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ABSTRACT

We consider the problem of linear regression from strategic data sources with a public good compo-
nent, i.e., when data is provided by strategic agents who seek to minimize an individual provision
cost for increasing their data’s precision while benefiting from the model’s overall precision. In
contrast to previous works, our model tackles the case where there is uncertainty on the attributes
characterizing the agents’ data—a critical aspect of the problem when the number of agents is large.
We provide a characterization of the game’s equilibrium, which reveals an interesting connection
with optimal design. Subsequently, we focus on the asymptotic behavior of the covariance of the
linear regression parameters estimated via generalized least squares as the number of data sources
becomes large. We provide upper and lower bounds for this covariance matrix and we show that,
when the agents’ provision costs are superlinear, the model’s covariance converges to zero but at a
slower rate relative to virtually all learning problems with exogenous data. On the other hand, if
the agents’ provision costs are linear, this covariance fails to converge. This shows that even the
basic property of consistency of generalized least squares estimators is compromised when the data
sources are strategic.

1 Introduction

Consider a linear regression problem consisting of n data points (xi, yi)i∈{1,··· ,n}, where xi is a vector of independent
variables and yi ∈ R is the corresponding response variable. Assuming that these variables are linked by a linear
model

yi = β>xi + εi (1)
where the εi are mutually independent noise variables, an analyst aims at estimating the parameter vector β. If the
variance of each εi is known and uniformly bounded in n (but not necessarily identical across i), the most widespread
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algorithm to estimate β is the famous generalized least squares (GLS) estimator, which is well-known to enjoy im-
portant statistical properties. In particular, for any fixed n, Aitken’s theorem [2] shows that GLS is BLUE, i.e., best
among linear unbiased estimators. GLS is also consistent (i.e., it converges in probability towards β as n→∞), and
its covariance matrix decreases to zero at a rate Θ(1/n)2 [27, 22].

In a number of recent applications, however, the assumptions underlying those statistical properties do not hold because
the data is provided by strategic agents who incur a cost for providing high-precision (i.e., low-variance) data. There
can be multiple reasons. If the data is sensitive personal information (as in medical applications), revealing it with
high precision entails a privacy cost that might incentivize individuals to decrease the disclosure precision [47, 19].
Also, producing high-precision data may require a certain amount of effort (possibly monetary): this is the case in
crowdsourcing [16] or recommender systems [21, 4, 29] where providing content or feedback requires effort, or in
applications where the data is produced by costly computations.

Considerations of this kind have become central in an emerging literature on learning with strategic data sources, i.e.,
when the precision of the provided data incurs a cost at the agent providing it. This literature mainly examines the
design of monetary incentive mechanisms to optimize the model’s error assuming that agents maximize their incentives
minus their individual provision costs, see e.g., [8, 35, 48] and references therein. In many applications, however, the
underlying model also has a public good component—i.e., the agents also benefit from the model’s precision. This is
the case in recommender systems (where users benefit from the overall service quality), medical applications (where
individuals benefit from the data analysis through improved treatments or better healthcare advice), federated learning
[49, 33, 25], etc. An additional issue in such applications is that the number of participating agents is typically large,
so there is a commensurate degree of uncertainty regarding the state or incentives of other agents. In this context,
the validity of standard results on linear regression are longer guaranteed: in particular, recent work has shown that
the GLS estimator is no longer BLUE in the presence of strategic data sources [24]. Going deeper, this leads to the
following open questions: Does GLS remain consistent in the present of strategic agents? And, if so, does it still enjoy
a Θ(1/n) convergence rate as in the non-strategic case?

Our contributions. In this paper, we provide answers to these questions by means of a data provision model that
accounts for both factors identified above: a public good component and uncertainty regarding the agents’ types (their
private data). Specifically, we propose a linear regression game in which the i-th agent’s type is characterized by a
d-dimensional attribute vector xi ∈ Rd which is drawn i.i.d. across agents (but is otherwise assumed to be private
information). This attribute vector is the primitive data associated to each agent and forms the basis of the linear model
(1): each agent decides the precision of the response variable yi ∈ R that is revealed to the analyst as a function of
xi. This choice is intended to balance the agent’s data provision cost against a public good benefit that depends on the
precision of the overall model; importantly, this choice is also made under uncertainty, because the players’ attribute
vectors are not assumed a priori known.

In this setting, we obtain the following general results:

1. We provide an explicit characterization of the game’s equilibria for different families of data provision cost func-
tions. Specifically, if the data provision costs are linear in the precision of the disclosed response, the equilibrium
distribution of precisions over the space of attribute vectors corresponds to the solution of an optimal design prob-
lem. By contrast, this characterization is no longer valid if the data provision costs are superlinear.

2. Subsequently, we analyze the precision of the estimated model in the limit n → ∞. In this asymptotic regime,
our main result is that, for superlinear costs, the GLS estimator remains consistent, but its covariance decreases to
zero at a rate slower than the standard Θ(1/n) rate. Surprisingly, as the data provision costs become approximately
linear, this rate becomes progressively slower, to the point that the GLS estimator fails to be consistent if the data
provision costs are linear.

Our analysis reveals that the key reason behind this asymptotic degradation of the GLS estimator is the following: as
n→∞, the response provided by each agent at equilibrium tends to deteriorate because of the increasing free-riding
effect inherent to public good games. When the data provision costs are linear, this decrease cannot be compensated
by the increase in the number of data points, so the GLS estimator becomes inconsistent. In this regard, our results
illustrate clearly how free-riding can disrupt even the most fundamental statistical properties of GLS estimators.

Related work. There is a growing body of works on scenarios where one wants to learn from data provided by
sources that choose their effort when generating data [8, 36, 35, 48]. These works assume that the data sources
maximize a monetary incentive minus effort exerted and look for mechanisms that minimize the model’s error under
the assumption that the analyst collecting data cannot see the effort exerted by the data sources. The data elicitation

2The notation g(n) = Θ(f(n)) indicates that functions f and g grow at the same rate as n goes to infinity.
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and crowdsourcing literatures contain similar mechanism design problems for cases where either the effort exerted or
the data report (or both) are unverifiable [23, 16, 44, 34]. More broadly, there is an important literature on mechanism
design for statistical estimation problems that assumes that the data sources are strategic in some way, notably for
cases where agents may lie on their cost for revealing data [1, 10, 13] (see also related problems of mechanism design
in the context of differential privacy [26, 20]).

Several works analyze mechanism design problems related to linear regression with strategic data sources, where
the agents directly report their response variable yi (or their input variable xi) and may lie about it or strategically
optimize it [42, 17, 9, 11, 5, 30, 45, 12] (see also similar problems in the context of classification [37, 28, 18, 39, 32,
50, 38, 46, 7]). In contrast, we assume that the agents choose the precision of the data provided. More importantly, the
fundamental difference is that those works all assume that the agents are motivated by the accuracy or decision of the
learned model in their own direction while we assume that agents equally benefit from the public good component.

Games with a public good component have been the subject of many studies in economics (see [40] and references
therein); however, in all these works the public good is simply the sum of contributions from all agents. To the best of
our knowledge, the only work that considers a public good component in the context of learning from strategic data
sources is [24] (see also an earlier version of the same in [31] and [14] in the simple case of estimating a population
average), which is perhaps the closest antecedent to our paper. The authors of [24] propose a game-theoretic model
with a public good component and common knowledge of player types (i.e., the agents’ attribute vectors xi are public).
We build on their model, but we introduce uncertainty on the agents’ attributes (i.e., they are considered private)—
which is crucial to frame our main questions (link to optimal design and asymptotic precision) rigorously. More
importantly though, our analysis is of a different nature than that of [24], both technically and conceptually. The
analysis of [24] only concerns the game’s price of stability (PoS) and the validity of Aitken’s theorem. Specifically,
[24] shows that, for any given n, GLS may fail to be BLUE (i.e., Aitken’s theorem fails), but it is otherwise “uniformly
close” to optimal: the improvement ratio relative to any other linear unbiased estimator is independent of n, so GLS
is still “order optimal” in their model. In contrast, our results show that GLS (and other linear unbiased estimator by
proxy) does not even produce the same convergence rate as non-strategic regression. This means that characterizing
this convergence rate is ultimately more important to the analyst than choosing an ad-hoc linear unbiased estimator
which can only lead to constant-term multiplicative improvement. To ease the comparison of our work to [24], we
include in Section 3 an adaptation of their results for our model with uncertainty, we then provide a detailed technical
comparison in further sections that contain our new results. Note finally that our model with uncertainty enables
uncovering an interesting connection to optimal design, which [24] does not touch upon. We also note that our game
has the structure of an aggregative game in the sense of [15] which, however, does not offer any further insights.

2 Problem setup and assumptions

The linear regression game We consider a model of strategic data sharing in which a group of n agents wants to
collectively learn a linear model y ≈ β>x. Here, x is a d-dimensional vector, y is a scalar and the vector β represents
the weights of the linear model that agents want to estimate. Each agent i ∈ N := {1, · · · , n} is associated to an
attribute vector xi which is drawn i.i.d. across agents from a set of possible attribute profiles X ⊆ Rd. Then, based
on these attributes, each agent can select a precision level λi(xi) ∈ R+ and produce an unbiased estimate ŷi of β>xi
with this precision.3 More explicitly, the response variable reported by the i-th agent is

ŷi = β>xi + εi, (2)
where εi is an error term of mean 0 and variance 1/λi(xi). Agents send this estimate ŷi, along with their values of xi
and of the precision λi(xi) to an aggregator that publicly discloses an estimate β̂. The errors terms εi are assumed to
be independent, but we do not make any further assumption on their distribution. We then posit that each agent tries
to balance a trade-off between two components:

1. Idiosyncratic cost: The value ŷi may be either sensitive or costly to produce. It is sensitive for example when it
represents a disease likelihood, a total debt or any attribute that might hurt the agent if it is disclosed with full pre-
cision (e.g., by a potential increase in cost of health insurance): here, the agent possesses a value yi but only reveals
a noisy version of it ŷi. It is costly to produce when it is the result of a simulation involving heavy computations,
or when it requires human work. We represent all these scenarios by assuming that releasing an estimator ŷi with
precision λi(xi) induces a cost ci(λi(xi)) to agent i. We refer to it as the (data) provision cost.

2. Public good benefit: A key feature of our model is that all agents benefit from the learned model β̂. For example, in
a medical context, agents would be interested to know that a given disease is correlated to their weight or cholesterol
3We can impose an upper bound λmax on the precision that an agent can choose; our results would still hold for large-enough n

as the constraint is never binding. In the sequel, we assume λmax = ∞ to simplify the exposition.
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level; in recommender systems, agents might be interested to know what affects the good rating of a restaurant; etc.
We model this benefit as a public good, that is, we assume that each agent benefits equally from the estimated
model’s precision—which, in turn, depends on each agent’s prescribed precision. As it is easier to maintain a cost-
oriented perspective, we represent this by considering that each agents incurs a cost Cestim(λ), where λ = [λi]i∈N .
We refer to it as the estimation cost.

Remark. This model is particularly relevant in the context of federated learning [49]. There, each agent performs a
local estimation and the estimations are combined to get a model. This paradigm can be used for reasons of efficiency
(many agents, perform a local optimization [33]) or privacy (agents want to compute a joint representative model
without explicitly having to share their personal data [25]). Our model can be viewed as an instance of both cases.

