is bounded below and strictly decreasing in λ, it is straight-
forward to calculate the value of λ itself, e.g. by performing a
low-complexity line search for eλ [33].4 We then get:

Proposition 2. The policy (XL-PA′) leads to no regret. In
particular, for every p0 ∈ X0, the user’s regret is bounded by

T−1 RegT (p0) ≤ O
(
T−1/2), (17)

irrespective of the system’s evolution over time.

Proof: See Appendix B.
Remark. We should note here that (XL-PA′) is not equivalent
to (XL-PA) if Pk ≥ P; instead, (XL-PA) should be viewed as
a simpler alternative to (XL-PA′) that can be employed when-
ever the maximum power-per-channel constraints (7b) can be
subsumed in the total power constraint (7a). For convenience,
we will present our results in the simpler case Pk ≥ P and we
will rely on a series of remarks to translate these remarks to the
regime Pk < P (cf. Appendices A and B).

B. The MIMO Component: Online Covariance Optimization
Dually to the analysis of the previous section, if the user’s

power allocation profile p = (p1, . . . , pK) remains fixed
throughout the duration of the transmission, (ORM) boils down
to the online signal covariance optimization problem:

maximize Φ(Q; t),
subject to Qk < 0, tr(Qk) = 1,

(OCOV)

where we now use the notation Φ(Q; t) to highlight the de-
pendence of the user’s transmission rate (5) on the normalized
covariance matrix Q = diag(Q1, . . . ,QK) ∈ X+ ≡

∏
k Dk.

A key challenge in (OCOV) is that any learning algorithm
must respect the problem’s (implicit) semidefiniteness con-
straints Qk < 0. To that end, motivated by the analysis of [22],
we will consider the matrix exponential learning policy

Yk(t) = Yk(t − 1) + Vk(t),

Qk(t) =
exp

(
ηt−1/2Yk(t)

)
tr

[
exp

(
ηt−1/2Yk(t)

)] , (XL-COV)

4For a closed-form expression of (XL-PA′) based on a modified version of
the replicator equation of evolutionary game theory, see [34].
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where the matrix-valued gradient payoff Vk is defined as:

Vk =
∂Φ

∂Q∗k
= pkMk, (18)

with Mk given by (9).Intuitively, (XL-COV) reinforces the spa-
tial directions that peform well by increasing the corresponding
eigenvalues (the t−1/2 factor simply keeps the spectrum of Yk

from growing too fast). Along these lines, our analysis in
Appendix C yields:

Proposition 3. The dynamic transmit policy (XL-COV) leads
to no regret in the online signal covariance optimization prob-
lem (OCOV). In particular, for every Q0 ∈ X+ ≡

∏
k Dk, and

irrespective of the system’s evolution over time, we will have:

1
T

RegT (Q0) ≤
1
√

T

∑K
k=1 log mk

η
+ 4P2M2η

 , (19)

where mk is the number of spatial degrees of freedom left open
to SUs on subcarrier k by the constraint (7c).

Remark. Assuming a static environment, [22] showed that ma-
trix exponential learning allows users to optimize their sum rate
(under successive interference cancellation) in uplink MIMO
multiple access channels. In this sense, Proposition 3 can be
seen as a dual result: it shows that if a user follows the dynamic
signal covariance policy (XL-COV), he will be unilaterally
satisfied even in the much more general channel model (2), and
independently of how the system evolves over time.

IV. Augmented Exponential Learning forMIMO–OFDM
Systems

In this section, our goal will be to merge the component-
wise analysis of the previous section into an adaptive transmit
policy that leads to no regret in the full MIMO–OFDM problem
(ORM), even under imperfect CSI.

A. Augmented Exponential Learning

Working for simplicity with the special case Pk ≥ P, combin-
ing (XL-PA) and (XL-COV) gives the dynamic transmit policy:

Algorithm 1 Augmented Exponential Learning (AXL)

Parameter: η > 0.
Initialize: t ← 0; channel scores yk ← 0, Yk ← 0.
Repeat

t ← t + 1;
foreach channel k ∈ K do

set

pk ← P exp
(
ηt−1/2yk

)/∑
` exp

(
ηt−1/2y`

)
;

Qk ← exp
(
ηt−1/2Yk

)/
tr

[
exp

(
ηt−1/2Yk

)]
;

foreach channel k ∈ K do
measure Mk ← H̃†k

[
I + pkH̃kQkH̃†k

]−1H̃k;

update scores:

yk ← yk + P tr[MkQk];
Yk ← Yk + pkMk;

until transmission ends.

The augmented exponential learning (AXL) algorithm will
be the main focus of this section, so a few remarks are in order:

Remark 1. From an implementation point of view, AXL has the
following desirable properties:
(P1) It is distributed: each SU only needs to update his individ-

ual transmit policy using local CSI (the matrices H̃k).
(P2) It is asynchronous: there is no need for a global update

timer to synchronize the system’s SUs.
(P3) It is stateless: the SUs do not need to know the state of the

system (e.g. the network’s topology), and/or be aware of
each other’s actions.

(P4) It is reinforcing: the SUs tend to increase their unilateral
transmission rates.

Remark 2. If the maximum power-per-channel constraints
imposed on the network’s SUs do not satisfy the condition
Pk ≥ P for all k ∈ K, AXL must be modified with respect to
the power allocation update step: specifically, the exponential
allocation rule pk ← P exp(ηt−1/2yk)

/∑
` exp(ηt−1/2y`) must

be replaced by the update rule of (XL-PA′), i.e. by setting
pk ← Pk

[
1 + exp(λ− ηt−1/2yk)

]−1. To simplify our presentation,
we will keep the assumption Pk ≥ P in what follows, but with
the implicit understanding that if Pk < P for some k ∈ K, then
it is the modified version of AXL that should be used instead.

