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ABSTRACT
In this paper, we examine cognitive radio systems that evolve
dynamically over time as a function of changing user and en-
vironmental conditions. To take into account the advantages
of orthogonal frequency division multiplexing (OFDM) and
recent advances in multiple antenna (MIMO) technologies,
we consider a full MIMO-OFDM Gaussian cognitive radio
system where users with several antennas communicate over
multiple non-interfering frequency bands. In this dynamic
context, the objective of the network’s secondary users (SUs)
is to stay as close as possible to their optimum power allo-
cation and signal covariance profile as it evolves over time,
with only local channel state information at their disposal.
To that end, we derive an adaptive spectrum management
policy based on the method of matrix exponential learning,
and we show that it leads to no regret (i.e. it performs
asymptotically as well as any fixed signal distribution, no
matter how the system evolves over time). As it turns out,
this online learning policy is closely aligned to the direction
of change of the users’ data rate function, so the system’s
SUs are able to track their individual optimum signal profile
even under rapidly changing conditions.

1. INTRODUCTION
As a result of the explosive spread of Internet-enabled

mobile devices, the radio spectrum has become a scarce re-
source which, if not properly managed, will be unable to ac-
commodate the soaring demand for wireless broadband and
the ever-growing volume of data traffic and cellphone calls.
Exacerbating this issue, studies by the US Federal Com-
munications Commission (FCC) and the National Telecom-
munications and Information Administration (NTIA) have
shown that this vital commodity is effectively squandered
through underutilization and inefficient use: only 15% to
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85% of the licensed radio spectrum is used on average, leav-
ing ample spectral voids that could be exploited for oppor-
tunistic radio access [8, 25].

In view of the above, the emerging paradigm of cognitive
radio (CR) has attracted considerable interest as a promis-
ing counter to spectrum scarcity [11, 12, 20, 34]. At its
core, this paradigm is simply a two-level hierarchy between
communicating users induced by spectrum licensing: on the
one hand stand the network’s primary users (PUs) who have
purchased spectrum rights but allow others to access it (pro-
vided that the resulting interference remains below a cer-
tain threshold); on the other hand, the network’s secondary
users (SUs) are free-riding on the licensed part of the spec-
trum, and they try to communicate under the constraints
imposed by the PUs (but with no quality of service (QoS)
guarantees). In this way, by opening up the unfilled “white
spaces” of the licensed spectrum to opportunistic access, the
overall spectrum utilization can be greatly increased with-
out compromising the performance guarantees that the net-
work’s licensed users have already paid for.

Orthogonally to the above, the seminal prediction that the
use of multiple-input and multiple-output (MIMO) technolo-
gies can lead to substantial gains in information through-
put [9, 31] opens up another way for overcoming spectrum
scarcity. In particular, by employing multiple antennas for
communication, it is possible to exploit spatial degrees of
freedom in the transmission and reception of radio signals,
the only physical limit being the number of antennas that
can be deployed on a portable device. As a result, the exist-
ing wireless medium can accommodate greater volumes of
data traffic without requiring the reallocation (and subse-
quent re-regulation) of additional frequency bands.

In this paper, we combine these two approaches and fo-
cus on a dynamic MIMO cognitive radio system comprised
of several wireless users (primary and secondary alike) who
communicate over multiple non-interfering channels, and are
going online or offline based on their individual needs. In
this unregulated (and evolving) context, the intended re-
ceiver of a message has to cope with unwarranted interfer-
ence from a large number of transmitters, a factor which
severely limits the capacity of the wireless system in ques-
tion. On that account, and given that the theoretical per-
formance limits of MIMO systems still elude us (even in
basic network models such as the interference channel), a
widespread approach is to treat the interference from other
users as additive colored noise, and to use the mutual in-
formation for Gaussian input and noise as a unilateral per-
formance metric [31]. In a similar vein, users cannot be



assumed to have full information on the wireless system as
it evolves over time (due e.g. to the arrival of new users,
fluctuations in the PUs’ demand, congestion, etc.), so they
will have to optimize their signal characteristics “on the fly”,
based only on locally available information. Accordingly,
our aim will be to derive a distributed learning scheme that
allows the system’s SUs to adapt to changes in the wireless
medium and track their individual optimum signal profile
using only local channel state information (CSI).

Of course, the setting above is fairly general in scope as it
allows the network’s SUs significant control over both spa-
tial and spectral degrees of freedom: in the spatial com-
ponent, the users control the covariance of their transmit
directions (essentially the spread of their symbols over the
transmitting antennas), whereas in the frequency domain,
they control the allocation of their transmit power over the
different channels at their disposal. To wit, when users are
only equipped with a single antenna and are not allowed
to split power across subcarriers, the problem boils down
to deriving an efficient online channel selection policy as in
[2, 10, 17, 21]. Alternatively, in the static, single-channel
regime where the system’s SUs only react to each other and
the PUs’ spectrum utilization is fixed, the main objective is
to optimize the users’ spectrum sharing policy [33] and/or
to identify the Nash equilibria of the resulting game [26, 32].
That said, since the PUs’ changing behavior is not affected
(and cannot be predicted) by the system’s SUs, our dynamic
environment may no longer be modeled as a game, so static
solution concepts (such as that of Nash equilibrium) are no
longer meaningful. Thus, merging the analysis of [2] for dy-
namic channel selection with that of [26, 33] for static MIMO
systems, we will focus on adaptive full spectrum manage-
ment policies that lead to no regret in the sense that they
perform asymptotically as well as any fixed policy, irrespec-
tive of the system’s evolution over time [6, 27]. Intuitively,
this means that the proposed scheme performs at least as
well as the best fixed transmission strategy, even though
the latter cannot be anticipated by the transmitter in our
dynamic scenario with only local information.