To proceed, we model the collective behavior of agents by considering a game in which each agent i ∈ N chooses
their strategy λi : X → R+ to minimize their cost Ji(λi,λ−i), defined here as

Ji(λi,λ−i) = E [ci(λi(xi))] + Cestim(λ), (3)
where the expectation is taken with respect to the law µ of the attribute vectors xi. Here, λ−i denotes the collection
of strategies of all agents except the i-th one, and λ = (λi,λ−i) will be called a precision profile. Note that, given
that agent i chooses the function λi : X → R+, minimizing the expected provision cost E [ci(λi(xi))] as in (3) is
equivalent to minimizing the cost for each value of xi separately. On the other hand, the definition of Cestim is given
below and involves an expectation on all agents’ attributes, which models the uncertainty of an agent about other
agents’ attributes.

The setting described above defines a game that we refer to as the linear regression game. We emphasize that the
strategy of each agent is a function λi : X → R+, i.e., each player’s strategy space is the |X |-dimensional orthant RX+ .
Throughout the paper, to avoid confusion, we will denote such functions with the greek letter λ and we will use the
latin letter ` for scalar values such as λi(xi). In the sequel, we analyze the Nash equilibrium of this linear regression
game. A precision profile λ∗ is a Nash equilibrium of the game if for all i ∈ N , λ∗i minimizes Ji(λi,λ∗−i).

Generalized least squares, definition of Cestim The analyst receives the n triplets (xi, ŷi, λi(xi)) and uses them
to produce an estimate β̂ that is then sent to the agents. We assume that the analyst computes this estimate using
generalized least squares (GLS) and denote it β̂GLS. GLS is a generalization of the least squares regression to het-
eroscedastic data, that is, when the precisions λi(xi) of the different data points are different. It is one of the most
widespread estimators for this scenario, in particular because by Aitken’s theorem, GLS is optimal in that, for given
precisions, it has the smallest covariance (in the positive semi definite sense) among all linear unbiased estimators [2].
The covariance of GLS is independent of ŷi and equal to

(∑
i λi(xi)xix

>
i

)−1
. Note that this quantity is well defined

only if the matrix
∑
i λi(xi)xix

>
i , called the information matrix, is invertible; if not, the estimator β̂GLS is not unique

as the generalized least squares problem has infinitely many solutions.

Recall that the values xi are generated randomly according to a common distribution µ on X . In what follows, we
consider that the estimation cost is a function of the expected information matrix, that is:

Cestim(λ) = F

((
E

[∑
i∈N

λi(xi)xix
>
i

])−1)
, (4)

where F : Sd+ → R+ is a so-called scalarization function that maps the covariance of the estimator to a cost (we
denote by Sd+ the set of positive semidefinite matrices of size d × d). Scalarizations are standard in optimal design
(see Section 4), and they include standard metrics of a model’s quality (such as the mean squared error) as special
cases—see details in Appendix B.

The public good component (4) is a function of the inverse of the expected information matrix. In particular, agent
i is included in this expectation, so they minimize a function that includes their individual contribution xi. In this
regard, (4) can be seen as a “middle ground” between the approach of [24] (which assumes complete information of
the xi of each agent), and a Bayesian model where agents would optimize over E

[
F ((
∑
i∈N λi(xi)xix

>
i )−1)

]
. The

former is impractical in asymptotic settings while the latter introduces a series of modeling artifacts due to the nonzero
probability of encountering an ill-defined linear regression problem when drawing vectors from a finite set.

Compared to the above, our model requires the same information as the Bayesian framework, but it does not face
the same issues. In addition, it is possible to establish a precise equivalence between our game and the complete
information game when the number of players is large—see Appendix D for the details. Note also that our model
relies on GLS, which requires the analyst to know the precision of each data point. We stress here, however, that our
main result also applies to the ordinary least squares (OLS) estimator, which does not require this information. We
discuss this in detail in Section 5.
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Technical assumptions Through our analysis, we make the following assumptions:
Assumption 1. The set X is finite, µ has full support on X , and E

[
xix
>
i

]
is positive definite.

Assumption 2. The scalarization F : Sd+ → R+ is non-negative, increasing in the positive semidefinite order, and
convex. F is homogeneous of degree q: ∀a > 0,∀V ∈ Sd+, F (aV ) = aqF (V ).
Assumption 3. The provision costs ci : R+ → R+ are non-negative, increasing, and convex.

Assumption 1 is a technical assumption that guarantees that the game is well defined and non-trivial. Specifically,
the condition E

[
xix
>
i

]
� 0 simply implies that the information matrix is invertible for some λ, while the finiteness

of X avoids subtle compactness issues in the definition of an equilibrium. Assumption 2 ensures that the estimation
cost is non-decreasing and convex, which is a very standard setting in game theory. Together with the homogeneity
assumption, these conditions are satisfied by all the commonly used scalarizations in statistics and optimal design such
as the trace (q = 1, A-optimal design), squared Frobenius norm (q = 2), or mean squared error (q = 1, I/V-optimal
design).

Assumption 3 is also common. The convexity of the provision costs implies that there is a non-decreasing marginal
cost to increase the precision of the data provided. This is reasonable and includes both the linear and superlinear
cases, each being relevant. For instance, if data points represent an average over multiple measurements, the precision
depends linearly on the number of measurements. If the precision depends on simulations (e.g., involving a discrete
search of a continous space), obtaining a higher precision might require a polynomial increase in computation time.

3 Preliminaries and First Results

In this section, we discuss structural results for the linear regression game. In the spirit of [24], we show that our game
is a potential game and provide a bound on its price of anarchy.

For a given precision profile, we define φ(λi,λ−i)

φ(λ) =

n∑
j=1

E [cj(λj(x))] + Cestim(λ). (5)

Using the form of Ji(λi,λ−i) in (3), a strategy λi minimizes Ji(λi,λ−i) over all possible strategies λi (for a fixed
λ−i) if and only if it minimizes (5). Since function φ is independent of i, this shows that the game is a potential game
[41] and φ is the potential of the game. As stated in the next proposition (whose proof is in Appendix C), expressing
the game as a potential game simplifies the study of its Nash equilibria by transforming it into the easier problem of
studying the minima of a convex function.
Proposition 1. Under Assumptions 1, 2, and 3, a precision profile λ∗ is a Nash equilibrium of the linear regression
game if and only if it minimizes φ. Such an equilibrium exists. It is unique if all provision cost functions ci are strictly
convex. When there are multiple equilibria, the estimation cost Cestim(λ∗) does not depend on the equilibrium.

The price of anarchy (PoA) is a standard concept in game theory that characterizes the degradation of performance
due to players’ selfish behavior. It is the ratio between the total cost of the worst Nash equilibrium and the minimal
achievable total cost. In our setting the total cost is Csocial(λ) =

∑
i E [ci(λi(x))] + nCestim(λ). Hence, denoting as

NE ⊆ {λ : X → R+}n the set of Nash equilibria,

PoA =
maxλ∗∈NE Csocial(λ

∗)
minλ∈{λ:X→R+}n Csocial(λ)

.

Our linear regression game has the same PoA bound as that of [24] with a similar proof (see App. C):
Theorem 1. In addition to Assumptions 1, 2 and 3, assume that there exist pmin ≥ 1 such that for all i ∈ N, a >
1, ` > 0: ci(a`) ≥ apminci(`). Then, the price of anarchy satisfies PoA ≤ n

q
pmin+q . Additionally, for all ε > 0, there

exists a game such that PoA ≥ n
q

pmin+q (1− ε).
Remark. We should note here that the above result bounds the game’s price of anarchy whereas the study of [24]
concerns the price of stability (PoS) of a suitable variant of our game without uncertainty. In contrast to the price of
anarchy, the price of stability compares the social optimum cost to that of the best Nash equilibrium. In general, these
two measures of selfishness can vary wildly, but in the linear regression game under study, they conincide; this is due
to the fact that although we may have multiple equilibria, all equilibria have the same cost (from Proposition 1). This
differs from [24] where there exists a unique non-trivial equilibrium, but there also exist trivial equilibria with infinite
costs.
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4 Characterization of the equilibrium

We now characterize how the attribute distribution µ affects the precision given by agents at equilibrium. We show
that when provision costs are linear, the precision given by each agent can be mapped to the solution of an optimal
design. This is no longer true when provision costs are not linear.

In optimal design [43, 3, 6], an analyst chooses the xi’s of the set of (non-strategic) data sources in order to maximize
the quality of the linear model estimated via a scalarization of the covariance matrix. Formally, the optimal design
problem for the scalarization F (see Appendix B for details) and the design space X is to find a probability measure
ν∗ that minimizes:

ν∗ ∈ arg min
ν

F

(∑
x∈X

xx>ν(x)

)−1 . (6)

In our linear regression game, the agents have an incentive to produce a useful information matrix to minimize the
estimation cost but they are limited by the inherent allocation µ of attribute vectors and by the provision costs ci. An
equilibrium is a minimum of the potential (5) that contains the estimation cost Cestim(λ), which can be rewritten as:

Cestim(λ) = F

(∑
x∈X

xx>
∑
i∈N

λi(x)µ(x)

)−1 . (7)

The similarity of (6) and (7) suggests a link between the Nash equilibria of the linear regression game and the solutions
of the optimal design problem on X by interpreting

∑
i λi(x)µ(x) as a design ν(x):

Theorem 2. Consider a linear regression game that satisfies Assumptions 1 and 2 and such that all provision costs
are linear (i.e., ci(`) = ai` for all i ∈ N and ` ∈ R+, where ai is a constant). Let λ∗ be a Nash equilibrium and let
νλ∗ be the measure such that νλ∗(x) =

∑
i∈N λ

∗
i (x)µ(x) for all x ∈ X . Then, the probability measure defined by

νλ∗(x)/
∑
y∈X νλ∗(y) is an optimal design of (6).

Sketch of proof. A detailed proof is given in Appendix C. The main idea is to see the minimization problem (6) as
an optimization problem with constraint

∑
x∈X ν(x) = 1. When the provision costs are linear, the potential φ is

a Lagrangian of this optimization problem with a dual variable mini∈N ai. The fact that νλ∗ is proportional to an
optimal design is then a consequence of the homogeneity of the scalarization (Assumption 2).

While the shape of νλ∗ for an equilibrium λ∗ is that of an optimal design, the total expected precision
∑
x∈X νλ∗(x)

depends on the provision costs. Theorem 2 merely states that agents contribute proportionally to an optimal design
but does not characterize how the total precision depends on the number of agents or on the agents’ costs. We leave
this discussion to Section 5 (in particular Theorem 3). This theorem also implies that with linear costs, agents that
have data points which do not belong to an optimal design are pure free-riders. On the contrary, this is no longer the
case with superlinear provision costs. We illustrate this in Figure 1 where we observe that the difference between the
maximum and minimum precision given depending on the data point shrinks as the exponent of the cost grows.

