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Abstract. This paper examines the behavior of the price of anarchy as a func-
tion of the traffic inflow in nonatomic congestion games with multiple origin-
destination (O/D) pairs. Empirical studies in real-world networks show that the
price of anarchy is close to 1 in both light and heavy traffic, thus raising the ques-
tion: can these observations be justified theoretically? We first show that this is
not always the case: the price of anarchy may remain bounded away from 1 for
all values of the traffic inflow, even in simple three-link networks with a single
O/D pair and smooth, convex costs. On the other hand, for a large class of cost
functions (including all polynomials), the price of anarchy does converge to 1 in
both heavy and light traffic conditions, and irrespective of the network topology
and the number of O/D pairs in the network.

1 Introduction

Almost every commuter in a major metropolitan area has experienced the frus-
tration of being stuck in traffic. At best, this might mean being late for dinner;
at worst, it means more accidents and altercations, not to mention the vastly
increased damage to the environment caused by huge numbers of idling en-
gines. To name but an infamous example, China’s G110 traffic jam in August
2010 brought to a standstill thousands of vehicles for 100 kilometers between
Hebei and Inner Mongolia. Not caused by weather or a natural disaster, this
massive 10-day tie-up was instead laid at the feet of a bevy of trucks swarm-
ing on the shortest route to Beijing, thus clogging the G110 highway to a halt
(while ironically carrying supplies for construction work to ease congestion).
This, therefore, raises the question: how much better would things have been if
all traffic had been routed by a social planner who could calculate (and enforce)
the optimum traffic assignment?

In game-theoretic terms, this question boils down to the inefficiency of Nash
equilibria. The most widely used quantitative measure of this inefficiency is the
so-called price of anarchy (PoA): introduced by Koutsoupias and Papadimitriou
(1999) and so dubbed by Papadimitriou (2001), the PoA is the ratio between the
social cost of the least efficient Nash equilibrium and the minimum achievable



cost. By virtue of this simple definition, deriving worst-case PoA bounds has
given rise to a vigorous literature at the interface of computer science, eco-
nomics and operations research, with many surprising results.

In the context of network congestion, Pigou (1920) was probably the first
to note the inefficiency of selfish routing, and his elementary two-road example
with a PoA of 4/3 is one of the two prototypical examples thereof. The other is
due to Braess (1968), and consists of a four-road network where the addition of
a zero-cost segment makes things just as bad as in the Pigou case. These two ex-
amples were the starting point for Roughgarden and Tardos (2002) who showed
that the price of anarchy in (nonatomic) routing games with affine costs may not
exceed 4/3. On the other hand, if the network’s cost functions are polynomials
of degree at most d, the price of anarchy may become as high as Θ(d/ log d),
implying that selfish routing can be arbitrarily bad in networks with polynomial
costs (Roughgarden, 2003).

At the same time however, these worst-case instances are usually realized in
networks with delicately tuned traffic loads and costs; if a network operates be-
yond this regime, it is not clear whether the price of anarchy is still high. Indeed,
using both analytical and numerical methods, a recent study by O’Hare et al.
(2016) suggests that the PoA is usually close to 1 for very high and very low
traffic, and it fluctuates in the intermediate regime. In a similar setting, Monnot
et al. (2017) recently used a huge dataset on commuting students in Singapore
to estimate the so-called “empirical” PoA (a majorant of the ordinary price of
anarchy); their observations yield a value between 1.11 and 1.22, suggesting
that the actual value of the price of anarchy is even lower.

All this leads to the following natural questions:
1. Under what conditions does the PoA converge to 1 in light or heavy traffic?
2. Do these conditions depend on the network topology, its costs, or both?
3. Can general results be obtained only for networks with a single origin-

destination pair or do they extend to networks with multiple such pairs?

1.1 Our results

Our first result is a cautionary tale: we show that the price of anarchy may oscil-
late between two bounds strictly greater than 1 for all values of the traffic inflow,
even in simple parallel-link networks with a single origin-destination (O/D) pair
(cf. Fig. 1). The cost functions in our example are convex and differentiable, so
neither convexity nor smoothness seems to play a major role in the efficiency of
selfish routing. Moreover, our construction only involves a three-link network,
so such phenomena may arise in any network containing such a three-link com-
ponent.
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c1(x) =
[
1 + 1/2 sin(log x)

]
x2

c2(x) = x2

c3(x) =
[
1 + 1/2 cos(log x)

]
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Fig. 1: A network where selfish routing remains inefficient for both light and heavy traffic.