Motivated by the no-regret properties of the exponential
weight algorithm [6, 13, 28], our approach will be based on
the distributed optimization method of matrix exponential
learning that was recently introduced in [18]. More precisely,
by decomposing our online rate maximization problem into a
signal covariance and a power allocation component (corre-
sponding to spatial and frequency degrees of freedom respec-
tively), we derive an augmented exponential learning policy
for adaptive spectrum management in dynamic MIMO CR
environments. Then, by studying the evolution of the so-
called “free energy” of the users’ transmit profile, we show
that this learning policy leads to no regret (Theorem 3.5); in
fact, our exponential learning scheme turns out to be closely
aligned to the direction of change of the users’ rate function,
so the system’s SUs are able to track their individual opti-
mum signal profile as it evolves over time, even under rapidly
changing channel conditions.

2. SYSTEM MODEL
The cognitive radio system that we will focus on consists

of a set of non-cooperative wireless MIMO users (primary
and secondary alike), all communicating over several non-
interfering channels by means of an orthogonal frequency
division multiplexing (OFDM) scheme [3, 16]. Specifically,

let Q = P ∪ S denote the set of the system’s users, with
P (resp. S) representing the system’s primary (resp. sec-
ondary) users; assume further that each user q ∈ Q is equip-
ped with mq transmit antennas, and that the radio spectrum
is partitioned into a set K = {1, . . . ,K} of K orthogonal
frequency bands [3]. Then, the aggregate signal ysk ∈ Cns

received on the k-th frequency subcarrier at the intended
destination of the secondary user s ∈ S (assumed equipped
with ns receive antennas) will be:

ysk = Hss
k xsk +

∑
p∈P

Hps
k xpk +

∑
r∈S,r 6=s

Hrs
k xrk + zsk, (1)

where xqk ∈ Cmq is the transmitted message of user q ∈ Q

(primary or secondary) over the k-th subcarrier, Hqs
k is the

corresponding channel matrix between the q-th transmitter
and the intended receiver of user s, and zsk ∈ Cns is the
noise in the channel, including thermal, atmospheric and
other peripheral interference effects (and modeled as a zero-
mean circularly symmetric complex Gaussian random vector
with non-singular covariance). Accordingly, if we focus on
a particular secondary user and drop the index s ∈ S in (1)
for simplicity, we obtain the unilateral signal model:

yk = Hkxk + wk, (2)

where wk now denotes the multi-user interference-plus-noise
over the frequency subcarrier k ∈ K at the receiver end.

The covariance of wk in (2) obviously evolves over time
e.g. due to users going offline for a period of time, or of
modulating their transmit profiles to achieve better trans-
mission rates.1 In this evolving, decentralized context, em-
ploying sophisticated interference cancellation techniques at
the receiver is all but impossible, especially with regards to
the system’s unregulated secondary users; as such, we will
assume that interference by other users (primary and sec-
ondary alike) at the receiver is treated as additive, colored
noise. In this single user decoding (SUD) regime, the trans-
mission rate of a user under the signal model (2) will then
be given by the familiar expression [3, 31]:

Ψ(Q,p) =
∑

k

[
log det

(
Wk +pkHkQkH

†
k

)
− log det Wk

]
,

(3)
where:

1. Wk = E
[
wkw

†
k

]
is the multi-user interference-plus-

noise covariance matrix on subcarrier k at the receiver.

2. pk = E
[
x†kxk

]
= E

[
‖xk‖2

]
is the user’s transmit power

over subcarrier k, and p = (p1, . . . , pK) is the overall
power allocation vector.

3. Qk = E
[
xkx

†
k

]/
E
[
x†kxk

]
is the normalized covari-

ance matrix of the user’s transmitted signal, and Q =⊕K
k=1 Qk = diag(Q1, . . . ,QK) denotes the aggregate

covariance profile over all subcarriers.2

Thus, given that Wk might change over time as a result
of evolving user conditions, we obtain the time-dependent
objective:

Ψ(P; t) =
∑
k log det

[
I + H̃k(t) Pk H̃†k(t)

]
, (4)

1That said, we will be assuming that such changes occur at
a sufficiently slow rate relative to the coherence time of the
channel so that the standard results of information theory
continue to hold [31].
2Throughout this paper,

⊕K
k=1 Ak ≡ diag(A1, . . . ,AK) will

denote the block-diagonal (direct) sum of the matrices Ak.



where

Pk = E[xkx
†
k] = pkQk, P = diag(P1, . . . ,PK), (5)

denotes the unnormalized covariance matrix of the transmit-
ter’s signal on the k-th subcarrier, and the effective channel

matrices H̃k are given by

H̃k(t) = Wk(t)−1/2 Hk. (6)

Motivated by the“white-space filling”paradigm advocated
(e.g. by the FCC) as a means to minimize interference by
unlicensed users in MIMO CR networks by sensing spatial
and/or spectral voids in the wireless medium [8, 14, 25, 26,
29], we will consider the following constraints for the SUs’
transmit policies:

1. Constrained total power:3

tr(P) =
∑
k pk = P. (7a)

2. Constrained transmit power per subcarrier:

tr(Pk) = pk ≤ Pk. (7b)

3. Null-shaping constraints:

U†kPk = 0, (7c)

for some tall complex matrix Uk with full column rank.

Of the constraints above, (7a) is a physical constraint on
the user’s total transmit power, (7b) imposes a limit on the
interference level that can be tolerated on a given subcarrier,
and (7c) is a“hard”, spatial version of (7b) which guarantees
that certain spatial dimensions per subcarrier (the columns
of Uk) will only be open to licensed, primary users (see also
[16] for a more detailed discussion). After a suitable change
of basis, the set of admissible signal shaping policies for the
rate function (4) will thus be:

X =
{

(P1, . . . ,PK) : Pk ∈ Cmk×mk ,Pk < 0,

0 ≤ tr(Pk) ≤ Pk and
∑
k tr(Pk) = P

}
, (8)

where mk = nullity(Uk) is the number of spatial dimensions
that are open to SUs on subcarrier k. Accordingly, writing
Pk in the decoupled form Pk = pkQk as before, we obtain
the decomposition X =

∏
kDk × X0 where

Dk =
{
Qk ∈ Cmk×mk : Qk < 0, tr(Qk) = 1

}
(9)

is the “spectrahedron” of admissible normalized covariance
matrices for subcarrier k and

X0 =
{
p ∈ RK : 0 ≤ pk ≤ Pk,

∑
k pk = P

}
(10)

denotes the set of admissible power allocation vectors.
In view of the above, the unilateral objective of each SU at

time t will be given by the online rate maximization problem:

maximize Ψ(P; t),

subject to P =
⊕K

k=1 pkQk,

(p1, . . . , pK) ∈ X0, Qk ∈ Dk.