With all this in mind, our main result in this section is that
the AXL algorithm leads to no regret if Pk ≥ P for all channels:

Theorem 1. The adaptive transmit policy generated by AXL
leads to no regret in the online rate maximization problem
(ORM). In particular, for every fixed transmit profile P0 ∈ X,
and independently of how the system’s rate function (5) evolves
over time, the user’s regret will be bounded by:

1
T

RegT (P0) ≤
1
√

T

 log K +
∑K

k=1 log mk

η
+ 4P2M2η

 , (20)

where M is given by (10) and mk is the number of spatial
dimensions that are left open to SUs by the constraint (7c).

Proof: See Appendices D and E.
Remark 1. As we already explained, if Pk < P for some channel
k ∈ K, the power update step in the AXL algorithm should be
replaced by the power allocation rule (XL-PA′). In this case,
AXL still leads to no regret with an O(T−1/2) bound on the
regret, but the exact expression is more complicated, so we will
not present it here (see Appendix B for the details).
Remark 2. The proof of Theorem 1 relies on a deep connection
between the exponential maps of (XL-PA) and (XL-COV)
with the Gibbs–Shannon and von Neumann entropy functions
respectively. In fact, as we shall see in Appendices A–B,
our approach is intimately related to the Hessian–Riemannian
optimization method of [35] and the online mirror descent tech-
niques presented in [18, 23]. Unfortunately, these methods both
require the introduction of significant technical apparatus, so
we will not discuss them at length here; for a detailed discussion
from a game-theoretic viewpoint, the reader is instead referred
to [36].
Remark 3. It should also be noted that the bound (20) is not the
sum of the bounds (15) and (19). As we show in Appendices D
and E, the reason for this is that Theorem 1 is not a corollary
of Propositions 1 and 3 but, rather, a combination of these two
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independent results with a descent from continuous to discrete
time – a technique that was recently developed by J. Kwon and
one of the authors in [37].

Remark 4. In practice, the learning parameter η of the AXL
algorithm can be tuned freely by the user. As such, if the user
can estimate ahead of time the quantity M (which can be seen
as an effective bound on the gradient matrices Mk over time), η
can be chosen so as to optimize the regret guarantee (20) – thus
leading to lower regret levels faster.

To that end, some calculus shows that the optimal choice of
η which minimizes the RHS of (20) is:

η = 1
2 PM

(
log K +

∑
k log mk

)1/2 , (21)

which then leads to the optimized regret guarantee:

RegT (P0) ≤ 4PM
(

log K +
∑

k log mk
)1/2T 1/2. (22)

This bound resembles the bound derived in [23] for learning
processes that stop after a predetermined number of steps; on
the other hand (and in contrast to our results), unless some sort
of “doubling correction” is used [17], the method proposed in
[23] might lead to positive regret in an infinite horizon setting
such as the one we are considering here.

B. Learning with Imperfect Channel State Information

In practice, a major challenge occurs if the user does not
have perfect CSI with which to calculate the matrix gradients
(9) that are needed to run the AXL algorithm. To wit, since
these gradients are determined by the effective channel matrices
H̃k = W−1/2

k Hk, imperfect measurements of the actual channel
matrices Hk or of the multi-user interference-plus-noise covari-
ance matrices Wk would invariably interfere with each update
cycle. Accordingly, our aim in this section will be to study the
robustness of AXL in the presence of observation noise.

To account for as wide a range of measurement errors as
possible, we will assume here that at each update period t =

1, 2, . . . , the user can only observe a noisy estimate

M̂k(t) = Mk(t) + Ξk(t) (23)

of Mk(t), where the noise process Ξk(t) represents a random
observational error (not necessarily i.i.d.). Specifically, with
regards to Ξk, we will only assume that ‖Ξk‖ ≤ Σ (a.s.) for
some (arbitrarily large) Σ > 0 and that

E
[
Ξk(t)|Ft−1

]
= 0, (24)

where F = {Ft}t≥1 denotes the history of the user’s choices.
Remarkably, as long as there is no systematic bias in the user’s
measurements, the AXL algorithm still leads to no regret, even
in the presence of arbitrarily large observation errors:

Theorem 2. The AXL algorithm with noisy observations M̂k of
the form (23) leads to no regret (a.s.). Specifically, if ‖Ξk‖ ≤ Σ,
then, for all P0 ∈ X and for all z > 0:

(i) The user’s expected regret is bounded by:

E
[
T−1 RegT (P0)

]
≤ RT−1/2. (25)

(ii) The user’s realized regret is bounded by the perfect CSI
guarantee of AXL with exponentially high probability:

P

(
1
T

RegT (P0) ≤
R
√

T
+ z

)
≥ 1 − exp

(
−

z2T
2D2Σ2

)
, (26)

where D > 0 is a constant and R is given by the deterministic
regret guarantee (20) of AXL with perfect CSI, viz.:

R = η−1 ·
(

log K +
∑

k log mk
)

+ 4P2M2η. (27)

In short, Theorem 2 (proven in Appendix F) shows that, with
high probability, AXL guarantees an O(T−1/2) bound on the
user’s regret, even under measurement errors of arbitrarily high
magnitude. Accordingly, a few remarks are in order:
Remark 1. Part (ii) of Theorem 2 should be interpreted as
a large deviations result: essentially, it states that the regret
generated by AXL with imperfect CSI exceeds that of the
perfect CSI variant with exponentially small probability (i.e. the
tails of the large deviations distribution are effectively Gaus-
sian). Intuitively, this means that the algorithm’s regret falls
below the deterministic, perfect CSI guarantee (20) with high
probability. Moreover, it is also important to note that Theorem
1 is recovered by (26) in the deterministic limit Σ → 0+:
the probability that the user’s regret exceeds the determinstic
guarantee R/

√
T converges uniformly to 0 as Σ→ 0+.