Heuristically, the reason for this behavior is that the network’s cost functions
exhibit higher-order oscillations which persist at any scale, for both high and low
traffic. Thus, to account for such pathologies, we take a two-pronged approach:

– In the low congestion limit, we focus on cost functions that are real ana-
lytic, i.e., they are equal to their power series expansion near 0. Under this
regularity assumption, we show that the PoA converges to 1, no matter the
network topology or the number of O/D pairs in the network.

– At the other end of the spectrum, to tackle the high congestion limit, we
introduce the concept of a benchmark function. This is a regularly varying
function c(x) that classifies edges into fast, slow or tight, depending on the
growth rate of the cost along each edge;4 paths are then classified as fast,
slow or tight, based on their slowest edge.5 We then establish the following
general result: if the “most costly” O/D pair in the network admits a tight
path, the network’s PoA converges to 1 under heavy traffic.

Among other classes of functions, polynomials satisfy all of the above re-
quirements, leading to the following general principle:

In networks with polynomial cost functions,
the price of anarchy becomes 1 under both light and heavy traffic.

In other words, a benevolent social planner with full control of traffic assignment
would not do any better than selfish agents in light or heavy traffic. Only if the
traffic falls in an intermediate regime can there be a substantial gap between
optimum and equilibrium states.

4 Regular variation means here that limt→∞ c(tx)/c(t) ∈ (0,∞) for all x > 0 (cf. Section 4.2).
5 As an example, if all the network’s cost functions are polynomials of degree d, all edges, paths

and O/D pairs are tight with respect to the benchmark function c(x) = xd.



1.2 Related work

Much of the literature on congestion games is devoted to the study of bounds
for the price of anarchy under different conditions. Roughgarden and Tardos
(2002) proved a bound of 4/3 in the case of affine costs, independently of the
network topology. This bound is sharp in that, for every M > 0, there exists
a network with traffic inflow M and affine costs such that the PoA equal to
4/3. Importantly, our analysis shows that the order of the quantifiers cannot be
exchanged: in any network as above, the PoA gets arbitrarily close to 1 if the
traffic inflow is sufficiently large.

Worst-case PoA bounds have been obtained for larger classes of cost func-
tions. For polynomial costs with degree at most d, Roughgarden (2003) showed
that the worst possible instance grows as Θ(d/ log d). Dumrauf and Gairing
(2006) provided sharper bounds for monomials of maximum degree d and min-
imum degree q, while Roughgarden and Tardos (2004) provided a unifying re-
sult for costs that are differentiable with xc(x) convex, while Correa et al. (2004,
2008) considered less regular classes of cost functions. For a survey, the reader
is referred to Roughgarden (2007).

The difference between the mean value of the price of anarchy and its worst
value has been studied in the context of cognitive radio networks by Law et al.
(2012). Youn et al. (2008) studied the difference between optimal and actual
system performance in real transportation networks, focusing in particular on
Boston’s road network. They observed that the price of anarchy depends cru-
cially on the total traffic inflow: it starts at 1, it then grows with some oscil-
lations, and ultimately returns to 1 as the flow increases. González Vayá et al.
(2015) studied optimal scheduling for the electricity demand of a fleet of plug-
in electric vehicles: without using the term, they showed that the PoA goes to
1 as the number of vehicles grows. Cole and Tao (2016) showed that in large
Walrasian auctions and in large Fisher markets the price of anarchy goes to
one as the market size increases. Finally, Feldman et al. (2016) took a different
asymptotic approach and considered atomic games where the number of play-
ers grows to infinity. Applying the notion of (λ, µ)-smoothness to the resulting
sequence of atomic games, they showed that the price of anarchy converges to
the corresponding nonatomic limit.

From an analytic standpoint, the closest antecedent to our paper is the recent
work of Colini-Baldeschi et al. (2016) who studied the heavy-traffic limit of the
price of anarchy in paralell-link networks with a single O/D pair. The analysis of
Colini-Baldeschi et al. (2016) identified that regular variation plays an important
part in heavy traffic; however, it offered no insights into the light traffic regime
or the heavy-traffic limit of the PoA in non-parallel networks with more than one
O/D pair. Our paper provides an in-depth answer to these questions: we show



that (a) the light-traffic analogue of regular variation is real analyticity; (b) the
topology of the network doesn’t matter; and (c) the advent of several O/D pairs
doesn’t matter as long as they admit a common benchmark (which is always the
case if the network’s costs are polynomial).