(RM)

3If users are energy-aware, we should consider a more gen-
eral total power constraint of the form

∑
k pk ≤ P and incor-

porate a cost of power consumption in the user’s objective.
In our current setting however, the users have nothing to
gain by not transmitting at full power, so there is no need
to consider a softer constraint for the total transmit power.

Clearly, if the behavior of the network’s PUs were known
(or could otherwise be predicted) ahead of time, every SU
would only have to react to each other’s transmit policy,
thus allowing us to model the situation as a non-coopera-
tive game – see e.g. [26, 32] where the authors study the
existence of a unique equilibrium in the “low-interference”
regime of a stationary, single-carrier network. In our setting
however, the PUs’ transmit profiles are not influenced by
the choices of the SUs, but instead change arbitrarily over
time as a function of their individual needs; as a result,
we obtain an evolving “game against nature” where static
solution concepts (such as Nash equilibria) do not apply.

The most prominent solution concept in this online opti-
mization context is that of a no-regret learning policy [6, 27],
i.e. a dynamic transmit strategy P(t), t ≥ 0, which performs
asymptotically as well as any fixed profile P0 ∈ X, and for
all possible evolutions of the objective (4) over time. More
precisely, the regret of a dynamic transmit policy P(t) ∈ X

with respect to P0 ∈ X is defined as:

Reg(P0, t) =
1

t

∫ t

0

[
Ψ(P0; s)−Ψ(P(s); s)

]
ds, (11)

i.e. Reg(P0, t) simply measures the average transmission
rate difference between P0 and P(t) up to time t. Obvi-
ously, large positive values of Reg(P0, t) indicate that the
user could have achieved a higher transmission rate in the
past by employing P0 instead of P(t), making him “regret”
his policy choice. We will thus say that the policy P(t) leads
to no regret if

lim supt→∞Reg(P0, t) ≤ 0 (12)

for all P0 ∈ X, and no matter how the objective Ψ(·; t) of
(RM) evolves over time as a function of the effective chan-

nel matrices H̃k(t), t ≥ 0. Alternatively, if we interpret

limt→∞
∫ t

0
Ψ(p0; s) ds as the long-term average rate associ-

ated to P0, then (12) simply means that the average data
rate of the dynamic policy P(t) is at least as good as that
of any P0 ∈ X, irrespective of how Ψ(· ; t) evolves over time.

The notion of regret will be central in our analysis, so a
few remarks are in order:

Remark 1. Obviously, if the optimum transmit policy
P∗(t) which maximizes (RM) could be predicted at every
t ≥ 0 by some oracle-like device, we would have Reg(P0, t) ≤
0 in (11) for all P0 ∈ X, so the no-regret property (12) would
be trivially satisfied. Equation (12) is thus a fundamental
requirement for performance evaluation in the context of
online programming, and negative regret is a key indicator
of tracking the maximum of (RM) over time.

Remark 2. When the network’s PUs induce changes to
the wireless medium (e.g. with respect to network topology,
channel conditions, congestion, etc.), the notion of regret be-
comes especially relevant because the PUs’ behavior is not
affected (at least, ideally) and cannot be predicted by the
network’s SUs. In this context, uniform power allocation is
generally considered to be a realistic simple policy which
is also robust against channel uncertainty: in particular,
if the channel matrices are drawn at each realization from
an isotropic distribution, then spreading power uniformly
across carriers and antennas is the optimum policy in the
worst-case scenario where nature (including the network’s
PUs) is actively choosing the worst possible channel real-
ization for the transmitter [22]. A no-regret policy extends



this “min-max” concept by ensuring that no matter how the
channels evolve over time (isotropically or otherwise), the
policy’s achieved transmission rate will be asymptotically
as good as that of any transmit policy, including the uni-
form one (as a special case where nature is playing against
the transmitter).

3. ONLINE SPECTRUM MANAGEMENT
DYNAMICS

Even though there exists an extensive literature on no-
regret learning policies for problems with discrete state spaces
(see e.g. [6] for a panoramic survey), the situation is signif-
icantly more complicated in the case of online optimization
programs with continuous action spaces and implicit con-
straints – such as the semidefiniteness constraints of (RM).
To simplify matters, we will thus take a step-by-step ap-
proach consisting of: a) deriving a no-regret policy Q(t) ∈
X+ ≡

∏
kDk for the covariance component of (RM) assum-

ing a fixed power allocation profile p ∈ X0; b) deriving a
no-regret policy p(t) ∈ X0 for the power allocation compo-
nent of (RM) assuming a fixed covariance profile Q ∈ X+;
and c) combining the two policies in a joint no-regret spec-
trum management scheme for (RM) over the entire state
space X = X+ × X0.