Remark 2. Interestingly, the first- and second-order statistics of
the measured gradients M̂k play different roles in the presence
of imperfect CSI: the expected value E

[
M̂k

]
= Mk of M̂k

controls the expected regret guarantee of AXL via (25), whereas
the variance Var

(
M̂k

)
= E

[
‖Ξk‖

2] of M̂k controls the deviations
of the regret from its “bulk” behavior – but has no impact on the
expected regret of AXL.

V. Numerical Results
To validate the predictions of Section IV for the AXL al-

gorithm, we conducted extensive numerical simulations from
which we illustrate here a selection of the most representative
scenarios – though the observations made below remain valid
in typical mobile wireless environments.

In Fig. 1, we simulated a network consisting of 4 PUs and
8 SUs, all equipped with mk = 3 transmit/receive antennas,
and communicating over K = 6 orthogonal subcarriers with
a base frequency of ν = 2 GHz. Both the PUs and the SUs
were assumed to be mobile with an average speed of 5 km/h
(pedestrian movement), and the channel matrices Hqs

k of (2)
were modeled after the well-known Jakes model for Rayleigh
fading [38]. For simplicity, we assumed that the PUs were
going online and offline following a Poisson process, while the
simulated SUs employed the AXL algorithm with η = 1 and an
update epoch of δ = 5 ms.5

We then picked a sample secondary user to focus on, and we
calculated the regret induced by the AXL policy with respect to
7 different fixed signal profiles: the uniform one (where power
is spread equally across antennas and frequency bands), and
all possible combinations of spreading power uniformly across
subcarriers while keeping one or two transmit dimensions

5We did not optimize the choice of η because we wanted to focus on the case
where the network’s SUs have minimal information.
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closed (the legend of Fig. 1 indicates the antennas that were
not employed in each benchmark policy).6 The results of these
simulations were plotted in Fig. 1(a): as predicted by Theorem
1, AXL leads to no regret and falls below the no-regret thresh-
old within a few epochs, indicating that its average performance
is strictly better than any of the benchmark transmit profiles.

For comparison purposes, we also simulated the same sce-
nario, but with the SUs employing a randomized transmit
policy. In particular, motivated by [29], we simulated the ran-
domized scheme:

Qk(t + 1) = (1 − r)Qk(t) + rRk(t),

Qk(0) = m−1
k I,

(28)

where the matrix Rk(t) is drawn uniformly from the spectrahe-
dron Dk of mk × mk positive-definite matrices with unit trace,
and r ∈ [0, 1] is a discount parameter interpolating between
the uniform distribution Qk ∝ I for r = 0 and the completely
random policy Rk for r = 1 (in our simulations, we took
r = 0.9). Even though this dynamic transmit policy is sampling
the state space essentially uniformly for large values of r,
Fig. 1(b) shows that it leads to positive regret against 6 out of the
7 benchmark policies.7 In other words, the no-regret property
of AXL is not a spurious artifact of exploring the problem’s
state space in a uniform way, but it is inextricably tied to the
underlying learning mechanism.

The no-regret results of Fig. 1 also suggest that the trans-
mission rate achieved by the focal SU is close to the user’s
(evolving) maximum possible rate. To test this hypothesis, we
plotted in Fig. 2 the achieved data rate of a SU employing
the AXL algorithm along with the user’s maximum achievable
data rate and the rates achieved by the uniform policy and the
randomized policy (28); to test different fading conditions, we
simulated average user velocities of v = 5 m/s and v = 15 m/s
(Figs. 2(a) and 2(b) respectively). We see there that AXL
adapts to the changing channel conditions and tracks the user’s
maximum achievable rate remarkably well, in stark contrast to
the uniform and randomized transmit policies.8

Finally, to assess the performance of the AXL algorithm with
respect to the users’ sum rate under SIC and its robustness in the
presence of imperfect CSI, we simulated in Fig. 3 a static multi-
user MIMO multiple access channel consisting of a wireless
base receiver with 5 antennas, 10 PUs and 25 SUs (each
with a random number of transmit antennas picked uniformly
between 2 and 6). Each user’s channel matrix Hqr

k ≡ Hq
k was

drawn from a complex Gaussian distribution at the outset of the
transmission (but remained static once picked), and we then ran
the AXL algorithm with η = 1. The algorithm’s performance
over time was assessed by plotting the efficiency ratio

eff(t) =
Ψ(t) − Ψmin

Ψmax − Ψmin
, (29)

6We chose these benchmarks so as to sample the covariance component X+

of the problem’s state space as uniformly as possible.
7The policy (28) leads to no regret against the uniform power allocation

policy because the average of (28) is the uniform transmit policy itself.
8Of course, if the user’s velocity becomes exceedingly high, the quality of

this tracking may deteriorate as a result of the channel’s extreme variability;
even in this case however, AXL is guaranteed to perform at least as well as the
best fixed transmit profile.