Finally, on the empirical side, our work should be compared to that of Mon-
not et al. (2017) who performed an empirical study of the price of anarchy based
on data from thousands of commuting students in Singapore. Focusing on the
network’s empirical price of anarchy (a PoA majorant), they showed that rout-
ing choices are near-optimal and the price of anarchy is much lower than tra-
ditional worst-case bounds would suggest. Interestingly, the study of Monnot
et al. (2017) also suggests that the Singapore road network is often lightly con-
gested: as such, their results can be seen as a practical validation of the light
traffic results presented here (and, conversely, our results provide a theoretical
justification for their empirical observations).

2 Model and preliminaries

2.1 Network model

Following Beckmann et al. (1956) and Roughgarden and Tardos (2002), the
basic component of our model is a finite directed multi-graph G ≡ G(V , E) with
vertex set V and edge set E . We further assume there is a finite set of origin-
destination (O/D) pairs i ∈ I, each with an individual traffic demand mi ≥ 0
which has to be routed from an origin oi ∈ V to a destination di ∈ V via G.

To route this traffic, the i-th O/D pair employs a set P i of (simple) paths join-
ing oi to di, each path p ∈ P i comprising a sequence of edges that meet head-
to-tail in the usual way.6 For bookkeeping reasons, we also make the standing
assumption that (a) M ≡

∑
i mi > 0 (so there is a positive amount of traffic in

the network); and (b) the sets P i are disjoint (which holds in particular when all
pairs (oi, di) are different). Then, writing P ≡

⋃
i∈I P i for the union of all such

paths, the set of feasible routing flows f = ( fp)p∈P in the network is defined as

F =
{
f ∈ �P

+ :
∑

p∈P i fp = mi for all i ∈ I
}
. (2.1)

In turn, a routing flow f ∈ F induces a load on each edge e ∈ E as xe =
∑

p3e fp,

and we write x = (xe)e∈E for the corresponding load profile on the network.
Given all this, the delay (or latency) experienced by an infinitesimal traffic

element in order to traverse edge e is determined by a nondecreasing, nonzero

6 To be clear, we do not assume here that P i is the set of all paths joining oi to di, but only some
subset thereof. This distinction is important for packet-switched networks where only paths
with a low hop count are used.



continuous cost function ce : [0,∞) → [0,∞). Specifically, if x = (xe)e∈E is the
load profile induced by a feasible routing flow f = ( fp)p∈P , then the incurred de-
lay on edge e ∈ E is ce(xe). Hence, with a slight abuse of notation, the associated
cost of path p ∈ P is given by

cp( f ) ≡
∑
e∈p

ce(xe). (2.2)

Putting together all of the above, the tuple Γ = (G, I, {mi}i∈I , {P i}i∈I , {ce}e∈E )
will be referred to as a (nonatomic) routing game.7

2.2 Equilibrium, optimality, and the price of anarchy

In this setting, the notion of Nash equilibrium is captured by Wardrop’s first
principle: at equilibrium, the delays along all utilized paths are equal and no
higher than those that would be experienced by an infinitesimal traffic element
going through an unused route (Wardrop, 1952). Formally, a routing flow f ∗ is
said to be a Wardrop equilibrium (WE) of Γ if, for all i ∈ I, we have

cp( f ∗) ≤ cp′( f ∗) for all p, p′ ∈ P i such that f ∗p > 0. (2.3)

By the work of Beckmann et al. (1956), it is well-known that Wardrop equi-
libria can be characterized equivalently as solutions of the (convex) minimiza-
tion problem:

minimize
∑
e∈E

Ce(xe),

subject to xe =
∑
p3e

fp, f ∈ F ,
(WE)

where Ce(xe) =
∫ xe

0 ce(w) dw denotes the primitive of ce. On the other hand, a
socially optimum (SO) flow is defined as a solution to the total cost minimization
problem:

minimize L( f ) =
∑
p∈P

fpcp( f ),

subject to f ∈ F .
(SO)