3.1 Online signal covariance optimization
We begin by analyzing the online rate maximization prob-

lem (RM) for a fixed power allocation profile p = (p1, . . . , pK) ∈
X0. To that end, if we fix p ∈ X0, the derivation of a no-
regret policy for the objective (4) over X+ ≡

∏
kDk boils

down to the online semidefinite program:

maximize
∑
k log det

[
I + pkH̃k(t)QkH̃

†
k(t)

]
,

subject to Qk < 0, tr(Qk) = 1 (k = 1, . . . ,K).
(RM+)

Motivated by the method of matrix exponential learning
that was introduced in [18] for static optimization problems
with constraints of this kind, we will consider the dynamics

Ẏk = Vk,

Qk =
exp(Yk)

tr[exp(Yk)]
,

(XL)

where Yk ∈ Cmk×mk is an auxiliary “scoring” matrix and

Vk =
∂Ψ

∂Q∗k
= pkH̃

†
k

[
I + pkH̃kQkH̃

†
k

]−1
H̃k (13)

is the (conjugate) gradient of the objective of (RM+) with
respect to Qk ∈ Dk.

There are two reasons behind this choice of learning dy-
namics: first, in the static regime where the objective func-

tion does not change over time (i.e. H̃k(t) = H̃k for all
t ≥ 0), the analysis of [18] shows that (XL) converges to
the maximum of Ψ, so the no-regret property is satisfied

trivially in that case. Secondly, if Qk and H̃†kH̃k are simul-
taneously diagonalizable, the dynamics (XL) reduce to the
continuous-time exponential weight algorithm [6, 28]:

Ẏkα = Vkα (14)

qkα =
exp(Ykα)∑mk
β=1 exp(Ykβ)

, (15)

where Ykα and Vkα, α = 1, . . . ,mk, denote the diagonal
elements of Yk and Vk respectively. For linear objectives

of the form Ψ(q; t) =
∑K
k=1

∑mk
α=1 Vkα(t) qkα, it was shown

in [28] that (14) is a no-regret policy for any (continuous)
“payoff stream”Vkα(t); hence, in conjunction with our previ-
ous observation, one would hope that this stays true for the
matrix-valued extension (XL) of (14), and for any stream of
nonlinear objective functions Φ(·; t) of the form (4). In the
rest of this section, we will show that this is indeed the case,
extending in this way the results of [28] to a semidefinite
setting with nonlinear objectives.

Our analysis will hinge on a matrix variant of the so-called
(Helmholtz) free energy [15] defined as:

A(Y,Q) = tr[YQ]− h(Q), (16)

where Y is Hermitian, Q is positive–semidefinite, and h(Q)
is (minus)4 the von Neumann (quantum) entropy

h(Q) = tr(Q log Q). (17)

As we show in the following proposition, the key property
of the free energy function A is that the normalized matrix
exponential in (XL) is the unique solution of the positive-
definite Legendre–Fenchel problem [23]:

maximize A(Y,Q),

subject to Q < 0, tr(Q) = 1.
(LF+)

More precisely, we have:

Proposition 3.1. Let Y be an m×m Hermitian matrix.
Then, the unique solution to the Legendre–Fenchel problem
(LF+) is QY = exp(Y)

/
tr[exp(Y)], and the corresponding

maximum value will be:

h∗(Y) ≡ A(Y,QY) = log tr[exp(Y)]. (18)

In view of Proposition 3.1 (which we prove in Appendix
A), the so-called convex conjugate h∗(Y) = log tr[exp(Y)]
of h [23] will be particularly important because it represents
the maximum value of the “average” 〈Y〉 = tr[YQ] of Y
adjusted for the “information cost” h(Q) of Q. To wit, by
studying the evolution of h∗ over time (see Appendix A for
the details), we may show that the dynamics of matrix ex-
ponential learning provide a no-regret policy for the online
rate maximization problem (RM+); more precisely, we have:

Theorem 3.2. Let Ψ(· ; t) be a continuous stream of rate
functions of the form (4) for some evolving configuration of

effective channel matrices H̃k(t), t ≥ 0. Then, for every
Q0 ∈ X+, the signal covariance policy (XL) satisfies

Reg(Q0, t) ≤
h+(Q0) + h∗+(Y0)

t
(19)

where Y0 ≡ Y(0) is the initialization of Y in (XL) and h+,
h∗+ are the analogues of the von Neumann entropy (17) and
its convex conjugate (18) over X+:

h+(Q) =
∑
k tr(Qk log Qk), (20a)

h∗+(Y) =
∑
k log tr[exp(Yk)]. (20b)

In particular, (XL) is a no-regret policy for the online co-
variance optimization problem (RM+).

4We are omitting the traditional minus sign for notational
convenience – so that h be strictly convex instead of strictly
concave.



Remark. By taking the uniform initialization Y0 = 0
and noting that h+(Q) ≤ 0 for all Q ∈ X+, the bound (19)
readily yields

Reg(Q0, t) ≤ t−1∑K
k=1 logmk. (21)

We thus see that a user’s regret grows at most linearly in the
number of available subcarriers and at most logarithmically
in the number of transmit dimensions mk per subcarrier,
a fact with important consequences as far as the policy’s
“curse of dimensionality” is concerned [6].

3.2 Dynamic power allocation
Having established a no-regret learning policy for the co-

variance component (RM+) of (RM), we now turn to the or-
thogonal problem of optimizing the user’s power allocation
for a fixed covariance profile Q ∈ X+. More specifically, our
aim in this section will be to devise a no-regret policy for
the online power allocation problem:

maximize
∑
k log det

[
I + pkSk(t)

]
,

subject to 0 ≤ pk ≤ Pk,
∑
k pk = P,

(RM0)

where Qk ∈ Dk is now kept fixed and, for notational conve-

nience, we have set Sk(t) = H̃k(t) Qk H̃†k(t).
Motivated by the analysis of the previous section, our ap-

proach will consist of the following steps:

1. Define an entropy-like function on the state space X0 =
{p ∈ RK : 0 ≤ pk ≤ Pk,

∑
k pk = P} of the online

power allocation problem (RM0).

2. Introduce a“score vector”y = (y1, . . . , yK) to track the
performance of each subcarrier based on the gradient
component vk = ∂Ψ

∂pk
of the objective of (RM0).