where Ψ(t) denotes the users’ sum rate at the t-th iteration of
the algorithm, and Ψmax (resp. Ψmin) is the maximum (resp.
minimum) value of Ψ over the set of feasible transmit profiles.9

For comparison purposes, we also plotted the efficiency ratio
achieved by water-filling methods – namely iterative water-
filling (IWF) and simultaneous water-filling (SWF) [39]. Re-
markably, when the users have perfect CSI, the AXL policy
achieves the system’s maximum sum rate within a few itera-
tions; by contrast, SWF fails to converge altogether while the
convergence time of IWF scales linearly with the number of
SUs (Fig. 3(a)). On the other hand, in the presence of imperfect
CSI (modeled as zero-mean i.i.d. Gaussian pertrubations to the
gradient matrices Mk with relative magnitude of 50%), AXL
still achieves the system’s sum capacity (albeit at a slower rate)
whereas water-filling methods offer no significant advantage
over the user’s initial transmit profile (cf. Fig. 3(b)).

VI. Conclusions

In this paper, we introduced an adaptive transmit policy
for secondary users in MIMO-OFDM cognitive radio systems
that evolve dynamically over time as a function of changing
user and environmental conditions. By decomposing the users’
online rate maximization into a signal covariance and a power
allocation component and drawing on the method of matrix
exponential learning, we derived an augmented exponential
learning (AXL) scheme which leads to no regret: for every SU,
the proposed transmit policy performs asymptotically as well
as the best fixed transmit profile over the entire transmission
horizon, and irrespective of how the system evolves over time.
In fact, this learning scheme is closely aligned to the direction
of change of the users’ data rate function, so the system’s SUs
are able to track their individual optimum transmit profile even
under rapidly changing conditions.

Importantly, the implementation of the proposed algorithm
requires only local CSI; moreover, the algorithm retaints its no-
regret properties even in the case of imperfect CSI (with arbi-
trarily large measurement errors) and significantly outperforms
classical water-filling algorithms (where the use of perfect CSI
is critical).

To a large extent, our dynamic transmit policy owes its no-
regret properties to an associated entropy function (for instance,
the von Neumann quantum entropy for the problem’s signal co-
variance component). As a result, by choosing a proper entropy-
like kernel (e.g. as in [35]), we can examine significantly more
general situations, including for example pricing and/or energy-
awareness constraints.

Appendix
Technical Proofs

Our proof approach will rely on a technique that was intro-
duced by Sorin [40] and was recently extended by J. Kwon and
one of the authors [37]. In a nutshell, we will first establish
the no-regret property in continuous time, and we will then
derive the corresponding discrete-time result by estimating the
difference between the continuous- and discrete-time processes.

9The reason for using this ratio was to eliminate scaling artifacts arising e.g.
from the sum rate taking values in a narrow band close to its maximum value.
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(a) No regret under augmented exponential learning.
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(b) Positive regret under randomized power allocation.

Fig. 1. The long-term regret induced by augmented exponential learning and a random sampling transmit policy (Figs 1(a) and 1(b) respectively) against different
benchmark transmit profiles (see text for details). In tune with Theorem 1, AXL quickly achieves the no-regret threshold whereas the randomized policy (28) leads
to positive regret in 6 out of the 7 benchmark signal profiles.
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(a) Performance of AXL with average user velocity v = 5 km/s.
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(b) Performance of AXL with average user velocity v = 15 km/s.

Fig. 2. Data rates achieved by AXL in a changing environment with different fading velocities: the dynamic transmit policy induced by the AXL algorithm allows
users to track their maximum achievable transmission rate remarkably well even under rapidly changing channel conditions.
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Fig. 3. Convergence and robustness of AXL with imperfect CSI in a MIMO MAC system with 10 PUs and 25 SUs: in contrast to water-filling methods, AXL
attains the channel’s sum capacity even in the presence of very high measurement errors.
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A. Online Power Allocation: the Case Pk ≥ P.

To begin with, note that the exponential mapping of (XL-PA)
may be characterized as the solution of the convex program:

maximize 〈y|q〉 − h(q)
subject to qk ≥ 0,

∑
k qk = 1,

(30)

where 〈y|q〉 denotes the bilinear pairing 〈y|q〉 =
∑

k qkyk and
h(q) =

∑
k qk log qk denotes the Gibbs–Shannon entropy on the

simplex ∆ ≡ ∆(K) spanned by K. More precisely, we have the
following classical result [41, Chapter 25]:

Lemma 1. For every y ∈ RK , the problem (30) admits the
unique solution G(y) with Gk(y) = eyk

/∑
` ey` .

Consider now the following continuous-time variant of
(XL-PA) for t ≥ 0:

ẏk =
∂Φ

∂qk
,

q(t) = G (γ(t)y(t)) ,
(31)

where γ(t) = min{η, ηt−1/2}; moreover, define the cumulative
continuous-time regret with respect to some fixed q0 ∈ ∆ as

Regc
T (q0) =

∫ T
0

[
Φ(q0; t) − Φ(q(t); t)

]
dt, (32)

where Φ(·; t), is a piecewise continuous stream of rate functions
and the index c in Regc

T indicates that we are working in
continuous time. We then have:

Proposition 4. The cumulative regret generated by the learning
scheme (31) satisfies Regc

T (q0) ≤ η−1 log K ·
√

T for all q0 ∈ ∆.