The particular connection between optimal design and Nash equilibria exhibited in Theorem 2 is tightly connected to
the linearity of provision costs. When costs are strictly convex, the allocation of precision across X at equilibrium is
in general suboptimal. For instance, if an agent has a provision cost ci(`) = `p with p > 1, then the derivative of this
provision costs at 0 is zero, c′i(0) = 0. In such a case, this agent will provide a positive precision, λi(x) > 0, for all
attribute vectors x ∈ X even though the support of an optimal design might be smaller than X . We illustrate the case
of nonlinear costs in a polynomial regression setting that is an instance of our linear regression game as follows. Let
X = [1, x, · · · , xd−1]> be the set of attribute vectors with x ∈ {−10 . . . 10}. We compare in Figure 1 the allocation
of precision at equilibrium νλ∗ as defined in Theorem 2 to the optimal design for different monomial provision costs
(c(`) = `p). We set µ to the uniform distribution on X , d = 4, n = 10 and the scalarization F is the trace. Other
parameters give similar results (see App. G). We observe that when the provision costs are near-linear (p= 1.01), the
precision function is similar to the optimal design yet different. When p=1.2 or p=3, however, the precision for the
vector [1, 0, . . . , 0] is maximal whereas the optimal design sets a weight 0 to it. Intuitively, the convexity of provision
costs yields a more spread-out allocation of precision than the optimal design. This shows that equilibrium can be
different from optimal design, even when costs are close to linear.

6
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Figure 1: Optimal design ν∗ and allocation of precision at equilibrium νλ∗ .

5 Asymptotic results

The previous section shows that linear provision costs drive agents to allocate their precision proportionally to an
optimal design, while non-linear costs lead to a non-optimal allocation. In this section, we show that the situation is
radically different when considering the total model precision.

The case of identical agents To gain intuition, we first consider agents with identical monomial costs. In this
setting, the equilibrium for the n-agent game is obtained by scaling the solution of the optimization problem that
would correspond to a single-agent game (the full proof is in Appendix C):
Proposition 2. Consider a linear regression game satisfying Assumptions 1 and 2 and such that for all agent i and
precision `: ci(`) = `p with p ≥ 1. Let λsingle = arg min

λ∈R|X|+
E [λ(x)p] + Cestim(λ).

(i) The precision profile λ∗ with λ∗i = n−
1+q
p+q λsingle for all i = 1, . . . , n is a Nash equilibrium.

(ii) The estimation cost at equilibrium is Cestim(λ∗) = n−q
p−1
p+qCestim(λsingle).

Proposition 2(i) illustrates a major difference between the strategic and non-strategic settings. Indeed, in a non-
strategic setting, each agent would provide data with a fixed precision, say λns(x) = `ns for all x. By contrast, in the
presence of strategic data sources, the equilibrium precision given by each agent goes to 0 when the number of agents
grows. Moreover, the convergence rate is governed by the parameters p and q: when p → ∞, the precision of each
agent is almost constant, similar to the non-strategic case; instead, with linear costs (p = 1), the precision given by
each agent goes to 0 at a Θ(1/n) rate.

Thus, when aggregating the data from n non-strategic data sources, the estimation cost would be

Cestim(λns) = n−qCestim(λns) (8)

where λns = (λns, · · · , λns) (which corresponds to the standard 1/n rate if q = 1). By contrast, when aggregating the
data from n strategic data sources, Proposition 2(ii) shows that the rate of decrease is smaller, again governed by the
parameters p and q. In the extreme, when the costs are linear (p = 1), the estimation cost does not even go to 0 as
n→∞. This shows that GLS is not consistent in the presence of strategic data sources with linear provision costs: in
this case, the estimator’s covariance does not vanish as the number of data sources grows large.

To quantify how strategic considerations lead to a degradation of the GLS estimator, we can consider the ratio between
the strategic and non-strategic estimation costs:

Cestim(λ∗)/Cestim(λns) = Θ(n
q(q+1)
p+q ). (9)

This ratio goes to infinity for any possible value of the parameters, implying that strategic agents always end up
incurring an asymptotic degradation of the GLS estimator as n → ∞. In particular, higher values of q imply a more
drastic degradation because the estimation cost is reduced in a neighborhood of 0, which makes agents less willing to
exert effort. A high p implies a smaller degradation as agents are less sensitive to their provision costs as long as their
precision is smaller than 1.

Figure 2 illustrates the convergence of the estimation cost and the degradation ratio for various values of p and q.
Figure 2a pictures the convergence of the estimation cost (in n−q

p−1
p+q ). It illustrates the inconsistency of GLS when

provision costs are linear (p = 1) and the better convergence rate with larger p and q. In more detail, Figure 2b depicts
the degradation of the estimation cost due to the presence of strategic agents. We observe that the relative position of
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the curves is different than in Figure 2a: the degradation ratio is higher for (p = 2, q = 3) than for (p = 1, q = 2),
whereas the first case yields a consistent estimator and the second does not. This illustrates the dual impact of q on the
linear regression game: a lower q implies a lower estimation cost but also implies a lower effort, making the estimation
cost prohibitively high relative to the non-strategic setting.

0 50 100
n

0.5

1.0
n
−
q
p
−

1
p
+
q p = 1, q = 2

p = 2, q = 2

p = 2, q = 3

(a) Estimation cost Cestim(λ∗)
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20000
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n
q
(q

+
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+
q

(b) Degradation ratio Cestim(λ∗)/Cestim(λns)

Figure 2: Influence of p and q on (a) the estimation cost and (b) the degradation ratio.

Main result: Asymptotic degradation of estimation cost in the general case We are now ready to state the main
result of the paper, which characterizes the asymptotic behavior of the estimation cost under non-identical and general
provision costs. The next theorem provides upper and lower bounds on how the estimation cost decreases as n→∞.
Theorem 3. Assume that Assumptions 1, 2 and 3 hold. Additionally, assume that there exist pmin, pmax ≥ 1 and
functions cmin, cmax : R+ → R+ such that for all i ∈ N and all a > 1, ` > 0: apminci(`) ≤ ci(a`) ≤ apmaxci(`) and
0 < cmin(`) ≤ ci(`) ≤ cmax(`) <∞. Then there exist constants d,D > 0 that do not depend on n and such that:

dn
−q pmin−1

pmin+q−α ≤ Cestim(λ∗) ≤ Dn−q
pmin−1

pmin+q , where α = q
(pmax − pmin)(q + 1)

pmax(q + pmin)
. (10)

Sketch of proof. A full proof is given in Appendix C. To get the upper bound, we first obtain an upper bound of the
potential φ by evaluating it on a well-chosen precision profile λ inspired by Proposition 2. Combining this with the
assumption that apminci(`) ≤ ci(a`),∀` ∈ R+ and with the homogeneity of the estimation cost gives the right-hand-
side of (10). The lower bound is harder to get. We first exploit the previous upper bound to get an upper bound on the
total provision cost (the left part of the potential (5)). Using the assumption that ci(a`) ≤ apmaxci(`),∀` ∈ R+, we
deduce an upper bound on the total precision. We then consider an optimal design scaled with this total precision and
show, using the estimation cost homogeneity, that it gives the left-hand-side of (10). From this sketch of proof, observe
that the constant d involves the estimation cost of an optimal design while the constant D involves the estimation cost
of a non-strategic precision profile Cestim(λns).

Theorem 3 is our main result: it characterizes the decay of the GLS estimates covariance with strategic data sources
for general data provision costs that satisfy a mild assumption governed by the two parameters pmin, pmax. This
assumption roughly specifies that the provision costs grow faster than `pmin and slower than `pmax ; it is satisfied for
instance by a sum of monomial terms with exponents between pmin and pmax and such that coefficients do not vanish
or explode. Note that the result of Theorem 3 trivially implies that the precision of each agent goes to 0 when the
number of agents grow. Although we do not formally prove it, it is clear that the result remains valid even when the
assumptions on costs are valid only in a neighborhood near 0. We finally also note here that Theorem 3 remains valid
when agents data point are not independent but produced by a joint distribution µjoint. In such a case, the bounds
would depend on Eµjoint [

1
n

∑
i xix

>
i ] (instead of Eµ[xx>]) which captures precisely the impact of correlation on the

estimation cost—we provide details on this in Appendix F.

In this degree of generality, it is no longer possible express the equilibrium precisions in closed form (as in Propo-
sition 2). Nevertheless, Theorem 3 shows that we are able to provide precise bounds for the estimation cost. In
particular, the upper bound in (10) shows that, as soon as pmin > 1 (i.e., data provision costs are superlinear), the
estimation cost converges to zero for any scalarization, meaning that the consistency property of GLS is preserved. If
pmin = 1 though, this is not guaranteed (and even guaranteed to fail if pmin = pmax = 1, i.e., for linear costs). Even
when convergence to zero is guaranteed (pmin > 1), the lower bound in (10) shows that the convergence rate is slower
that the standard rate of Θ(n−q) (or Θ(1/n) for scalarizations with q = 1).
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We immediately see that for the case pmax = pmin = p, the exponent α is equal to 0 and the exponents of the left-
hand side and of the right hand-side of (10) coincide and are equal to the exponent of Proposition 2. When pmin and
pmax are different, the bounds loosen. Intuitively, the upper bound then involves the parameter pmin because, when
precisions are close to zero, the agents with exponent pmin are the ones that have the smallest precision at equilibrium
due to larger marginal provision costs. The lower bound, however does not correspond exactly to the n−q

pmax−1
pmax+q that

one could expect (in fact it decreases faster than n−q
pmax−1
pmax+q ). Whether this is a proof artifact or a consequence of our

assumption on the provision costs (which is weak and allows for very diverse costs) remains an open question. We
performed a numerical investigation of the result of Theorem 3 illustrating the lower and upper bounds—due to space
constraints, the results are deferred to Appendix G.
Remark. We should also note here that our model formally relies on the GLS estimator—which is based on a principle
of truthful revelation of data and of its precision to the analyst. This is a natural assumption to make for our envisioned
applications where agents are motivated by the model’s quality. However, there are other settings where strategic
considerations might lead agents to act in a different manner: For instance, if the agents are rewarded as a function
of the precision, they might be tempted to untruthfully disclose a higher precision; as another example, agents may
be unable to properly quantify the precision of their data points. In such settings, an interesting alternative would be
to consider the ordinary least squares (OLS) estimator instead of GLS, as OLS is oblivious to the disclosed precision
of the data points. In this case, the conclusion of Theorem 3 would continue to hold; due to space limitations, the
detailed statement and proof are relegated to Appendix E. Our analysis for OLS also reveals a potential shortfall of
OLS: a single agent with a high provision cost can cause arbitrarily bad estimation cost (whereas GLS is robust to
such agents). We discuss this in detail in Appendix E.

Comparison with Theorem 1 Theorem 3 and Theorem 1 both capture notions of efficiency of the game but they
are hardly comparable because they characterize radically different types of inefficiencies. Theorem 3 characterizes
the ratio of estimation cost (the analyst’s viewpoint) between the case of strategic agents and a non-strategic scenario
where each agent would give a fixed exogenous precision λns. In contrast, the PoA of Theorem 1 is a bound of the
total cost (the population viewpoint) and characterizes the inefficiency due to the self-interested agents by comparing
the total cost at equilbrium and at social optimum. These two situations are radically different and the PoA result of
Theorem 1 does not hint at the convergence issues addressed in Theorem 3, even in hindsight. For instance, in the case
of linear provision costs (pmin = pmax = 1), GLS is inconsistent whereas Theorem 1 shows that the price of anarchy
always grows sublinearly in n, even in this case where PoA ≤ nq/(q+1).