3. Map these “scores” to a power allocation vector p ∈ X0

by solving a Legendre–Fenchel problem as in Proposi-
tion 3.1 (which characterizes the exponential choice
map of (XL)).

This approach is driven in no small part by the proof of
Theorem 3.2 which relies on the convex conjugate of the
von Neumann entropy (17).5 Our first step will thus be to
define a strictly convex entropy function h0 : X0 → R which
becomes infinitely steep near the boundary bd(X0) of X0.

Inspired by a construction of [1], let

h0(p) =
∑K

k=1

[
θ(pk) + θ(Pk − pk)

]
, (22)

where

θ(x) = x log x (23)

is the single-dimensional analogue of the von Neumann en-
tropy (17). It is then easy to see that a) h0 is strictly convex
over X0; and b) it becomes infinitely steep at the boundary
bd(X0) of X0. As a result, the associated Legendre–Fenchel
problem

maximize y · p− h0(p),

subject to 0 ≤ pk ≤ Pk,
∑
k pk = P,

(LF0)

will admit a unique interior solution p∗(y) ∈ X0 for every
y ∈ RK (see e.g. Chapter 25 in [23]). Hence, in view of

5See also [27] for links with the discrete-time learning
method of online mirror descent, [1] for a closely related
entropy-driven approach to static optimization problems,
and [7] for applications to learning in games).

Proposition 3.1, and echoing the definition (XL) of the dy-
namics of matrix exponential learning, we will consider the
power allocation dynamics:

ẏ = v,

p = p∗(y),
(24)

where, as noted before, the auxiliary vector y “scores” the
performance of each subcarrier by tracking the gradient vec-
tor v = (v1, . . . , vK) with components given by

vk =
∂Ψ

∂pk
= tr

[(
I + pkSk

)−1
Sk
]

= p−1
k tr[VkQk]. (25)

To implement the power allocation scheme (24), we need
to have an explicit expression for the solution mapping p∗(y)
of (LF0) – just as Proposition 3.1 provided the exponential
expression exp(Y)/ tr[exp(Y)] for the positive-definite prob-
lem (LF+). To that end, the Karush–Kuhn–Tucker (KKT)
conditions for (LF0) give:

yk − θ′(pk) + θ′(Pk − pk) = λ, (26)

where λ is the Lagrange multiplier for the total power con-
straint

∑
k pk = P . With θ′(x) = 1 + log x, we then obtain

log(Pk − pk)− log pk = λ− yk, or, after solving for pk:

pk =
Pk

1 + exp(λ− yk)
. (27)

We are thus left to calculate the Lagrange multiplier λ; to
that end, summing (27) over k ∈ K yields:

P =
∑K

k=1

Pk
1 + exp(λ− yk)

. (28)

Since the RHS of this last equation is bounded below and
(strictly) decreasing in λ, it is straightforward to calculate
λ numerically – e.g. by performing a simple line search for
eλ [5].

On the other hand, by carrying out the summation at the
RHS of (28), it is easy to see that deriving a closed-form
expression for eλ involves solving a polynomial equation of
degree K – which is impossible for K ≥ 5 (and leads to fairly
complicated expressions, even for K = 2). Instead, an ex-
plicit analytic expression for the power allocation dynamics
(24) is provided by the following proposition (see Appendix
A for a proof):

Proposition 3.3. The solution orbits of the dynamics
(24) satisfy the adjusted replicator dynamics:

ṗk = ρk
[
vk − ρ−1∑

` ρ`v`
]
, (aRD)

where ρk = pk(Pk − pk)/Pk, ρ =
∑
k ρk, and the gradient

components vk are given by (25).

Remark 1. The terminology “adjusted replicator equa-
tion” is due to the similarity between (aRD) and the repli-
cator dynamics of evolutionary game theory [24, 30]. In our
setting, this last equation would take the form [19]:

ṗk = pk
[
vk − P−1∑

` p`v`
]
, (RD)

with the transmit powers pk assumed to satisfy the total
power constraint (7a), but not necessarily the “low-interfe-
rence” constraints (7b).



Remark 2. To gain some intuition about the form of the
adjusted variables ρk, it is instructive to note that (aRD)
satisfies the constraints (7a) and (7b) for all t ≥ 0. Indeed,
ρk = 0 if and only if pk ∈ {0, Pk}, so we will have 0 ≤
pk(t) ≤ Pk for all t ≥ 0; the second term of (aRD) then
ensures that

∑
k ṗk = 0, so the total transmit power

∑
k pk

is conserved along (aRD).6

A fundamental property of the replicator dynamics is that
they lead to no regret [13]; as it turns out (see Appendix A
for the proof), this property also holds for (aRD) as well:

Theorem 3.4. Let Ψ(· ; t) be a continuous stream of rate
functions of the form (4) for some evolving configuration of

effective channel matrices H̃k(t), t ≥ 0. Then, for every
p0 ∈ X0, the power allocation policy (aRD) satisfies:

Reg(p0, t) ≤ C0/t, (29)

for some positive constant C0 which depends only on p0 and
the initialization of (aRD). In particular, (aRD) is a no-
regret policy for the online power allocation problem (RM0).

3.3 Joint covariance-and-power management
In view of the analysis of the previous sections, our joint

signal covariance and power management scheme will be a
combination of matrix exponential learning (for the covari-
ance component) and the adjusted replicator dynamics (for
the power allocation component). More precisely, by com-
bining (XL) and (aRD), we obtain the augmented dynamics:

ṗk = ρk
[
vk − ρ−1∑K

`=1 ρ`v`
]
,

Ẏk = Vk,

Qk =
exp(Yk)

tr[exp(Yk)]
,

(30)

where, as before:

Vk =
∂Ψ

∂Q∗k
= pkH̃

†
k

[
I + H̃kQkH̃

†
k

]−1
H̃k,

vk =
∂Ψ

∂pk
= p−1

k tr [VkQk] ,

ρk = pk(Pk − pk)/Pk, ρ =
∑K
`=1 ρ`.