Proof: Let h∗(y) denote the convex conjugate of h, i.e.
h∗(y) = maxq∈∆{〈y|q〉 − h(q)} = 〈y|G(y)〉 − h(G(y)). Moreover,
set γ(t) = min{ηt−1/2, η} and let q(t) be defined by (31) with
v(t) = ẏ(t) = ∇q(t)Φ(q(t); t). By Lemma 1, we will have
h∗(γy) = log

∑
` eγy` and hence:

d
dt

h∗(γy) =
∑
k∈K

∂h∗

∂yk

∣∣∣∣∣
γy

(γ̇yk + γẏk) = γ̇ 〈y|q〉+γ 〈v|q〉 , (33)

where we used (31) and the fact that ∇yh∗(y) = G(y). By
isolating 〈v|q〉 and integrating by parts, we then get:∫ T

0
〈v|q〉 dt =

h∗(γ(T )y(T ))
γ(T )

−
h∗(γ(0)y(0))

γ(0)

+

∫ T

0

γ̇

γ2 h∗(γy) dt −
∫ T

0

γ̇

γ
〈y|q〉 dt

=
h∗(γ(T )y(T ))

γ(T )
−

h∗(0)
γ(0)

−

∫ T

0

γ̇

γ2 h(G(γy)) dt, (34)

where the last step follows from the fact that q = G(γy) and the
defining relation h∗(γy) = 〈γy|G(γy)〉 − h(G(γy)). Then, given
that the minimum of h over ∆ is − log K, we will also have
h∗(0) = −hmin = log K; thus, with γ̇ ≤ 0, (34) becomes:∫ T

0
〈v|q〉 dt ≥

h∗(γ(T )y(T ))
γ(T )

−
h∗(0)
γ(0)

+ h∗(0)
∫ T

0

γ̇

γ2 dt

≥
〈γ(T )y(T )|q0〉 − h(q0)

γ(T )
−

log K
γ(T )

≥ 〈y(T )|q0〉 −
log K
η

√
T , (35)

where we used the fact that h∗(γy) ≥ 〈γy|q0〉 − h(q0) for all
q0 ∈ ∆ in the second line and that h ≤ 0 in the last step. With
Φ concave over ∆, we will also have Φ(q0; t) − Φ(q(t); t) ≤〈
∇q(t)Φ

∣∣∣q0 − q(t)
〉

= 〈v(t)|q0 − q(t)〉; hence, by (35), we get:

Regc
T (q0) ≤

∫ T
0 〈v|q0 − q〉 dt ≤ log K

η

√
T , (36)

and our proof is complete.

B. Online Power Allocation: The General Case.

If Pk < P for some k, we still obtain a no-regret power
allocation policy if we use the modified entropy function
h(p) =

∑
k
(
pk log pk + (Pk − pk) log(Pk − pk)

)
, and define the

modified Gibbs map:

G0(y) = arg maxp∈X0

{
〈y|p〉 − h0(p)

}
. (37)

Specifically, consider the following modified version of (31):

ẏk =
∂Φ

∂pk
,

p(t) = G0 (γ(t)y(t)) ,
(38)

where Φ(·; t) is a continuous stream of rate functions of the form
(5) and γ = min{η, ηt−1/2}. We then have:

Proposition 5. The learning scheme (38) leads to no regret in
continuous time: Regc

T (p0) ≤ O(
√

T ) for all p0 ∈ X0.

Proof: Shadowing the proof of Proposition 4, let h∗0(y) =

maxp∈X0 {〈y|p〉 − h0(p)} = 〈y|G0(y)〉 − h0(G0(y)) be the convex
conjugate of h0(p). Since the derivative of h0 blows up to
infinity at the boundary of X0, the unique solution to the
maximization problem defining G0 will lie at the interior of
X0. The Karush–Kuhn–Tucker (KKT) conditions thus give
yk −

∂h0
∂pk

= λ, where λ is the Lagrange multiplier for the

equality constraint
∑
` p` = P. We will then also have ∂h∗0

∂yk
=

G0,k(y) +
∑K
`=1 y`

∂
∂yk

G0,`(y) −
∑K
`=1

∂h0
∂p`

∂
∂yk

G0,`(y) = G0,k(y),
where, in the last step, we used the fact that

∑K
`=1 G0,`(y) = P

(so
∑K
`=1 ∂ykG0,` = 0 for all k). Thus, letting v(t) = ∇pΦ(p; t)

so that y(t) =
∫ t

0 v(s) ds and p(t) = G0(γ(t)y(t)), we obtain the
basic identity:

d
dt

h∗0(γy) =
∑
k∈K

∂h∗0
∂yk

∣∣∣∣∣∣
γy

(γ̇yk + γẏk) = γ̇ 〈y|p〉+γ 〈v|p〉 , (39)

and the rest of the proof follows as in the case of Prop. 4.

C. Online Signal Covariance Optimization

For the MIMO component (OCOV) of (ORM) we will
consider the continuous-time scheme:

Ẏk =
∂Φ

∂Q∗k
,

Qk =
exp(γYk)

tr
[
exp (γYk)

] . (40)

where, as before, γ = min{η, ηt−1/2}. Then, with the user’s regret
defined as in (32), we get:
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Proposition 6. The cumulative regret generated by the
continuous-time learning scheme (40) satisfies Regc

T (Q0) ≤
η−1
√

T
∑K

k=1 log mk for all Q0 ∈ X+ ≡
∏K

k=1 Dk.