In addition, the proofs of the two theorems are fundamentally different. The proof of Theorem 1 uses a scaling to
transform the social optimum λopt into an equilibrium λ∗. This approach works because λopt and λ∗ are respectively
the minimizers of the functions Csocial and of the potential φ and because these two functions are tightly related. Such
an approach cannot be adapted to start from λns to obtain an equilibrium λ∗ as λns is not a minimizer. Conversely, the
proof of Theorem 3 could be adapted to obtain a result in the spirit of Theorem 1 but would lead to a looser bound.

6 Concluding discussion

In this paper, we show that the precision of GLS estimates for linear regression problems in the presence of strategic
data sources is significantly degraded compared to the standard case of non-strategic data sources. We characterize
this degradation under mild assumptions and show that basic properties such as consistency no longer always hold
with strategic data sources. This points out a necessity to take into account strategic agents in statistical learning. Our
work is a stepping stone in this direction.

The objective in our model was to include in the simplest possible way two key elements of learning from strategic
data sources: the public good component of the model’s precision and the uncertainty about other agents’ data. It
could easily be extended to a case where agents have a (Bayesian) belief regarding other agents’ provision costs as
well. At the cost of heavier notation, such an extension would preserve the basic game’s structure that leads to the
convergence rates of Theorem 3.
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A Notation table

To ease the reading, Table 1 summarizes the main notation introduced in the paper and used throughout the paper and
the supplementary material.

Table 1: Summary of the notation
Symbol Meaning
X Finite set of possible attribute vectors x.
µ(·) Probability distribution on attributes vectors x.
n Number of agents.

λi(x) Precision allocated to vector x by player i.
λ−i(x) Vector of precisions allocated to vector x by every player except i.
ci(`) Data provision cost of agent i for a precision ` of the data provided.
F (M) Scalarization mapping a (covariance) matrix M to a cost.

Cestim(λ) Estimation cost = F
((

E
[∑

i∈N λi(xi)xix
T
i

])−1)
.

Ji(λi,λ−i) Payoff of agent i considering the strategy profile λ = (λi,λ−i).
φ(λ) Potential function of the linear regression game.
νλ∗(x) Measure mapping a vector to its probability × the sum of precisions attributed by agents.

p, pmin, pmax Homogeneity degrees of provision costs.
q Homogeneity degree of a scalarization.
ν∗ Optimal design.

B Scalarizations

In this section, we detail some examples of usual matrix scalarizations mentioned briefly in the paper that fit As-
sumption 2 and are standard in optimal design. For further information on the subject, see [3] and the references
therein.

B.1 Trace

The trace trivially satisfies Assumption 2 with q = 1. It is used in optimal design to minimize the average variance of
the estimates of the regression coefficients and is known as the A-optimal design criterion.

B.2 Squared Frobenius norm

The squared Frobenius norm is defined on the set of matrices V = [vij ] of dimensions d× d as:

||V ||2F =

d∑
i=1

d∑
j=1

v2ij

= trace(V V T ).

It is easy to check that this scalarization satisfies Assumption 2 with q = 2.

B.3 Mean squared error

We define the mean squared error of an estimator β̂ estimating a linear model β as:

MSE(β̂) = E
[
(β̂ − β)(β̂ − β)T

]
. (B.1)

This mean squared error is simply the estimator’s covariance matrix. It is a property of the estimator and it is a
classical proxy to assess its quality.4 In particular, in the linear regression setting, it does not depend on the realization
of the values ỹi but only on the independent variables xi and on the precisions of the response variables ỹi (unlike the
empirical mean squared error).

4See Michel F. Dekking, Cornelis Kraaikamp, Paul H. Lopuhaä, and Ludolf Meester. A Modern Introduction to Probability and
Statistics: Understanding why and how. Springer Science & Business Media (2005).
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A similar definition can also be applied to the predicted value for a given data point x. In this case it is referred to as
the mean squared error of the predictor:

MSE(β̂Tx) = E
[
(β̂Tx− βTx)2

]
.

This quantity gives an indication on the average amount of error the estimator makes when predicting the value of
the model on a given data point x. It is used in optimal design to define scalarizations by considering the average
mean squared error made by the estimator on specific data points. To properly define these criteria, we first write this
quantity in a more convenient form.

The mean squared error of the predictor of the linear model on a parameter x is:

MSE(β̂Tx) = Var(β̂Tx) + Bias(β̂Tx,βTx).

As β̂ is unbiased, we can rewrite the mean-squared error depending only on the variance. Let V be the covariance
matrix of a linear unbiased estimator β̂. We then have:

MSE(β̂Tx) = Var(β̂Tx)

= xV xT .

We now define the two main design criteria (or scalarizations) that are based on this mean squared prediction error:

a. The average mean squared error. Given a set V and a probability distribution ρ on V , we define the average
mean-square error scalarization as:

F : V →
∫
V
xV xT ρ(dx).

This scalarization is trivially convex, increasing in the positive semi-definite order and homogeneous of degree
q = 1. It is known in the optimal design litterature as the I (integrated) optimal design criterion and is used to
minimize the average prediction error. In our setting this scalarization can be directly applied with V = X and
ρ = µ.

b. The mean squared error over a set of specific points. Given a finite set {x1, . . . , xm} of possible attribute
vectors, we define the mean-squared error on that specific set of points as:

F : V →
m∑
i=1

xiV x
T
i .

This scalarization is similar to the previous one and has the same properties but is used to minimize the prediction
error only on a specific set of points of interest. It is known in the optimal design litterature as the V optimal
design criteria.

C Proofs

C.1 Proof of Proposition 1

Recall that a strategy λ is a function from the finite set X to R+. Hence, a strategy λ is an element of the finite
dimensional space RX and a precision profile λ is essentially a vector (of dimension n|X |).
Step 1: The potential function is convex. By Assumption 3, the data provision costs are convex. Additionally,
Cestim(λ) is a composition of the function λ → E

[∑
i λi(xi)xix

T
i

]
, the matrix inverse function, and the scalar-

ization. The matrix inverse function is a convex function. As the scalarization F is non-decreasing and convex (by
Assumption 2), Cestim(λ) is convex in λ. This shows that the potential is convex; hence a strategy profile is a Nash
equilibrium if and only if it is a minimum of the potential.

Step 2: The potential admits a minimum. Let φ(1) =
∑
i E [ci(1)] + F ((E

[∑
i xix

T
i

]
)−1). By Assump-

tion 3, lim`→+∞ ci(`) = +∞. Recall that µ has full support on X (Assumption 1). Then, for all x ∈ X ,
lim`→+∞ ci(`)µ(x) = +∞. Hence, there exists `max such that for all i and all x, ci(`max)µ(x) > φ(1). This
shows that if λ is a precision profile such that λi(x) > `max for some i and x, then φ(λ) ≥ φ(1).

As X is finite, the set of precision profile such that for all i, λi : X → [0, `max] is a compact set. As φ is convex, it
admits a minimum on this set. By definition of `max, this minimum is a global minimum. This concludes the proof
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that there exists an equilibrium. If in addition all data provision costs are strictly convex, then the potential is strictly
convex; hence this minimum is unique and there exists a unique equilibrium.

Step 3: If different equilibria exist, they have the same estimation cost. As shown before, an equilibrium is a
minimum of the potential function φ defined for all precision profiles λ as

φ(λ) =
∑
i

E [ci(λi(x))] + Cestim(λ).

In the above equation, Cestim() is not necessarily strictly convex. Recall indeed that Cestim(λ) is defined as

Cestim(λ) = F

((
E

[∑
i

λi(xi)xix
T
i

])−1)
.

If there exist λ 6= λ′ (which is the case for any linear regression game with n ≥ 2 players) such that
E
[∑

i λi(xi)xix
T
i

]
= E

[∑
i λ
′
i(xi)xix

T
i

]
, then Cestim(λ) = Cestim(λ′) = Cestim((λ + λ′)/2) and Cestim() is

not strictly convex.

Yet, we show below that Cestim(·) is strictly convex when viewed as a function of M(λ) = E
[∑

i λi(xi)xix
T
i

]
.

Indeed F is an increasing convex function (by Assumption 2, see erratum in Appendix A) and M 7→M−1 is a strictly
convex function, the function M 7→ F (M−1) is a strictly convex function.

Assume that there exist two equilibria λ∗ and λ̃∗ and assume by contradiction that E
[∑

i λ
∗
i (xi)xix

T
i

]
6=

E
[∑

i λ̃
∗
i (xi)xix

T
i

]
. Let λ′ = (λ∗ + λ̃∗)/2. The strict convexity of M 7→ F (M−1) implies that Cestim(λ′) <

(Cestim(λ∗) + Cestim(λ̃∗))/2. This implies that φ(λ′) < (φ(λ∗) + φ(λ̃∗))/2, which contradicts the fact that λ∗

and λ̃∗ are minima of the potential function φ. Thus, if two different equilibria exist, they have the same information
matrix and yield the same estimation cost.

C.2 Proof of Theorem 1

This proof relies on adapting the proof of [24] to our setting. For completeness, we redo this proof using the notations
of our model.

Upper Bound. To simplify the notation, in this proof, we write p instead of pmin; hence we show that PoA ≤ n
q
p+q .

Suppose that PoA > n
q
p+q . This implies that there exists an equilibrium λ∗ such that

Csocial(λ
∗) ≥

∑
i∈N

E [ci(λ
∗
i (xi))] + nCestim(λ∗)

> n
q
q+p (

∑
i∈N

E
[
ci(λ

opt
i (xi)

]
+ nCestim(λopt))

= n
q
q+pCsocial(λ

opt).

We will show that this implies that λ∗ is not an equilibrium, which is a contradiction.

By using that ci(λ∗i ) ≥ 0 and dividing the above inequality by n, we obtain:

Φ(λ∗) =
∑
i∈N

E [ci(λ
∗
i (xi))] + Cestim(λ∗)

≥ 1

n

(∑
i∈N

E [ci(λ
∗
i (xi))] + nCestim(λ∗)

)
(=

1

n
Csocial(λ

∗))

> n−
p
q+p

∑
i∈N

E
[
ci(λ

opt
i (xi))

]
+ n

q
p+qCestim(λopt) (=

1

n
n

q
q+pCsocial(λ

opt))

≥
∑
i∈N

E
[
ci

(
λ
opt
i (xi)

n
1
p+q

)]
+ Cestim(

λopt

n
1
p+q

) (= Φ(λopt/(n1/(p+q)))),

where we used the homogeneity assumptions for the last inequality.
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To conclude the proof, we remark that λopt

n1/(p+q) is a valid strategy profile. This would imply that λ∗ is not a minimum
of the potential function, which is a contradiction. Thus, we have PoA ≤ n q

p+q .

Lower Bound. Let p, q ≥ 1. Consider the linear regression game where X = {1}, µ(1) = 1, ci(`) = `p and
F (V ) = trace(V )q = V q . As µ is a deterministic measure, this game is also a valid game in the setting of [24]. It is
straightforward to see that our game has a unique Nash equilibrium λ∗ that corresponds to the unique non-trivial Nash
equilibrium of the corresponding game of [24]. Hence, the price of anarchy of our game coincides with the price of
stability of the corresponding game of [24]. Hence, the computation of [24] show that, for all ε, there exist n such that
this game has a price of anarchy larger than nq/p+q(1− ε).

C.3 Proof of Theorem 2

Recall that the provision cost of a player i is ci(`) = ai` and assume without loss of generality that a1 ≤ a2 ≤ · · · ≤
an.