To quantify the gap between solutions to (WE) and (SO), we write

Eq(Γ) = L( f ∗) and Opt(Γ) = min f∈F L( f ), (2.4)

7 For simplicity, when there is a single O/D pair, we will drop I and the index i altogether.



where f ∗ is a Wardrop equilibrium of Γ. As Beckmann et al. (1956) showed,
L( f ∗) has the same value for all equilibria f ∗. The game’s price of anarchy
(PoA) is then defined as

PoA(Γ) =
Eq(Γ)
Opt(Γ)

. (2.5)

Obviously, PoA(Γ) ≥ 1 with equality if and only if Wardrop equilibria are also
socially efficient. Our main objective in what follows will be to study the asymp-
totics of this ratio when M → 0 or M → ∞.

3 A network where selfish routing is always inefficient

We begin by constructing a three-link network where the price of anarchy os-
cillates between two values strictly greater than 1, no matter the traffic inflow
M. To that end, let ΓM be a nonatomic routing game consisting of a single O/D
pair with traffic inflow M. This traffic is to be routed over the three-link parallel
graph of Fig. 1 with cost functions

c1(x1) = xd
1

[
1 + 1

2 sin(log x1)
]
, (3.1a)

c2(x2) = xd
2, (3.1b)

c3(x3) = xd
3

[
1 + 1

2 cos(log x3)
]
, (3.1c)

where d is an integer. It is easy to see that the cost functions (3.1) are convex
and differentiable on [0,∞) for all d ≥ 2. Furthermore, the functions xece(xe)
are strictly convex, so the problem (SO) admits a unique optimum traffic distri-
bution. Hence, the only way for the game’s price of anarchy to be equal to 1 is
if the game’s (also unique) Wardrop equilibrium coincides with the network’s
socially optimum flow.

For a given value of the total inflow M = x1 + x2 + x3, the load profile
x = (x1, x2, x3) is a Wardrop equilibrium if and only if c1(x1) = c2(x2) = c3(x3),8

i.e., if the normalized profile z = x/M satisfies

zd
1

[
1 + 1

2 sin(log Mz1)
]

= zd
2 = zd

3

[
1 + 1

2 cos(log Mz3)
]
. (3.2)

Likewise, after differentiating and rearranging, the corresponding conditions for
the network’s socially optimum flow are

zd
1

[
1 + 1

2 sin(log Mz1) + 1
2(d+1) cos(log Mz1)

]
= zd

2 = zd
3

[
1 + 1

2 cos(log Mz3) − 1
2(d+1) sin(log Mz3)

]
. (3.3)

8 Since an unused edge always has a cost of zero, all paths are used at equilibrium.



A simple algebraic argument shows that Eqs. (3.2) and (3.3) never admit
a common solution; since Eqs. (3.2) and (3.3) are periodic in log M, it also
follows that the game’s price of anarchy oscillates periodically at a logarithmic
scale. Thus, focusing on the period 1 ≤ M ≤ e2π, we conclude that

inf
M≥0

PoA(ΓM) = min
1≤M≤e2π

PoA(ΓM) > 1, (3.4)

i.e., Wardrop equilibria in the network of Fig. 1 remain strictly inefficient no
matter the value of M.

4 Networks with a single O/D pair

The example of the previous section shows that the price of anarchy may be
bounded away from 1 for all values of the traffic inflow, even in a three-link
parallel network with a single O/D pair. That being said, the behavior of the
cost model (3.1) at both ends of the congestion spectrum is fairly irregular, so
the question remains: is selfish routing bad under light/heavy traffic for more
“reasonable” classes of cost functions?

4.1 The light traffic limit

A key observation regarding the counterexample (3.1) is that the “topologist’s
trig” terms sin(log x) and cos(log x) are highly pathological: their oscillations
become dense near 0, so the corresponding cost functions do not admit deriva-
tives of all orders at 0. To exclude such singularities, we will instead focus on
functions that are smooth enough to admit a faithful Taylor expansion at 0:

Definition 1. A function g : � → � is called (real) analytic at x0 if there exists
an open neighborhood U of x0 and real numbers gk, k = 0, 1, . . . , such that

g(x) =

∞∑
k=0

gk (x − x0)k for all x ∈ U. (4.1)