To prove Proposition 6, we will first show that the matrix
exponential of (19) solves the semidefinite problem:

maximize tr
[
YQ

]
− h+(Q)

subject to Q < 0, tr(Q) = 1,
(41)

where Y is a Hermitian matrix and h+(Q) = tr
[
Q log Q

]
is the

von Neumann entropy. We thus obtain:

Lemma 2. For every Hermitian matrix Y ∈ Cm×m, the problem
(30) admits the unique solution QY = exp(Y)

/
tr

[
exp(Y)

]
.

Accordingly, the convex conjugate of h+ will be:

h∗+(Y) = maxQ∈D
{
tr

[
YQ

]
− h+(Q)

}
= log tr

[
exp(Y)

]
. (42)

Proof: To begin with, let A(Y,Q) = tr
[
YQ]−h+(Q) denote

the objective of the problem (41), and let Z = {A ∈ Cm×m :
A† = A, tr(A) = 0} be the space of tangent directions to
D. Then, if {q j,u j}

m
j=1 is an eigen-decomposition of Q + tZ

for Q ∈ D◦ and Z ∈ Z, we will have A(Y,Q + tZ) =

tr[YQ]+tr[YZ] t−
∑

j q j log q j.Hence, the directional derivative
of A(Y,Q) along Z at Q will be: ∇ZA(Y,Q) = d

dt

∣∣∣
t=0 A(Y,Q +

tZ) = tr[YZ] −
∑K

k=1 q̇k log qk where we have used the fact that∑
j q̇ j = 0 (recall that

∑
j q j = tr(Q + tZ) = 1 for all t such that

Q + tZ ∈ D◦). However, differentiating the defining relation
(Q + tZ)u j = q ju j with respect to t gives Zu j + (Q + tZ)u̇ j =

q̇ ju j + q ju̇ j, so, after multiplying from the left by u†j , we get
q̇ j = u†jZu j + u†j (Q + tZ)u̇ j − q ju†j u̇ j = u†jZu j. Summing
over j gives

∑
j q̇ j log q j =

∑
j u†jZu j log q j = tr[Z log Q]; then,

by substituting in the previous expression for ∇ZA(Y,Q), we
finally obtain ∇ZA(Y,Q) = tr[Z(Y − log Q)].

With this expression at hand, it is easy to see that A(Y, ·)
becomes infinitely steep at the boundary bd(D) of D, i.e.
|∇ZA(Y,Qn)| → ∞ whenever Qn → bd(D) (simply note that
the eigenvalues of log Q blow up when Q becomes singular).
Since h+ is strictly convex, it follows that A will be of Legendre
type [41], so (41) will admit a unique solution QY at the interior
D◦ of D [41, Chapter 26]. Accordingly, by the KKT conditions
for (41), we will have ∇ZA(Y,QY) = 0 for all tangent directions
Z to D◦ at QY, i.e. tr[Z(Y − log QY)] = 0 for all Hermitian
Z ∈ Cm×m such that tr(Z) = 0. From this last condition, we
immediately get Y − log QY ∝ I, and with tr(QY) = 1, we
obtain QY = exp(Y)/ tr[exp(Y)]; the expression for h∗+(Y) then
follows by substituting QY in the definition of A(Y,Q).

Armed with this characterization, we now get:
Proof of Proposition 6: Let hk(Qk) = tr(Qk log Qk), Qk ∈

Dk, so h∗k(Yk) = log tr[exp(Yk)] by Lemma 2; moreover, let Q =

diag(Q1, . . . ,QK) and set h+(Q) =
∑

k hk(Qk) = tr
[
Q log Q

]
for

Q ∈ X+ ≡
∏

k Dk. Then, if Y = diag(Y1, . . . ,YK) with Yk

Hermitian, we will have h∗+(Y) = maxQ∈X+

{
tr

[
YQ

]
− h(Q)

}
=∑

k h∗k(Yk) =
∑

k log tr
[
exp(Yk)

]
. Accordingly, if we let Vk(t) =

∂Q∗k Φ(Q; t), we will have:

d
dt

h∗+(γY) =
∑K

k=1
tr

[
exp(γYk)

]−1 d
dt

tr
[
exp(γYk)

]
=

∑K

k=1
tr

[
exp(γYk)

]−1 tr
[(
γ̇Yk + γẎk

)
exp(Yk)

]
= γ̇ tr

[
YQ

]
+ γ tr

[
VQ

]
(43)

where we set V = diag(V1, . . . ,VK). Following the same steps
as in the proof of Proposition 4, we then obtain:∫ T

0
tr

[
VQ

]
dt =

h∗+(γ(T )Y(T ))
γ(T )

−
h∗+(0)
γ(0)

−

∫ T

0

γ̇

γ2 h+(Q) dt,

(44)
The minimum of h+ over X+ =

∏
k Dk is just −

∑
k log mk, so

we will also have h∗(0) = −minQ∈X+
h+(Q) =

∑
k log mk; then,

with γ̇ ≤ 0, (44) becomes:

∫ T

0
tr

[
VQ

]
dt ≥

h∗+(γ(T )Y(T ))
γ(T )

−
h∗(0)
γ(0)

+ h∗+(0)
∫ T

0

γ̇

γ2 dt

≥
tr

[
γ(T )Y(T )Q0

]
− h+(Q0)

γ(T )
−

∑K
k=1 log mk

γ(T )

≥ tr
[
Y(T )Q0

]
−

∑K
k=1 log mk

η

√
T , (45)

where we used the fact that h∗+(γY) ≥ tr
[
γYQ0

]
− h+(Q0) for

all Q0 ∈ X+ in the second line and the fact that h+ ≤ 0 in the
last step. Since Φ is concave in Q and V = ∇Q∗Φ, the rest of the
proof follows in the same way as that of Proposition 4.