Let λ∗ be an equilibrium of the game and let ν∗ be an optimal design. Recall that νλ∗(x) =
∑
i∈N λ

∗
i (x)µ(x) for all

x ∈ X . Let b =
∑
x∈X νλ∗(x). Let λν∗ be the strategy such that λν∗(x) = bν∗(x)/µ(x) for all x and consider the

precision profile λν∗ = (λν∗ , 0, · · · , 0). We have:

φ(λ∗) = F ((
∑
x

xxT νλ∗(x))−1) +
∑
i

ai
∑
x

λ∗i (x)µ(x)

≥ F ((
∑
x

xxT νλ∗(x))−1) + a1b (C.1)

= b−qF ((
∑
x

xxT νλ∗(x)/b)−1) + a1b (C.2)

≥ b−qF ((
∑
x

xxT ν∗(x))−1) + a1b (C.3)

= F ((
∑
x

xxTλν∗(x)µ(x))−1) + a1
∑
x

λν∗(x)µ(x) (C.4)

= φ(λν∗),

where the first inequality (C.1) is because a1 ≤ ai for all i, and the second inequality (C.3) is because ν∗ is an optimal
design. The equalities (C.2) and (C.4) are due to the homogeneity of F (Assumption 2 implies that F ((bM)−1) =
b−qF (M−1)), and in (C.4) we also use that by definition of λν∗ and since

∑
x ν
∗ = 1 we have

∑
x λν∗(x)µ(x) = b.

If νλ∗/b was not an optimal design, the inequality (C.3) would be strict which would imply that φ(λ∗) > φ(λν∗)
which would contradict the fact that λ∗ is a minimum of the potential. This implies that (C.3) is an equality which
means that νλ∗(x)/b is an optimal design.

C.4 Proof of Proposition 2

An equilibrium is a minimum of the potential function φ. When all costs are identical, this function is symmetric. As
φ is a convex function, this implies that there exists a minimum of φ that is symmetric. A symmetric precision profile
λ = (λ, . . . λ) is a Nash equilibrium if and only if it minimizes the potential φ. By symmetry, this potential can be
rewritten as:

φ(λ, . . . , λ) = nE [λ(x)p] + Cestim(nλ)

Let us define the function f : RX+ → R+ that associates to a strategy λ, the quantity f(λ) = E [λ(x)p] + Cestim(λ).
Recall that λsingle is the minimum of f . For a given strategy λ, we have:

φ(n−
q+1
p+q λ, . . . , n−

q+1
p+q λ) = nE

[
λ(x)pn−

q+1
p+q p

]
+ Cestim(nn−

q+1
p+q λ)

= nq
1−p
p+qE [λ(x)p] + n−q

p−1
p+qCestim(λ)

= n−q
p−1
p+qCestim(λ),

where we used the homogeneity of F , which implies that Cestim(aλ) = a−qCestim(λ).
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For any n ∈ {1, 2, . . . }, the function λ 7→ n−
q+1
p+q λ is a bijection from RX+ to RX+ . Hence, λ is a minimum of f if and

only if (n−
q+1
p+q λ, . . . , n−

q+1
p+q λ) is a minimum of φ. Thus, the precision profile λ∗ such that ∀i : λ∗i = n−

1+q
p+q λsingle is

an equilibrium.

The second part of the proposition follows immediately from the homogeneity of F , which implies that for this equi-
librium,Cestim(λ∗) = n−q

p−1
p+qCestim(λsingle). Moreover, all equilibria have the same estimation cost by Proposition 1.

C.5 Proof of Theorem 3

C.5.1 Upper bound

In this first step, we compute the value of the potential function for a particular constant strategy in which all players
use the precision λ(x) = n

− q+1
pmin+q for all values of x ∈ X . By abuse of notation, we denote this precision profile by

(n
− q+1
pmin+q , . . . , n

− q+1
pmin+q ). The value of the potential for this precision profile is

φ(n
− q+1
pmin+q , . . . , n

− q+1
pmin+q ) =

n∑
i=1

E
[
ci(n

− q+1
pmin+q )

]
+ F ((

n∑
i=1

E
[
xxTn

− q+1
pmin+q

]
)−1)

=

n∑
i=1

ci(n
− q+1
pmin+q ) + F ((n

pmin−1

pmin+qE
[
xxT

]
)−1)

≤
n∑
i=1

n
−pmin

q+1
pmin+q ci(1) + F ((n

pmin−1

pmin+qE
[
xxT

]
)−1) (C.5)

= n
−pmin

q+1
pmin+q

n∑
i=1

ci(1) + n
q(1−pmin)

pmin+q F ((E
[
xxT

]
)−1) (C.6)

≤ n−
q(pmin−1)

pmin+q cmax(1) + n
q(1−pmin)

pmin+q F ((E
[
xxT

]
)−1) (C.7)

= n
− q(pmin−1)

pmin+q
(
cmax(1) + F ((E

[
xxT

]
)−1)

)
, (C.8)

where we use that ci(1) ≥ apminci(1/a) with a = n
q+1

pmin+q (from the theorem’s assumption) in (C.5), the homogeneity
of F (Assumption 2) in (C.6), and the theorem’s assumption, which implies that ci(1) ≤ cmax(1) for all i, in (C.7).

As ci(`) ≥ 0 and λ∗ is a minimum of the potential, it holds that

Cestim(λ∗) ≤ φ(λ∗) ≤ φ(n
− q+1
pmin+q , . . . , n

− q+1
pmin+q ).

Hence, the right-hand-side of (10) holds with D =
(
cmax(1) + F ((E

[
xxT

]
)−1)

)
.

C.5.2 Lower bound

By (C.8), φ(λ∗) ≤ n−
q(pmin−1)

pmin+q (cmax(1)+F ((E
[
xxT

]
)−1)). Recall that all ci are increasing convex and infi ci(1) ≥

cmin(1) > 0. This implies that lim`→∞ infi ci(`) = ∞ as infi ci(`) > `pmincmin(1). As λ∗ is a minimum of the
potential, this implies that there exists a value `max independent of n such that λ∗i (x) ≤ `max.

We first obtain a bound on the total amount of precision given by all players. To do that we use Jensen’s inequality
for concave function in (C.9). Then we use that ci(`max) ≤ (`max/λi(x))pmaxci(λi(x)) as `max/λi(x) > 1 to obtain
(C.10) and ci(`max) ≥ cmin(`max) to obtain (C.11):(

n∑
i=1

1

n
E [ci(λi(x))]

) 1
pmax

≥
n∑
i=1

1

n
E
[
(ci(λi(x)))

1
pmax

]
(C.9)

≥
n∑
i=1

1

n
E
[
((λi(x)/`max)pmaxci(`max))

1
pmax

]
(C.10)

≥ (cmin(`max))
1

pmax

`max

1

n

n∑
i=1

E [λi(x)] . (C.11)
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This shows that

n∑
i=1

E [λ∗i (x)] ≤ n`max

(cmin(`max))1/pmax

(
n∑
i=1

1

n
E [ci(λ

∗
i (x))]

) 1
pmax

≤ n`max

(cmin(`max))1/pmax

(
1

n
φ(λ∗)

)1/pmax

≤ n`max

(cmin(`max))1/pmax

(
1

n
n
− q(pmin−1)

pmin+q
(
cmax(`max) + F ((E

[
xxT

]
)−1)

))1/pmax

, (C.12)

where we used (C.11) for the first inequality, the fact that Cestim(λ) ≥ 0 for the second and (C.8) to obtain the last
inequality.

Note that the exponent of n in (C.12) is

1− 1/pmax −
q(pmin − 1)

pmax(pmin + q)
=
pmax(pmin + q)− (pmin + q)− q(pmin − 1)

pmax(pmin + q)

=
pmax(pmin + q)− pmin(1 + q)

pmax(pmin + q)

=
pmax(pmin − 1) + (pmax − pmin)(1 + q)

pmax(pmin + q)

=
pmin − 1

pmin + q
+ α/q,

where α = q (pmax−pmin)(q+1)
pmax(q+pmin)

is the same α as in Theorem 3.

Plugging this into (C.12) yields the upper bound on the total amount of precision given by all players:

n∑
i=1

E [λ∗i (x)] ≤ `max

(
1 +

F ((E
[
xxT

]
)−1)

cmin(`max)

) 1
pmax

n
pmin−1

pmin+q+α/q. (C.13)

Recall that νλ∗(x) =
∑
i λi(x)µ(x). Following what we did in (C.3) with the notation b =

∑
x∈X νλ∗(x) =

E [
∑
i λ
∗
i (x)], we have

Cestim(λ∗) ≥
(
E

[∑
i

λ∗i (x)

])−q
F

(∑
x∈X

xxT ν∗(x)

)−1 . (C.14)

Combining (C.14) and (C.13) shows that the right-hand-side of (10) holds with

d = F

(∑
x∈X

xxT ν∗(x)

)−1 `max

(
1 +

F ((E
[
xxT

]
)−1)

cmin(`max)

)− q
pmax

.

D Equivalence

In this section, we show that our model is equivalent to the complete information model defined in [24], when the
number of player goes to infinity. We consider a model with n agents in which the feature of agent i are chosen i.i.d..
The only difference between the two models is that:

• In our model, an agent i does not know the exact feature x−i of the other individual but only knows the
distribution µ from which they are drawn. As a result, an player i seeks to minimize

Ji(λi,λ−i) = E [ci(λi(xi))] + F

((
E

[∑
i∈N

λi(xi)xix
>
i

])−1)
,

where λi : X → R+ is a function that associates to each possible feature x ∈ X a precision λi(x).
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• In the model of [24], a player i knows the exact features of other players. As a result, its cost function is

Jcii (`i, `−i, X) = ci(`i) + F ((

n∑
i=1

`ixix
T
i )−1). (D.1)

In the above definition, we emphasize that the cost of a player depends on X = (xi)i∈N which is the matrix
of features of all players. In particular, the equilibrium of the complete information game is well defined only
if
∑
i xix

T
i � 0. This assumption simply states that the data points held by the agents span Rd so that the

corresponding linear regression is well defined. We refer to [24] for technical results regarding the existence
of a Nash equilibrium. The complete information game is a potential game with the potential:

φci(`, X) =

n∑
i=1

ci(`i) + F ((

n∑
i=1

`ixix
T
i )−1), (D.2)

and the Nash equilibrium of the game is the minimum of the potential function.

In this section, we show that when n → +∞, the equilibrium of the complete information game, that we denote by
`ci∗, and the equilibrium of our linear regression λ∗ are equivalent and can be exchanged.

Notations and assumptions: We assume the same assumptions as Theorem 3. In addition, we assume that there is
a finite number T of provision cost functions and we denote by nt the number of agents having provision cost ct for
t ∈ T := {1 . . . T}.

D.1 Comparison of equilibrium

To formally compare the equilibrium of the complete information game to the equilibrium of our linear regression
game, we will use need the following lemma. This lemma states that there always exists a symmetric equilibrium of
the games considered. Note that if provision costs are strictly convex, the equilibrium is unique. If provision costs are
linear, there might, however, exist an infinite number of equilibrium.
Lemma D.1. There exists an equilibrium of the complete information game `ci∗ such that:

∀i, i′, xi = xi′ and ci = ci′ ⇒ `ci∗i = `ci∗i′ (D.3)

There exists an equilibrium of the linear regression game λ∗ such that:

∀i, i′, ci = ci′ ⇒ ∀x ∈ X , λ∗i (x) = λ∗i′(x) (D.4)

Proof. Consider an equilibrium `ci∗ of the complete information game. We define the following strategy profile:

∀i ∈ N, `i =

n∑
i′=1

1ci=ct and xi′=xi

`ci∗i′
nxit

,

where nxit is the number of players with features xi and cost type t.