All polynomials are analytic, as are exponential, trigonometric, and most
special functions (like the gamma function). Remarkably, under this mild reg-
ularity requirement, we have the following general result for lightly congested
networks with a single O/D pair:

Theorem 1. Let ΓM be a nonatomic routing game with a single O/D pair and
traffic inflow M. If the network’s cost functions are analytic, we have

lim
M→0+

PoA(ΓM) = 1. (4.2)



Despite appearances, Theorem 1 is fairly surprising. Indeed, at first sight,
one would expect that when M → 0, traffic is so light that it doesn’t really matter
how it is routed. This is indeed the case if, for instance, all paths in the network
exhibit a positive cost for M = 0. However, if the cost of an empty path is zero,
this is no longer the case: the optimum and equilibrium assignments could be
fairly different (even for low traffic), so there is no a priori reason that the price
of anarchy should converge to 1 as M → 0 (the example of Section 3 clearly
illustrates this phenomenon). Theorem 1 shows that all that is needed for this
to occur is for the network’s cost functions to be faithfully represented by their
Taylor series. When this regularity condition is met, optimum and equilibrium
costs no longer fluctuate but, instead, they converge to the same value.

4.2 The heavy traffic limit

In the heavy traffic limit, Taylor expansions are no longer meaningful so we
require a different criterion to rule out pathological oscillations. We do so by
means of the notion of regular variation:

Definition 2. A function g : [0,∞)→ (0,∞) is said to be regularly varying if

lim
t→∞

g(tx)
g(t)

is finite and nonzero for all x ≥ 0. (4.3)

In words, regular variation means that g(x) grows at the same rate when
viewed at different scales. Standard examples of regularly varying functions in-
clude all affine, polynomial and (poly)logarithmic functions. The concept itself
dates back to Karamata (1933) and has been used extensively in probability
and large deviations theory (see e.g. de Haan and Ferreira, 2006; Jessen and
Mikosch, 2006; Resnick, 2007); for a comprehensive survey, the reader is re-
ferred to Bingham et al. (1989).

With all this at hand, we will discard growth irregularities (such as those
observed in Section 3) by positing that each cost function ce(x) can be compared
asymptotically to some regularly varying function c(x). Specifically, given an
ensemble of cost functions C = {ce}e∈E , we say that a regularly varying function
c : [0,∞)→ (0,∞) is a benchmark for C if the (possibly infinite) limit

αe = lim
x→∞

ce(x)
c(x)

(4.4)

exists for all e ∈ E .
When it exists, this limit will be called the index of edge e, and e will be

called fast, slow, or tight (relative to c) if αe is respectively 0,∞, or in-between.



Since bottlenecks in a path are caused by the slowest edges, we also define the
index of a path p ∈ P as

αp = max
e∈p

αe, (4.5)

and we say that p is fast, slow, or tight based on whether αp is 0, ∞, or in-
between. Finally, we say that the network is tight if the index of the network

α = min
p∈P

αp (4.6)

is finite and positive (0 < α < ∞).
In words, a path is fast (resp. tight/slow) if its slowest edge is fast (resp.

tight/slow), and the network is tight if its fastest path is tight. In particular,
tightness guarantees that the network admits a path whose cost grows asymp-
totically as a multiple of some regularly varying benchmark function c(x). The
importance of this growth requirement is illustrated by the counterexample of
Section 3: if we slightly relax the tightness concept by asking that the network
admits a path whose cost grows asΘ(c(x)), the price of anarchy may be bounded
away from 1 for all values of M. Instead, under tightness, we have:

Theorem 2. Let ΓM be a nonatomic routing game with a single O/D pair and
traffic inflow M. If the network is tight, then

lim
M→∞

PoA(ΓM) = 1. (4.7)

In other words, if the fastest path in the network is tight, selfish routing becomes
efficient in the high congestion limit.

As an immediate corollary, we then have:

Corollary 1. In networks with polynomial costs and a single O/D pair, we have
PoA(ΓM)→ 1 as M → ∞.