(31)

By combining Theorems 3.2 and 3.4, we may then show that
the dynamics (30) lead to no regret in the online rate max-
imization problem (RM) (see Appendix A for the details):

Theorem 3.5. Let Φ(· ; t) be a continuous stream of rate
functions of the form (4) for some evolving configuration

of effective channel matrices H̃k(t), t ≥ 0. Then, the aug-
mented dynamics (30) satisfy:

Reg(P0, t) ≤ C/t, (32)

for some positive constant C which depends only on P0 and
the initialization of (30). In particular, (30) leads to no
regret in the online rate maximization problem (RM).

6Note also that in the limit Pk → ∞ where the constraints
(7b) become redundant, we also get ρk → pk.

4. NUMERICAL RESULTS
In this section, our aim will be to evaluate the perfor-

mance of the online spectrum management dynamics (30)
via numerical simulations. We begin by providing an algo-
rithmic version of (30) that could be employed by every SU
in the network in a fully distributed fashion:

Algorithm 1 Augmented Exponential Learning (AXL)

n← 0;

Choose η > 0;

foreach subcarrier k ∈ K do
Initialize Hermitian score matrix Yk ∈ Cmk×mk and nor-
malized signal covariance Qk ∈ Dk;
Initialize subcarrier score yk ∈ R and transmit power pk.

Repeat
n← n+ 1;

foreach subcarrier k ∈ K do

Measure effective channel matrix H̃k;

Set Vk ← pkH̃
†
k

[
I + H̃kQkH̃

†
k

]−1
H̃k;

Update covariance score Yk ← Yk + ηVk;

Update subcarrier score yk ← yk + η p−1
k tr[VkQk]

and calculate λ from (28);

Set signal covariance Qk ← exp(Yk)
/

tr[exp(Yk)];

Set transmit power pk ← Pk/(1 + exp(λ− yk)).

The augmented exponential learning (AXL) algorithm above
will be the main focus of this section, so a few remarks are
in order:

Remark 1. From an implementation point of view, AXL
has the following desirable properties:

(P1) It is distributed : users only need to update their indi-
vidual signal characteristics using local channel state

information (the channel matrices H̃k).

(P2) It is asynchronous: there is no need for a global update
timer requiring user synchronization and coordination.

(P3) It is stateless: users do not need to know the state of
the system and they may be completely oblivious to
each other’s actions.

(P4) It is reinforcing : users tend to increase their unilateral
transmission rates.

Remark 2. Essentially, AXL may be viewed as a dis-
cretization of the spectrum management dynamics (30): gi-
ven that the adjusted replicator equation (aRD) is equiva-
lent to the dynamic power allocation scheme (24), the score-
updating step of AXL is just an Euler discretization of (XL)
and (24) with constant step size η. The reason for discretiz-
ing (24) instead of (aRD) is that we do not need to impose
bounds on the step-size η to ensure that the algorithm will
always remain in the state space X of (RM).

Of course, this approach carries the cost of having to cal-
culate the Lagrange multiplier λ numerically; however, given
that (28) is bounded and decreasing in λ, this calculation
can be performed in an efficient and stable way (e.g. by
a low-complexity line search [5]), so this implicit numerical
step does not have a perceptible impact on the performance
of AXL. If required, this step could be avoided altogether
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Figure 1: The long-term regret induced by augmented exponential learning (Fig. 1(a)) and a random sampling
power allocation policy (Fig. 1(b)) with respect to different signal covariance profiles (see text for details). In
tune with Theorem 3.5, augmented exponential learning quickly gets below the no-regret threshold whereas
the randomized policy leads to positive regret in 6 out of the 7 benchmark signal profiles.

by introducing an explicit Euler discretization of (aRD) and
taking η sufficiently small; in our numerical simulations how-
ever, we never needed to do so (and CPU monitoring did not
show a perceptible difference between the two approaches).

Now, to validate the predictions of Section 3 for the AXL
algorithm, we simulated in Fig. 1 a network consisting of 4
PUs and 8 SUs, all equipped with mk = 3 transmit/receive
antennas, and communicating over K = 6 orthogonal sub-
carriers with a base frequency of ν = 2 GHz. Both the PUs
and the SUs were assumed to be mobile with an average
speed of 5 km/h (pedestrian movement), and the channel
matrices Hqs

k of (1) were modeled after the well-known Jakes
model for Rayleigh fading [4]. For simplicity, we assumed
that the PUs were going online and offline following a Pois-
son process but were not otherwise modulating their trans-
mit signal characteristics; on the other hand, the simulated
SUs tried to optimize their spectrum exploitation by us-
ing the AXL algorithm with η = 1 and an update epoch of
δ = 5 ms.

We then picked a sample secondary user to focus on, and
we calculated the regret induced by the AXL policy with re-
spect to 7 different fixed signal profiles: the uniform one
(where power is spread equally across antennas and fre-
quency bands), and all possible combinations of spreading
power uniformly across subcarriers while keeping one or two
transmit dimensions closed (the legend of Fig. 1 indicates
the antennas that were not employed in each benchmark
policy).7 The results of these simulations were plotted in
Fig. 1(a): as predicted by Theorem 3.5, AXL leads to no re-
gret in the long term; in fact, AXL falls below the no-regret
threshold within a few epochs, indicating that it is perform-
ing strictly better on average than any of the benchmark
signal shaping profiles.