This strategy profile is simply that each agent provides data with the precision being the average of the precision
of similar agents in the equilibrium. It achieves the same estimation cost as the equilibrium and with our convexity
assumptions achieves a lower total provision cost. This is thus a minimum of the potential and an equilibrium.

The proof for the linear regression game follows the same steps.

As there is a symmetric equilbrium, this implies that instead of considering strategy profiles, we may restrict our
attention to functions λt(x) that associate a type of cost and a data point to a precision. This is true for the Bayesian
game, in which λi(x) is replaced by λt(x) when ci = ct. This is also true for the complete information game, when `i
is replaced by λt(xi) when ci = ct. We work with these functions for the rest of the section and by abuse of notation
we redefine the potential of the games as follows:

φci(λ, X) =
∑
x∈X

T∑
t=1

ct(λt(x))nxt + F ((
∑
x∈X

xxT
T∑
t=1

λt(x)nxt )−1) (D.5)

φ(λ) =
∑
x∈X

T∑
t=1

ct(λt(x))ntµ(x) + F ((
∑
x∈X

xxT
T∑
t=1

λt(x)ntµ(x))−1), (D.6)
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where as before, nt is the number of players having cost function ct and nxt is the number of player having cost
function ct and features x in the complete information game.

By abuse of notation, we write λ∗ = (λ∗t )t∈T the equilibrium of our linear regression game and by λci∗ = (λci∗t )t∈T
the equilibrium of the complete information game. They are the minimum of (respectively) the potential functions
(D.5) and (D.6).

D.2 Main equivalence result

The intuition behind the theorem is as follows. Equation (D.7) states that the minimum of the potentials are equiv-
alent with high probability. Thus, computing the equilibrium of our linear regression game gives a general result on
how large complete information games behave. Equations (D.8) and (D.9) state that the equilibrium are essentially
equivalent. This means that agents can safely compute the equilibrium of the linear regression game without needing
to acquire the information of all other agents. We remark that (D.7) applied with pmax = 1 yields φ(λ∗) = φci(λci∗).
Finally, we emphasize that the complexity of Theorem 4 comes from the necessity to prove equivalence of potential to
show that our results are also valid for the complete information game. Indeed, it is easy to show that both potential go
to 0 as long as pmin > 1. Thus, any result simply stating that the potential of the complete information game converges
to the potential of our model is meaningless. With our result, however, it is easy to show that Theorem 3 is valid in the
complete information setting with high probability.

Theorem 4. Let λ∗ be an equilibrium of the linear regression game and λci∗ be an equilibrium of the complete
information game. For all 0 < ε < 1/2, we have with probability at least 1− |X|∑t 2 exp(−2n2εt ):

1

maxx,t

(
µ(x)+n

ε−1/2
t

µ(x)

)pmax−1φ(λ∗) ≤ φci(λci∗, X) ≤ max
x,t

(
µ(x)

µ(x)− nε−1/2t

)pmax−1

φ(λ∗), (D.7)

φci(λ∗, X) ≤ Dn max
x,t

(
µ(x) + n

ε−1/2
t

µ(x)
)pmax−1φci(λci∗, X), (D.8)

and

φ(λci∗) ≤ D′n max
x,t

(
µ(x)

µ(x)− nε−1/2t

)pmax−1φ(λ∗); (D.9)

where

Dn = max(max
x,t

(
µ(x) + n

ε−1/2
t

µ(x)nt
),

1

(minx,t(
µ(x)

µ(x)−nε−1/2
t

))q
) and

D′n = max(max
x,t

(
µ(x)

µ(x)− nε−1/2t

),
1

(minx,t(
µ(x)

µ(x)+n
ε−1/2
t

))q
).

Proof. The equilibrium are defined as λci∗ ∈ arg min(φci(λ, X)) and λ∗ ∈ arg min(φ(λ)), where the potential
functions are defined in Equations (D.5) and (D.6).

We define λ̃∗(x) = λ∗(x)µ(x)ntnxt
. As λci∗ attains the minimum of φci, we have:

φci(λci∗, X) ≤ φci(λ̃∗, X)

=
∑
x

∑
t

ct(λ
∗
t (x)

µ(x)nt
nxt

)nxt + F ((
∑
x

xxT
∑
t

λ∗t (x)µ(x))−1)

≤
∑
x

∑
t

(
µ(x)nt
nxt

)pmaxct(λ
∗
t (x))nxt + F ((

∑
x

xxT
∑
t

λ∗t (x)µ(x))−1) (D.10)

=
∑
x

∑
t

(
µ(x)nt
nxt

)pmax−1ct(λ
∗
t (x))nxt µ(x) + F ((

∑
x

xxT
∑
t

λ∗t (x)µ(x))−1)

≤ max
x,t

(
µ(x)nt
nxt

)pmax−1φ(λ∗), (D.11)
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where the inequality (D.10) comes from the assumption on the costs and the inequality (D.11) comes from the fact
that maxx(µ(x)ntnxt

) ≥ 1 (Indeed, we have by definition
∑
x n

x
t = nt =

∑
x µ(x)nt. Thus, there exists x ∈ X such

that nxt ≥ µ(x)nt).

We can prove similarly that:

φ(λ∗) ≤ max
x,t

(
nxt

µ(x)nt
)pmax−1φci(λci∗)

We thus obtain that:
1

maxx,t(
nxt

µ(x)nt
)pmax−1

φ(λ∗) ≤ φci(λci∗, X) ≤ max
x,t

(
µ(x)nt
nxt

)pmax−1φ(λ∗) (D.12)

High probability bound on µ(x)nt
nxt

Hoeffding inequality implies that for all t, x, we have P (|nxt − ntµ(x)| ≥ k) ≤ 2 exp(− 2k2

n2
t

). We apply this with

k = n
1/2+ε
t for 0 < ε < 1/2 to obtain:

P (|nxt − ntµ(x)| ≥ n1/2+εt ) ≤ 2 exp(−2n2εt ) (D.13)

We thus have P (∪t,x(|nxt − ntµ(x)| ≥ n
1/2+ε
t )) ≤ |X|∑t 2 exp(−2n2εt ). We also note that if we have |nxt −

ntµ(x)| ≤ n1/2+εt , then:
µ(x)nt

ntµ(x) + n
1/2+ε
t

≤ µ(x)nt
nxt

≤ µ(x)nt

ntµ(x)− n1/2+εt

,

which yields:
µ(x)

µ(x) + n
ε−1/2
t

≤ µ(x)nt
nxt

≤ µ(x)

µ(x)− nε−1/2t

. (D.14)

Combined with (D.12), this shows that with probability at least |X|∑t 2 exp(−2n2εt ), we have:
1

maxx,t(
µ(x)+n

ε−1/2
t

µ(x) )pmax−1
φ(λ∗) ≤ φci(λci∗, X) ≤ max

x,t
(

µ(x)

µ(x)− nε−1/2t

)pmax−1φ(λ∗)

We conclude this proof by computing the value of the potential of the complete information game with the linear
regression game equilibrium:

φci(λ∗, X) =
∑
x

∑
t

ct(λ
∗
t (x))nxt + F ((

∑
x

xx>
∑
t

λ∗t (x)nxt )−1)

=
∑
x

∑
t

ct(λ
∗
t (x))

nxt
µ(x)nt

ntµ(x) + F ((
∑
x

xx>
∑
t

nxt
µ(x)nt

ntµ(x))−1)

≤ max
x,t

(
nxt

µ(x)nt
)
∑
x

∑
c

ct(λ
∗
t (x))ntµ(x) +

1

(minx,t(
nxt

µ(x)nt
))q

F ((
∑
x

xx>
∑
t

λ∗t (x)ntµ(x))−1)

≤ Dnφ(λ∗),

where Dn = max(maxx,t(
µ(x)+n

ε−1/2
t

µ(x)nt
), 1

(minx,t(
µ(x)

µ(x)−nε−1/2
t

))q
).

Combined with the previous result, we obtain:

φci(λ∗, X) ≤ Dn max
x,t

(
µ(x) + n

ε−1/2
t

µ(x)
)pmax−1φci(λci∗, X).

We can show similarly that:

φ(λ∗ci) ≤ D′n max
x,t

(
µ(x)

µ(x)− nε−1/2t

)pmax−1φ(λ∗),

where D′n = max(maxx,t(
µ(x)

µ(x)−nε−1/2
t

), 1

(minx,t(
µ(x)

µ(x)+n
ε−1/2
t

))q
).
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E Ordinary least squares

In this section we present the model where the analyst uses the OLS estimator instead of the GLS estimator. We show
that, while the use of the OLS estimator removes a strong assumption of our model (the knowledge of the variance
of the data points by the analyst), the use of OLS might also highly degrade the estimation cost when agents are
not identical. We show in particular that for any game using the OLS estimator, a single agent participating with
prohibitively high provision cost can ruin the estimation.

Let us first define the strategic linear regression in the OLS setting. Formally, the analyst receives n couples (xi, ŷi)

and uses them to produce an estimate β̂ that is then sent to the agents. Note that we do not assume in this setting
that the analyst receives the precision associated to the data points as it is not needed for the estimation. In what
follows, we assume that the analyst computes this estimate by using ordinary least squares (OLS) and we denote it
by β̂OLS. OLS is the least squares regression which is optimal in the case of homoskedastic data. It is however sub-
optimal when data are heteroskedastic but still applicable. It is one of the most widespread estimators in general, in
particular because, unlike GLS, it is easy to apply and does not require knowledge of the variance of the data points.
The covariance of OLS is independent of ŷi and is equal to

(∑
i∈N xix

>
i

)−1∑
i∈N

xix
>
i

λi(xi)

(∑
i∈N xix

>
i

)−1
. Note

that this quantity is well defined only if each λi(xi) is strictly positive, unlike GLS that only requires the information
matrix (

∑
i λi(xi)xix

>
i ) to be invertible.

In a system where data point ŷi is revealed with precision `i, the covariance of β̂OLS is(∑
i∈N

xix
>
i

)−1∑
i∈N

xix
>
i

`i

(∑
i∈N

xix
>
i

)−1
In our model, the values of xi are generated randomly according to a common underlying distribution µ on X . Hence,
we define the OLS estimation cost as

COLS
estim(λ) = F

(
E

(∑
i∈N

xix
>
i

)−1∑
i∈N

xix
>
i

λi(xi)

(∑
i∈N

xix
>
i

)−1). (E.1)

We denote ΓOLS (resp. ΓGLS) an instance of the game where the analyst uses the OLS (resp. GLS) estimator. For a
given precision profile, we define φOLS(λi,λ−i)

φOLS(λ) =

n∑
j=1

E [cj(λj(x))] + COLS
estim(λ). (E.2)

We show that our main results still holds in this setting.
Proposition E.1. Under Assumptions 1, 2, and 3, a precision profile λ∗ is a Nash equilibrium of the OLS linear
regression game if and only if it minimizes φOLS. Such an equilibrium exists. It is unique if all provision cost functions
ci are strictly convex. When there are multiple equilibria, the estimation cost COLS

estim(λ∗) does not depend on the
equilibrium.