D. The Full MIMO–OFDM Problem
Our final step in this continuous-time setting will be to

establish the no-regret properties of the following continuous-
time variant of the AXL algorithm for Pk ≥ P:

ẏk =
∂Φ

∂qk
, Ẏk =

∂Φ

∂Q∗k
,

qk =
exp(γyk)∑K
`=1 exp(γy`)

, Qk =
exp(γYk)

tr
[
exp(γYk)

] , (46)

with γ = min{η, ηt−1/2} as usual. Without further ado, we have:

Proposition 7. If Pk ≥ P for all k ∈ K, then, for all P0 ∈ X,
the cumulative regret generated by (46) will satisfy Regc

T (P0) ≤
η−1
√

T
(
log K +

∑K
k=1 log mk

)
.

Proof: Recall that any P ∈ X may be decomposed as
P = diag(p1Q1, . . . , pKQK) with p = (p1, . . . , pK) ∈ X0 and
Q = diag(Q1, . . . ,QK) ∈ X+ ≡

∏
k Dk. Then, using the nor-

malized power allocation vector q = p/P ∈ ∆ for convenience,
let H(q,Q) = h(q) + h+(Q) =

∑K
k=1

[
qk log qk + tr(Qk log Qk)

]
denote the aggregate entropy over the space ∆ ×

∏
k Dk and

consider the associated Legendre–Fenchel problem:

maximize 〈y|q〉 + tr[YQ] − H(q,Q),
subject to q ∈ ∆, Q ∈

∏
k Dk.

(47)

Clearly, the problem (47) may be decomposed as a sum of (30)
and (41), so each component of the solution of (47) will be
given by Lemmas 1 and 2 respectively; likewise, the convex
conjugate of H will be H∗(y,Y) = h∗(y) + h∗+(Y), with h∗ and
h∗+ defined as before. Our claim is then obtained by following
the same steps as in the proofs of Propositions 4 and 6.
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E. The Descent to Discrete Time

In this appendix, our aim will be to derive the no-regret
properties of the discrete-time policies (XL-PA), (XL-COV)
and of the AXL algorithm (Propositions 1, 3 and Theorem 1
respectively) by means of a comparison technique introduced
by Sorin [40] and developed further by J. Kwon and one of the
authors [37]. Specifically, we have:

Lemma 3. Let C be a compact convex set in RN , let v(t) be
a sequence of payoff vectors in RN with ‖v(t)‖ ≤ V in the
uniform norm of RN (t = 1, 2 . . . ), and consider the sequence
of play x(t + 1) = Q

(
ηt−1/2 ∑t

s=1 v(s)
)

where Q : RN → C

is C-Lipschitz with respect to the L1 norm on C. Moreover,
letting vc(t) = v(dte) be a piecewise constant interpolation
of v(t) for t ∈ [1,+∞), consider the continuous-time process
xc(t) = Q

(
γ(t)

∫ t
0 vc(s) ds

)
with γ(t) = min{ηt−1/2, η}, and

assume that it guarantees the regret bound:∫ T
0 〈v

c(t)|x0 − xc(t)〉 dt ≤ R(T )
√

T for all x0 ∈ X+. (48)

Then, for all x0 ∈ A, the discrete-time sequence x(t) guarantees∑T
t=1 〈v(t)|x0 − x(t)〉 ≤

√
T

(
R(T ) + 4CV2η

)
. (49)

Proof: By assumption, if we set y(t) =
∫ t

0 vc(s) ds, we
will also have xc(t) = Q(γ(t)y(t)) = x(t + 1) whenever t is
a positive integer. Hence, for every integer T ≥ 1, we will
have

∫ T
0 〈v

c(t)|xc(t)〉 dt −
∑T

t=1 〈v(t)|x(t)〉 =
∫ T

0 〈v
c(t)|xc(t)〉 dt −∫ T

0 〈v(dte)|x(dte)〉 dt =
∫ T

0 〈v
c(t)|xc(t) − xc(btc)〉 dt, where

we used the fact that xc(btc) = x(dte) in the sec-
ond step. On the other hand, Hölder’s inequality gives
|〈vc(t)|xc(t) − xc(btc)〉| ≤ ‖vc(t)‖∞ · ‖xc(t)−xc(btc)‖1 ≤ V ‖xc(t)−
xc(btc)‖1 ≤ V ‖Q(γ(t)y(t)) − Q(γ(btc)y(btc))‖1 ≤ CV ‖γ(t)y(t) −
γ(btc)y(btc)‖∞. The last term may then be rewritten as:

‖γ(t)y(t) − γ(btc)y(btc)‖∞ =

∥∥∥∥∥∥
∫ t

btc

d
ds

(γ(s)y(s)) ds

∥∥∥∥∥∥
1

≤

∫ t

btc

∥∥∥∥∥γ(s)vc(s) + γ̇(s)
∫ s

0
vc(w) dw

∥∥∥∥∥
∞

ds

≤ V
∫ t

btc
(γ(s) − sγ̇(s)) ds. (50)

Recalling that γ(t) = min{η, ηt−1/2}, this last integral will be
equal to ηt if t ∈ [0, 1] and 3η

(
t1/2 − btc1/2

)
otherwise. Thus,

combining the above inequalities, we obtain:∫ T

0
〈vc(t)|xc(t) − xc(btc)〉 dt ≤ CV2

∫ T

0

∫ t

btc
(γ(s) − sγ̇(s)) ds dt

≤ CV2η

1
2

+ 3
T−1∑
k=1

∫ k+1

k

t − k
√

t +
√

k
dt

 ≤ 4CV2η
√

T . (51)

Hence, by the definition of vc(t) and the assumptions of the
lemma, we finally obtain∑T

t=1
〈v(t)|x0 − x(t)〉 =

∫ T

0
〈vc(t)|x0 − xc(t)〉 dt

+

∫ T

0
〈vc(t)|xc(t) − xc(btc)〉 dt ≤ R(T )

√
T + 4CV2η

√
T ,

which completes our proof.