Proof. Let de be the degree of ce, set dp = maxe∈p de, and let d = minp∈P dp.
The network is clearly tight with respect to c(x) = xd, so Theorem 2 applies. �

Combining Theorem 1 and Corollary 1, we conclude that selfish routing
becomes efficient under both light and heavy traffic in networks with polynomial
costs. Beyond the polynomial case, Theorems 1 and 2 show that analyticity and
regular variation can be seen as different sides of the same coin: they both ensure
asymptotic regularity and they both exclude pathological oscillations (at zero
and infinity respectively). As such, our results for light and heavy traffic are
chiefly set apart by the notion of tightness (which only applies for heavy traffic).
The reason for this qualitative difference is that costs might diverge to infinity
at very different rates when the traffic inflow grows large; by contrast, all costs
are finite when there is no traffic, so the notion of tightness is redundant then.



5 Networks with multiple O/D pairs

We now extend our analysis to networks with multiple O/D pairs. In this case,
the total traffic inflow in the network is given by M =

∑
i∈I mi and we write

λi =
mi

M
(5.1)

for the fraction of the traffic generated by the i-th O/D pair. In what follows,
we will be assuming that the relative traffic inflow λi of every O/D pair i ∈ I
is a fixed positive constant as M → {0,∞}. At the cost of heavier notation, our
analysis also extends to variable λi ≡ λi(M) but, due to space constraints, we
focus on this setting for clarity and concision.

5.1 The light traffic limit

As in the previous section, we begin with the low congestion regime. Here, our
main result is essentially the same as in networks with a single O/D pair:

Theorem 3. Let ΓM be a nonatomic routing game with total traffic inflow M. If
the network’s cost functions are analytic, we have

lim
M→0+

PoA(ΓM) = 1. (5.2)

In words, the advent of several O/D pairs does not change the asymptotic
behavior of the price of anarchy at the light traffic limit: Theorem 3 is a direct
extension of Theorem 1 (which it implies).

5.2 The heavy traffic limit

In the high congestion regime, tightness plays a crucial role, but its definition
must be re-examined in the presence of multiple O/D pairs. In particular, the
cost of routing for different O/D pairs might grow at completely different rates
as M → ∞, so the definition of the network’s index must take this into account.
To make this precise, we define the index of a pair i ∈ I as

αi = min
p∈P i

αp, (5.3)

reflecting the fact that the traffic of a given O/D pair will tend to be routed along
the pair’s fastest available path. The network’s index is then defined as

α = max
i∈I

αi, (5.4)

and, as before, we say that the network is tight if 0 < α < ∞. With all this at
hand, our main result for highly congested networks is as follows:



Theorem 4. Let ΓM be a nonatomic routing game with total inflow M. If the
network is tight, then

lim
M→∞

PoA(ΓM) = 1. (5.5)

In words, if the “most costly” O/D pair in the network admits a tight path, selfish
routing becomes efficient in the high congestion limit.

Note that Theorem 2 follows directly from Theorem 4 because the defini-
tions (4.6) and (5.4) coincide if I is a singleton. However, in contrast to the light
traffic regime (where the presence of multiple O/D pairs does not change the re-
sult), there is more going on in the high congestion limit. Specifically, when
there are multiple O/D pairs in the network, Theorem 4 posits that every O/D
pair must have a path which is not slow, and at least one of the O/D pairs must
be tight (i.e., its index must be finite and positive). This is a considerably lighter
requirement than asking that every O/D pair be tight, so the conditions under
which the price of anarchy converges to 1 are very lax in this regard.

We close this section with an immediate corollary of Theorem 4

Corollary 2. In networks with polynomial costs, limM→∞ PoA(ΓM) = 1.

Proof. Let de be the degree of ce, set dp = maxe∈p de, di = minp∈P i dp and
d = maxp∈P dp. Then, simply verify that the network is tight with respect to the
benchmark function c(x) = xd. �

Thus, by Theorem 3 and Corollary 2, we conclude that:

In networks with polynomial cost functions,
the price of anarchy becomes 1 under both light and heavy traffic.

6 Discussion

Our goal in this paper was to assess when selfish routing becomes efficient by
examining the behavior of the price of anarchy at each end of the congestion
spectrum. Under fairly mild assumptions (that always include networks with
polynomial costs), we found that the price of anarchy goes to 1 in both cases,
independently of the network’s topology and the number of O/D pairs in the
network. What we find intriguing about this result is that it suggests that selfish-
ness is not the real cause of increased delays under heavy traffic: from a social
planner’s point of view, sophisticated tolling/rerouting schemes that target the
optimum traffic assignment will not yield considerable gains over a “laissez-
faire” approach where each traffic element takes the fastest available path.
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