For comparison purposes, we also simulated the same sce-
nario, but with the SUs employing a randomized signal shap-
ing policy. In particular, motivated by the analysis of [22],

7We chose these benchmark profiles so as to sample the co-
variance component X+ of the problem’s state space as uni-
formly as possible.

we simulated the randomized sampling scheme:

Qk(n+ 1) = (1− r)Qk(n) + rRk(n),

Qk(0) = m−1
k I,

(33)

where the matrix Rk(n) is drawn uniformly from the spec-
trahedron Dk of mk × mk positive-definite matrices with
unit trace, and r ∈ [0, 1] is a discount parameter interpo-
lating between the uniform distribution Qk ∝ I for r = 0
and the completely random policy Rk for r = 1 (we took
r = 0.9 in our simulations).8 Even though this online spec-
trum management policy is sampling the state space essen-
tially uniformly for large values of r, Fig. 1(b) shows that it
leads to positive regret in 6 out of the 7 benchmark policies.9

In other words, the no regret property of AXL is not a spuri-
ous artifact of the exploration aspect of the entropy-driven
dynamics (30), but a direct consequence of the underlying
learning process.

The negative regret results of Fig. 1 also suggest that
the transmission rate achieved by the focal SU is close to
the user’s (evolving) maximum possible rate. To test this
hypothesis, we plotted in Fig. 2 the achieved data rate of
a SU employing the AXL algorithm versus the user’s max-
imum possible unilateral data rate and the transmission
rates achieved by uniform power allocation and the ran-
dom sampling policy (33). We see there that AXL adapts to
the changing channel conditions and tracks the maximum
achievable rate remarkably well, staying within 10% of the
maximum rate for almost all epochs (in stark contrast to
both fixed and randomized signal shaping policies).

5. CONCLUSIONS
8In practice, it is not possible to switch to very different
covariance profiles when the update epoch is very short; we
introduced the averaging parameter r in order to smooth
out the random process somewhat.
9The random sampling policy (33) leads to no regret against
the uniform power allocation policy because the average of
(33) is just the uniform policy.
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Figure 2: Data rates achieved by AXL in a changing
environment: by following the AXL algorithm, users
are able to track the (evolving) transmission profile
that maximizes their unilateral data rates.

In this paper, we introduced an adaptive spectrum man-
agement policy for MIMO-OFDM cognitive radio systems
that evolve dynamically over time as a function of chang-
ing user and environmental conditions. By drawing on the
method of matrix exponential learning and decomposing the
users’ online rate maximization into a signal covariance and
a power allocation component, we derived an augmented ex-
ponential learning scheme which leads to no regret : for every
SU, the proposed dynamic learning policy performs asymp-
totically as well as any fixed signal distribution, irrespective
of how the system evolves over time. In fact, this learn-
ing scheme is closely aligned to the direction of change of
the users’ data rate function, so the system’s SUs are able
to track their individual optimum signal distribution even
under rapidly changing conditions.

To a large extent, our learning scheme owes its no-regret
properties to the associated entropy-like function defined on
the problem’s state space (for instance, the von Neumann
quantum entropy for the problem’s signal covariance compo-
nent). As a result, by properly extending the driving entropy
function, our method can lead to no-regret strategies in sig-
nificantly more general situations – including for example
pricing and/or energy-awareness constraints.

APPENDIX
A. TECHNICAL PROOFS

We begin by showing that the normalized exponential of
(XL) solves the positive-definite problem (LF+):

Proof of Proposition 3.1. Our proof strategy will be
to first show that the problem (LF+) admits a unique solu-
tion in the (relative) interior D◦ of the spectrahedron D =
{Q ∈ Cm×m : Q < 0, tr(Q) = 1}, and then use the KKT
conditions to establish our claim. To that end, we will first
need to evaluate the directional derivative ∇ZA(Y,Q) =
d
dt

∣∣
t=0

A(Y,Q + tZ) of the free energy (16) on the tangent

directions Z ∈ TQD◦ = {A ∈ Cm×m : A† = A, tr(A) = 0}
to D◦ at Q. Accordingly, if {qj ,uj}mj=1 is an eigen-de-
composition of Q + tZ, we readily obtain A(Y,Q + tZ) =

tr[YQ] + tr[YZ] t−
∑
j qj log qj , and hence:

∇ZA(Y,Q) = d
dt

∣∣
t=0

A(Y,Q + tZ) = tr[YZ]−
∑
j q̇j log qj ,

(34)
where we have used the fact that

∑
j q̇j = 0 (recall that∑

j qj = tr(Q + tZ) = 1 for all t such that Q + tZ ∈ D◦).

Moreover, differentiating the defining relation (Q+ tZ)uj =
qjuj yields Zuj + (Q + tZ)u̇j = q̇juj + qju̇j , so, after mul-

tiplying from the left by u†j , we get:

q̇j = u†jZuj + u†j(Q + tZ)u̇j − qju†ju̇j = u†jZuj . (35)

Summing over j gives
∑
j q̇j log qj =

∑
j u†jZuj log qj =

tr[Z log Q]; then, by substituting in (34), we get:

∇ZA(Y,Q) = tr[Z(Y − log Q)]. (36)

With this expression at hand, it is easy to see that A(Y, ·)
becomes infinitely steep at the boundary bd(D) of D, i.e.
|∇ZA(Y,Qn)| → ∞ whenever Qn → bd(D). Since h is
strictly convex, it follows that A will be of Legendre type
[1, 23], so (LF+) will admit a unique solution QY at the
interior D◦ of D – see e.g. Chap. 26 in [23]. The KKT
conditions for (LF+) thus yield ∇ZA(Y,QY) = 0 for all
tangent directions Z to D◦ at QY, i.e. tr[Z(Y−log QY)] = 0
for all Hermitian Z such that tr(Z) = 0. From this last
condition, we immediately deduce Y − log QY ∝ I, and
with tr(QY) = 1, we obtain QY = exp(Y)/ tr[exp(Y)]; the
expression for the convex conjugate h∗(Y) of h then follows
by substituting QY in (16).