The proof of this proposition is a trivial adaptation of Proof C.1. The game ΓOLS thus has the same basic properties as
ΓGLS and we can now state our main result in this new model:
Proposition E.2. Let ΓOLS be a game satisfying the Assumptions of Theorem 3. Then, with the same constants d,D > 0
as Theorem 3 that do not depend on n, we have that:

dn
−q pmin−1

pmin+q−α ≤ COLS
estim(λ∗) ≤ Dn−q

pmin−1

pmin+q , (E.3)

where α = q (pmax−pmin)(q+1)
pmax(q+pmin)

.

Proof. Upper bound

The proof of the upper bound is the same as in the proof of Theorem 3. Indeed, we compute the value of the potential
function for a particular constant strategy in which all players use the precision λ(x) = n

− q+1
pmin+q for all values of

x ∈ X . It is then sufficient to observe that for such a strategy, we have homoskedasticity of the data points. Thus, the
GLS estimator and the OLS estimator are the same and the algebra of the proof can trivially be applied.
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Lower bound

It is sufficient to observe that for all λ, we have E
[(∑

i∈N xix
>
i

)−1∑
i∈N

xix
>
i

λi(xi)

(∑
i∈N xix

>
i

)−1] �(
E
[∑

i∈N λi(xi)xix
>
i

])−1
by Aitken’s theorem of optimality of GLS.

Differences between the asymptotic behavior of GLS and OLS

In this section, we show that, while our main result holds when the analyst uses the OLS estimator, ΓGLS and ΓOLS

behave fundamentally differently when only subsets of agents satisfy our non-trivial assumptions.
Proposition E.3. Assume that Assumptions 1, 2 and 3 hold. Assume that for all i ∈ N , we have ci(0) = 0. Addi-
tionally, assume that there exist pmin ≥ 1 a function cmax : R+ → R+ and SN ⊆ N such that for all i ∈ SN and
all a > 1, ` > 0: apminci(`) ≤ ci(a`) and ci(`) ≤ cmax(`) < ∞. Then there exists a constant D > 0 that does not
depend on |SN | and such that:

Cestim(λ∗) ≤ D|SN |−q
pmin−1

pmin+q , (E.4)

Proof. We define the particular constant strategy

λi(x) =

{
|SN |−

q+1
pmin+q if i ∈ SN

0 Otherwise.

The algebra to obtain the bound is then exactly the same as in Section C.5.

This proposition states that for any subset of agents, the convergence rate of the estimation cost is at least as good as
if only those agents participated. For example, if half a population suffers from linear provision cost ci(λ) = λ while
the other half of the population has highly convex provision costs ci(λ) = λp, the estimation cost will converge to 0

with rate at least n−q
p−1
p+q . This is significant as we have previously proved that if only agents with linear provision

costs participate, GLS is not consistent and the estimation cost does not go to 0. This property is tightly linked to the
GLS estimator. Indeed, GLS weights the data points according to their precision and low precision data points do not
hinder the estimation. Formally, for any λ, λn+1, we have

∑
i λ

n+1
i=1 (xi)xix

>
i �

∑n
i=1 λi(xi)xix

>
i thus adding a data

point can only improve the information matrix of the estimator. This is no longer true when using the OLS estimator
as it gives the same weight to widely inaccurate data points as to very precise data points.

We show this difference on an example. We consider an OLS regression game where n agents are willing to give
precise data (they have low provision cost) while one agent suffers from prohibitively high provision cost. Formally,
let us consider ΓOLS the game where X = {1}, n + 1 agents participate, ci(λ) = λp for all i in {1, . . . , n} and
cn+1(λ) = (n+ 1)2λ. In the following game, we also consider the scalariation F (·) to be the trace which in this case
is the identity function. We have in this game the following potential:

φOLS(λ) =

n∑
i=1

λpi + (n+ 1)2λn+1 +
1

(n+ 1)2

n+1∑
i=1

1

λi
(E.5)

It is then easy to show that at equilibrium, we have λ∗i = (n+1)−2/(p+1) for all i in {1, . . . , N} and λ∗n+1 = (n+1)−2

. This implies that the equilibrium achieves the following estimation cost:

COLS
estim(λ∗) =

1

(n+ 1)2
n(n+ 1)2/(p+1) + 1 (E.6)

This estimation cost does not converge to 0 when n+ 1 grows large. Also note that even if p grows large meaning that
n of the n+ 1 agents almost do not suffer any cost for providing data, the estimation cost still does not converge to 0.
In contrast, the cost functions we defined satisfy the assumptions of Proposition E.3 meaning that if the analyst used
the GLS estimator, they would obtain a consistent estimator with convergence rate at least n−q

p−1
p+q . Alternatively,

if the analyst refused the participation of agent n + 1, they would also obtain a consistent estimator. This implies
that designing a mechanism to control participants in the OLS model could greatly improve the estimation cost at
equilibrium in some cases. This remains an open problem.

23



F Extension to joint distributions

In this section, we show how our main result can be extended to a setting where the data points xi of agents are
not independent and identically distributed but are distributed according to a joint distribution µjoint. We make the
following assumption on this joint distribution to ensure the non-triviality of the game:
Assumption 4. The set X is finite and Eµjoint

[∑
i∈N xix

>
i

]
is positive definite.

For the rest of this section, we omit the subscript denoting that the expected value is taken with regard to the distribution
µjoint.

Having a joint distribution does not change the basic structure of the game. The game is still a potential game with
potential

φ(λ) = E

 n∑
j=1

cj(λj(xj))

+ Cestim(λ).

Note that we still assume that each agent strategy is a function λi : X → R+ for ease of notation. We do not assume,
however, that each agent holds each vector with non-zero probability. This implies that if an equilibrium exists, there
exists an infinite number of equilibrium as agents may freely choose the precision of the data points that hold with
probability zero (without changing their payoffs). As these precision are a simple modeling artifact without any impact
on payoffs, we set them to 0 by convention.

Also note that there may now exist Nash equilibria λ∗ for which Cestim(λ∗) =∞. For instance, if d ≥ 2 and the joint
distribution is such that µjoint(x) = 1 for some x = (x1, . . . , xn), then λ∗ = 0 is a Nash equilibrium. Indeed, in that
case, no agent has an incentive to deviate since a single agent deviation still yields a non-invertible information matrix
(recall that the information matrix is E

[∑
i∈N λi(xi)xix

>
i

]
and that the covariance is the inverse of this matrix). More

generally, any profile λ such that the information matrix is non-invertible and remains non-invertible under unilateral
deviations is an equilibrium. Following [24], we call Nash equilibria at which the estimation cost is infinite “trivial
equilibria.” These are not our focus as they can be avoided with model adjustments such as having d non-strategic
agents with data points spanning Rd guaranteeing a finite covariance.

We claim that Proposition 1 (which states that the game has at least one equilibrium, and that if there are multiple
equilibria, they have the same estimation cost) still holds for non-trivial equilibria under the extending model where
the data points xi are distributed according to a joint distribution µjoint satisfying Assumption 4; with the following
adapted proof. Note that the first step of this version of the proof is inspired from [24] to handle trivial equilibrium.

Proof. Step 1: The potential function is convex. The potential function φ(λ) = E
[∑n

j=1 cj(λj(xj))
]

+Cestim(λ)

takes values in the extended positive real numbers line R̄+ = R+ ∪ {+∞}.

Recall that Cestim(λ) = F

((
E
[∑

i∈N λi(xi)xix
>
i

])−1)
. We denote V (λ) = E

[∑
i∈N λi(xi)xix

>
i

]−1
and

M(λ) = E
[∑

i∈N λi(xi)xix
>
i

]
. We have that V (λ) is strictly convex and goes to infinity when M(λ) goes to a

non-invertible matrix (i.e., the largest eigenvalue of V goes to infinity for any sequence λn that converges to a λ such
that M(λ) is non-invertible). As F is convex and increasing, this shows that Cestim(λ) is strictly convex and goes to
+∞ when M(λ) goes to a non-invertible matrix, which then implies that Cestim(λ) : Rn+ → R̄+ is continuous. As
the functions ci are convex, we conclude that the potential function φ is strictly convex and continuous on R̄+.

Step 2: The potential admits a minimum. We first consider the potential evaluated at an arbitrary value and show
that this implies boundedness of agents precision at equilibrium. Let φ(1) = E [

∑
i ci(1)] + F ((E

[∑
i xix

T
i

]
)−1).

By Assumption 3, lim`→+∞ ci(`) = +∞. For all x ∈ X , we denote µi(x) the the probability that agent i has data
point x when data points are generated with the joint distribution µjoint. If µi(x) = 0, then the value of λi(x) does not
change the potential and we can set it to 0. Otherwise, lim`→+∞ ci(`)µ(x) = +∞. Hence, there exists `max such that
for all i and all x, ci(`max)µ(x) > φ(1). This shows that if λ is a precision profile such that λi(x) > `max for some i
and x, then φ(λ) ≥ φ(1).

Let B be the subset of λ such that φ(λ) ≤ φ(1). By continuity and convexity of φ, B is a non-empty convex and
compact subset of [0, `max]n on which φ(λ) < ∞. This implies that there φ admits a minimum and that all global
minimum of φ are attained in B.

If different non-trivial equilibria exist, they have the same estimation cost. This step is strictly the same as the
proof found in Section C.1.
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We are now ready to state our main result adapted to this setting. In the following theorem, λ∗ denotes any non-trivial
equilibrium.

Theorem 5. Assume that Assumptions 2, 3, and 4 hold. Additionally, assume that there exist pmin, pmax ≥ 1 and
functions cmin, cmax : R+ → R+ such that for all i ∈ N and all a > 1, ` > 0: apminci(`) ≤ ci(a`) ≤ apmaxci(`)
and 0 < cmin(`) ≤ ci(`) ≤ cmax(`) < ∞. Then there exist constants d′, D′ > 0 that depend on n only through
Eµjoint

[
1
n

∑
i∈N xix

>
i

]
and such that:

d′n−q
pmin−1

pmin+q−α ≤ Cestim(λ∗) ≤ D′n−q
pmin−1

pmin+q , (F.1)

where α = q (pmax−pmin)(q+1)
pmax(q+pmin)

.