With this comparison at hand, the analysis of the previous
sections yields:

Proof of Proposition 1: Note first that vk = ∂Φ
∂qk

=

P tr
[
MkQk

]
, so the payoff vectors v of (14) are bounded in the

uniform norm of RK by PM – cf. (10). Given that the Lipschitz
constant of the exponential mapping G(y) of (1) is easily seen
to be C = 1 [18], the proposition follows by combining the
continuous-time bound of Proposition 4 with Lemma 3.

Proof of Proposition 2: Note first that the modified Gibbs
map of (37) simply represents the power allocation policy of
(XL-PA′): indeed, by the KKT conditions for the maximization
problem defining G0, we will have:

pk

Pk − pk
= eλ−yk =⇒ pk = Pk

eyk

eλ + eyk
, (52)

so, given that the power vector p must satisfy the total power
constraint (7a), the Lagrange multiplier λ must satisfy the
condition P =

∑
k pk =

∑
k Pk(1 + eλ−yk )−1. Comparing this last

equation with (16), we conclude that pk will be given by the
power update step of (XL-PA′) with y replaced by γy, so our
claim follows by combining Proposition 5 with Lemma 3.

Proof of Proposition 3: The matrix payoffs Vk = ∂Φ
∂Q∗k

=

pkMk satify ‖Vk‖ ≤ PM by (10). Moreover, the von Neu-
mann entropy h+ is 1-strongly convex with respect to the
L1 norm, so the matrix exponential mapping Y 7→ QY =

exp(Y)
/

tr
[
exp(Y)

]
is 1-Lipschitz – see e.g. [23]. Our claim

then follows by combining the continuous-time bound of
Proposition 6 with Lemma 3.

Proof of Theorem 1: As in the proofs of Propositions 1 and
3, the map (y,Y) 7→ (q,Q) ∈ ∆ ×

∏
k Dk of (46) is 1-Lipschitz

and the payoffs (v,Vk) are bounded by PM in the uniform norm
of RK ×

∏
k Cmk×mk . The theorem then follows by combining the

continuous-time bound of Proposition 7 with Lemma 3.

F. Learning with Imperfect CSI

Our goal in this appendix will be to prove the no-regret
properties of AXL under imperfect CSI.

Proof of Theorem 2: Let P(t) = diag (P1(t), . . . ,Pk(t)) ∈
X be the sequence of transmit profiles generated by the AXL
algorithm with perturbed observations M̂ = M + Ξ. Then, for
every P0 ∈ X, we will have:

RegT (P0) ≤
∑T

t=1
tr

[
∇Φ(P(t)) ·

(
P0 − P(t)

)]
=

∑T

t=1
tr

[
M̂(t) ·

(
P0 − P(t)

)]
−

∑T

t=1
tr

[
Ξ(t) ·

(
P0 − P(t)

)]
,

(53)

where the inequality follows from the concavity of Φ. Since P(t)
is generated by the sequence of matrix payoffs M̂(t), the first
term of this expression will simply be the regret generated by
P(t) against M̂(t), so we will have

∑T
t=1 tr

[
M̂(t) ·

(
P0 − P(t)

)]
≤

R
√

T by Theorem 1 (or, more accurately, by combining (35)
and (45) with Lemma 3).

As for the second term, it is easy to see that the process V(t) =

tr
[
Ξ(t) ·

(
P(t) − P0

)]
is a martingale difference: indeed, by (24)

and the fact that P(t) is fully determined by M̂(1), . . . , M̂(t −
1), we get E[V(t)|Ft−1] = E

[
tr

[
Ξ(t) ·

(
P(t) − P0

)]
|Ft−1

]
=

tr
[
E

[
Ξ(t)|Ft−1

]
·
(
P(t) − P0

)]
= 0. Moreover, with ‖Ξ‖ ≤ Σ, we
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will also have |V(t)| ≤ ‖Ξ(t)‖ · ‖P0 − P(t)‖1 ≤ Σ · D, where
D = max{‖P0 − P‖1 : P0,P ∈ X} denotes the L1-diameter of X.

The bound (25) is thus obtained by taking the expectation of
RegT (P0) and using the zero-mean property of V . Similarly, the
fact that P(t) generates no regret almost surely (and not only
in expectation) follows by noting that T−1 ∑T

t=1 V(t) → 0 as a
consequence of the strong law of large numbers for martingale
differences – see e.g. [42, Theorem 2.18]. Finally, for the large
deviations bounds (26), note first that (53) yields:

P

(
1
T

RegT (P0) ≥
R
√

T
+ z

)
≤ P

(∑T

t=1
|V(t)| ≥ Tz

)
. (54)

However, with ‖Ξ‖ ≤ Σ, Azuma’s inequality [43] yields
P

(∑T
t=1 V(t) ≥ Tz

)
≤ exp

(
− T 2z2

2
∑T

t=1 ess sup |V(t)|2

)
≤ exp

(
− Tz2

2Σ2D2

)
,

and our claim follows.
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