Proof. In this first step, we compute the value of the potential function for a particular constant strategy in which all
players use the precision λ(x) = n

− q+1
pmin+q for all values of x ∈ X . By abuse of notation, we denote this precision

profile by (n
− q+1
pmin+q , . . . , n

− q+1
pmin+q ). The value of the potential for this precision profile is

φ(n
− q+1
pmin+q , . . . , n

− q+1
pmin+q ) = E

[
n∑
i=1

ci(n
− q+1
pmin+q )

]
+ F ((E

[
n∑
i=1

xix
T
i n
− q+1
pmin+q

]
)−1)

=

n∑
i=1

ci(n
− q+1
pmin+q ) + F ((n

pmin−1

pmin+qE

[
1

n

∑
i∈N

xix
>
i

]
)−1)

≤
n∑
i=1

n
−pmin

q+1
pmin+q ci(1) + F ((n

pmin−1

pmin+qE

[
1

n

∑
i∈N

xix
>
i

]
)−1) (F.2)

= n
−pmin

q+1
pmin+q

n∑
i=1

ci(1) + n
q(1−pmin)

pmin+q F ((E

[
1

n

∑
i∈N

xix
>
i

]
)−1) (F.3)

≤ n−
q(pmin−1)

pmin+q cmax(1) + n
q(1−pmin)

pmin+q F ((E

[
1

n

∑
i∈N

xix
>
i

]
)−1) (F.4)

= n
− q(pmin−1)

pmin+q

(
cmax(1) + F ((E

[
1

n

∑
i∈N

xix
>
i

]
)−1)

)
, (F.5)

where we use that ci(1) ≥ apminci(1/a) with a = n
q+1

pmin+q (from the theorem’s assumption) in (F.2), the homogeneity
of F (Assumption 2) in (F.3), and the theorem’s assumption, which implies that ci(1) ≤ cmax(1) for all i, in (F.4).

As ci(`) ≥ 0 and λ∗ is a minimum of the potential, it holds that

Cestim(λ∗) ≤ φ(λ∗) ≤ φ(n
− q+1
pmin+q , . . . , n

− q+1
pmin+q ).

Hence, the right-hand-side of (F.1) holds with D =
(
cmax(1) + F ((E

[
1
n

∑
i∈N xix

>
i

]
)−1)

)
.

Lower bound. The lower bound is then simply obtained by plugging the new upper bound of the potential to the
proof of the lower bound obtained in Section C.5.

The main difference between Theorem 5 and Theorem 3 is that in Theorem 3, the constants d and D do not depend n
whereas in Theorem 5, the constants d′ and D′ do depend on Eµjoint

[
1
n

∑
i∈N xix

>
i

]
. This is because in Theorem 5,

we do not make any assumption on the joint distribution. We thus do not have any guarantee that the joint distribution
will have some stable property when the number of agents grow. On the other hand, if Eµjoint

[
1
n

∑
i∈N xix

>
i

]
is

independent on n, the constants d′ and D′ will also not depend on n.

In fact, the multiplicative terms of Theorem 5 are simply obtained by replacing E
[
xxT

]
with Eµjoint

[
1
n

∑
i∈N xix

>
i

]
in the multiplicative terms of Theorem 3 (note that we retrieve Theorem 3 when data points are iid). This latter term
captures precisely the impact of correlation on the estimation cost. For instance,if data points are highly correlated
in a way that poorly represents the input space, F ((Eµjoint

[
1
n

∑
i∈N xix

>
i

]
)−1) can be arbitrarily large, leading to a

commensurately large upper bound (the corresponding lower bound behavior is similar).
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G Additional illustrations

G.1 Illustration of the equilibrium characterization

In this section, we provide additional illustrations on the equilibrium characterization (Section 4), which complement
Figure 1 and show that the discussion on that figure in the paper continues to apply in different settings, namely:

a. In Figure 3, we vary the degree d of the polynomial regression (Figure 1 has d = 4).
b. In Figure 4, we vary the distribution µ (Figure 1 has a uniform distribution that corresponds to the first row in

Figure 4). Here, we fix d = 4 and we do not plot the optimal design as it does not depend on µ.
c. In Figure 5, we use a different scalarization, the squared Frobenius norm (F (M) =

∑
ijM

2
ij), while keeping a

uniform distribution µ and d = 4.
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Figure 3: Optimal design ν∗ and allocation of precision at equilibrium νλ∗ with various degrees d of the polynomial
regression (here µ is uniform and the scalarization is the trace as in Figure 1).

Figure 3 illustrates the optimal design ν∗ and the allocation of precision at equilibrium νλ∗ as defined in Theorem 2
in the same setting as Figure 1 (d = 4) with different degrees for the polynomial regression (d = 3, 5, 6). We observe
that for d = 3 and d = 5, the optimal design puts maximal weight on the central vector [1, x, · · · , xd−1] with x = 0
while for d = 4 and d = 6, this vector does not belong to the support of the optimal design. We observe a similar
property for the equilibrium of games with near-linear data provision cost. The allocations of precision at equilibrium
for p = 1.2 and p = 1.5, however, are significantly different from the optimal design for all values of d (in particular
with a maximum of precision for the central vector with x = 0), and they have a shape that does not significantly vary
with the degree d.
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Figure 4: Allocation of precision at equilibrium νλ∗ with various distributions µ (here d = 4 and the scalarization is
the trace as in Figure 1). The optimal design ν∗ does not depend on µ and is therefore the same as in Figure 1.

Figure 4 illustrates the allocation of precision at equilibrium νλ∗ as defined in Theorem 2 in the same setting as Figure 1
with various distributions µ of the agents’ xi vectors. The first row of graphs corresponds to the exact same setting as
Figure 1 (uniform distribution) while the next rows show the results for other distributions. In addition to Figure 1,
we plot the results for monomial costs of exponent p = 1.5, but we do not plot the optimal design ν∗ as it is the same
for all distributions (and shown on Figure 1). We first observe that, for all distributions, the allocation of precision at
equilibrium is close to the optimal design (and hence almost independent of the distribution) for near-linear provision
costs (p = 1.01). For more convex provision costs however, the allocation of precision at equilibrium varies with µ in
non-trivial ways. In the second row of Figure 4 (compared to the first), we observe that νλ∗([1, x, · · · , xd−1]) shrinks
for values of x close to 0. This is explained by two factors: i) vectors with x close to 0 have a low probability according
to µ and ii) provision costs are superlinear meaning that the agent cannot compensate this probability by multiplying
the precision attributed to this vector without prohibitively increasing its cost. We observe a similar behavior for the
third row of Figure 4 where νλ∗ has a shape similar to the first row with values skewed to the left where vectors have
higher probability.
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Figure 5: Optimal design ν∗ and allocation of precision at equilibrium νλ∗ with the squared Frobenius norm as a
scalarization F (here µ is uniform and d = 4 as in Figure 1).

Figure 5 illustrates the optimal design ν∗ and the allocation of precision at equilibrium νλ∗ as defined in Theorem 2
in the same setting as Figure 1 but when using the squared Frobenius norm as a scalarization to define the estimation
cost instead of the trace. We observe that both figures show similar trends. In particular, Figure 5 with the squared
Frobenius norm exhibits the same behaviors as discussed before on Figure 1 for the trace: the allocation of precision
at equilibrium is close to the optimal design for p = 1.01 while it departs significantly for p = 1.2 and p = 1.5 where
the precision for the vector [1, 0, . . . , 0] is maximal (instead of zero in the optimal design).
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(a) Comparison for pmin = 1 and pmax = 4 (b) Comparison for pmin = 2 and pmax = 3

Figure 6: Comparison of the rate of convergence of the estimation cost with different bounds for agents with hetero-
geneous costs

G.2 Numerical exploration of Theorem 3

In this section, we explore the result of Theorem 3 through numerical simulations. We consider a one-dimensional
model with X = {1}. The scalarization is the trace (which satisfies Assumption 2 with q = 1). This means that
Cestim(λ) = (

∑
i λi(1))−1. Recall that Theorem 3 shows that

dn
−q pmin−1

pmin+1−α ≤ Cestim(λ∗) ≤ Dn−q
pmin−1

pmin+1 .

The goal of this section is to compare the upper and lower bounds of Theorem 3 to Cestim(λ∗), to see if the true
convergence rate is close to the lower or to the upper bound.

In the remaining of this subsection, we will display Cestim(λ∗) as a function of n in loglog-scale and compare it to
three possible convergence rates:

(a) n−q
pmin−1

pmin+q−α (the rate of the lower bound of Theorem 3);

(b) n−q
pmin−1

pmin+q (the rate of the upper bound of Theorem 3, which is the convergence rate when all players have
cost ci(`) = `pmin );

(c) n−q
pmax−1
pmax+q (the convergence rate when all players have cost ci(`) = `pmax ).

Note that (a) is the fastest convergence rate, followed by (c) and then by (b).

In all plots in this section, we normalize the values such that they all start at the same point for n = 3 (n = 3 is the
smallest game for which we compute Cestim(λ∗)).

G.2.1 Heterogeneous agents with different exponents

We first consider heterogeneous agents. For a given n, n/3 agents have provision costs ci(`) = `pmax and 2n/3 agents
have provision costs ci(`) = `pmin . This setup satisfies the assumptions of Theorem 3 with the corresponding pmin

and pmax. We consider two setups: (pmin, pmax) = (1, 4) and (pmin, pmax) = (2, 3).

Figure 6 compares the convergence rate of Cestim(λ∗) to the three bounds defined above. This figure suggests that the
estimation cost behaves as when all players have estimation cost `pmax . Intuitively, this is explained by the fact that in
the game, an agent that has a cost ci(`) = `pmin will give a very small precision. Hence, the game will almost behave
as if this agent was not in the game. This explains why the convergence rate of Cestim(λ∗) is driven by agents having
exponent pmax.

G.2.2 Agents with polynomial provision costs

We then consider agents with polynomial provision costs. We assume that the n agents have the same provision costs
ci(`) =

∑pmax

k=pmin
`k. Again, these provision cost satisfy the assumptions of Theorem 3 with the corresponding pmin

and pmax.
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(a) Comparison for pmin = 1 and pmax = 4 (b) Comparison for pmin = 2 and pmax = 3

Figure 7: Comparison of the rate of convergence of the estimation cost with different bounds for agents with polyno-
mial costs

Figure 8: Comparison of the rate of convergence of the estimation cost with the upper bound of Theorem 3 for agents
with hyperbolic cosine costs.

Figure 7 compares the convergence rate of the covariance to the upper and lower bounds of Theorem 3. We observe
that the convergence rate is close to the upper bound n(pmin−1)/(pmin+1). This result is natural as polynomials are sums
of monomials and it is logical to expect the convergence rate to be according to the ”worst” monomial of degree pmin.

G.2.3 Agents with non-polynomial provision costs

This result on polynomial functions alongside the fact that the precision of each agent goes to 0 when the number of
agents goes to infinity hints at the behavior of the estimation cost with more general provision costs. Indeed, if agents
have provision cost which have a Taylor expansion at 0, their cost can be well approximated by a polynomial function.
The previous figure then suggests that the convergence rate in this case is driven by the first non-null term of the Taylor
expansion of the function of degree pmin.

We illustrate this in Figure 8 where we consider homogeneous agents with provision costs ci(`) = cosh(`) − 1.
Recall that cosh(`) − 1 =

∑∞
k=1

`2k

(2k)! . This model therefore satisfy our assumptions with pmin = 2 and pmax =

∞. According to our previous observations, we expect the convergence rate in this case to be the upper bound
(pmin−1)/(pmin +1) with pmin = 2. Note that in this case our lower bound and n−q(pmax−1)/(pmax+1) both represent
convergence rates of n−q corresponding to the non strategic setting. Figure 8 suggests indeed that the convergence
rate is close to this upper bound.
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H Hardware and software used for experiments

All experiments were run on a Dell xps-13 laptop with a Quad core Intel Core i7-8550U (-MT-MCP-) CPU under
Ubuntu 18.04. Experiments were made using Python 3 code which is publicly available at https://gitlab.inria.
fr/broussil/linear-regression-with-strategic-data-sources. The main libraries used are presented in
README.md and the versions used for the experiments are available in requirements.txt.
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