Proof of Theorem 3.2. Let hk(Qk) = tr(Qk log Qk),
Qk ∈ Dk, so h∗k(Yk) = log tr[exp(Yk)] by Proposition 3.1.
Letting Y =

⊕
k Yk = diag(Y1, . . . ,YK) and noting that

h∗+(Y) =
∑
k h
∗
k(Yk), we obtain:

dh∗+
dt

=
∑

k
tr[exp(Yk)]−1 d

dt
tr[exp(Yk)]

=
∑

k
tr[exp(Yk)]−1 tr[Ẏk exp(Yk)] = tr[VQ], (37)

where, in the last step, we used the fact that Ẏk = Vk on
account of (XL). A simple integration then gives:∫ t

0

tr[Q(s)V(s)] ds =
∑

k

[
h∗k(Yk(t))− h∗k(Yk(0))

]
≥ tr[Y(t)Q0]− h+(Q0)− h∗+(Y0), (38)

where the last inequality follows from the fact that h∗k(Yk) is
the maximum value of tr[YkQk]− hk(Qk) over Dk (Propo-

sition 3.1). Recalling that Y(t) =
∫ t

0
V(s) ds from the defi-

nition of the dynamics (XL) and rearranging then yields:∫ t

0

tr[Q0V(s)]− tr[Q(s)V(s)] ds ≤ h∗(Y0) + h(Q0). (39)

However, with Ψ(·; t) (strictly) concave over X+ and V =
∇Ψ, we will also have tr[(Q0−Q)V] = tr[(Q0−Q)∇Ψ(Q)] ≥
Ψ(Q0; s)−Ψ(Q; s) for all Q ∈ X+ by monotonicity (we are
suppressing the fixed power allocation argument p ∈ X0 for
simplicity). The bound (19) then follows directly from (39),
and the no-regret property of (XL) is obtained by dividing
(19) by t and taking the lim sup as t→∞.

We now move on to the power allocation component (RM0)
of the online rate maximization problem (RM). We begin
by establishing the equivalence between (24) and (aRD):



Proof of Proposition 3.3. Let p∗k ≡ p∗k(y), k ∈ K, de-
note the components of the solution p∗(y) of the Legen-
dre–Fenchel problem (LF0). By differentiating the power
update step of (24), we get

ṗk =
∑

`

∂p∗k
∂y`

ẏ` =
∑

`

∂p∗k
∂y`

v`, (40)

so, to establish the equivalence between (24) and (aRD), it
suffices to show that

∂p∗k
∂y`

= ρk(δk` − ρ`/ρ), (41)

where ρk = pk(Pk − pk)/Pk, ρ =
∑
k ρk.

To that end, differentiating (26) w.r.t. y` readily yields:

δk` −
Pk

pk(Pk − pk)

∂p∗k
∂y`

=
∂λ

∂y`
, (42)

with λ being the Lagrange multiplier for the total power
constraint

∑
k pk = P . Solving for ∂p∗k/∂y` then gives

∂p∗k
∂y`

= ρk

(
δk` −

∂λ

∂y`

)
, (43)

so it suffices to show that ∂λ/∂y` = ρ`/ρ. However, by
differentiating (28) and using (27), we get:

0 =
∑K

k=1

Pk exp(λ− yk)

(1 + exp(λ− yk))2

(
δk` −

∂λ

∂y`

)
=
∑K

k=1
pk(Pk − pk)/Pk

(
δk` −

∂λ

∂y`

)
= ρ` − ρ

∂λ

∂y`
, (44)

and our claim follows.

Proof of Theorem 3.4. Shadowing the proof of Theo-
rem 3.2, let

h∗0(y) = max
p∈X0

{p · y − h0(p)} = y · p∗(y)− h0(p∗(y)) (45)

be the convex conjugate of h0(p). We will then have:

∂h∗0
∂yk

= p∗k +
∑K

`=1
y`
∂p∗`
∂yk
−
∑K

`=1

∂h0

∂p`

∂p∗`
∂yk

= p∗k + λ
∑K

`=1

∂p∗`
∂yk

= p∗k, (46)

where we have used the KKT condition (26) in the second

equality and the fact that
∑K
`=1 p

∗
` = P in the last one. The

dynamics (24) then yield

dh∗0
dt

=
∑

k

∂h∗0
∂yk

ẏk =
∑

k
pkvk, (47)

so, after integrating, we obtain∫ t

0

∑
k
pk(s)vk(s) ds = h∗0(y(t))− h∗0(y0)

≥ p0 · y(t)− h0(p0)− h∗0(y0), (48)

where y0 is the initial condition of the dynamics (24) and we
have used the fact that h∗0(y) ≥ p · y − h(p) for all p ∈ X0.

Thus, noting that y(t) =
∫ t

0
v(s) ds where v = ∇pΨ is the

gradient (25) of Ψ w.r.t. p, we obtain:∫ t

0

[
p0 − p(s)

]
· v(s) ds ≤ h∗0(y0) + h0(p0). (49)

Our claim then follows by recalling that Ψ(· ; t) is (strictly)
concave, so Ψ(p0; s)−Ψ(p; s) ≤ (p0 − p) · v for all p ∈ X0

and for all s ≥ 0 (simply take C = h∗0(y0) + h0(p0)).

Proof of Theorem 3.5. Let H(Q,p) = h+(Q)+h0(p)
=
∑
k

[
tr(Qk log Qk) + θ(pk) + θ(Pk − pk)

]
denote the ag-

gregate entropy over the state space X = X+ ×X0 of (RM),
and consider the associated Legendre–Fenchel problem:

maximize tr[YQ] + y · p−H(Q,p),

subject to Q ∈ X+,p ∈ X0.
(LF)

Clearly, (LF) may be decomposed as a sum of (LF0) and K
copies of the positive-definite problem (LF+) (one for each
component Dk in X+ – i.e. one copy per subcarrier k ∈ K),
so the convex conjugate of H will be:

H∗(Y,y) = h∗+(Y) + h∗0(y), (50)

with h∗+ and h∗0 given by (20b) and (45) respectively. Ac-
cordingly, following the same steps as in the proof of Theo-
rems 3.2 and 3.4, we obtain:

dH∗

dt
= tr[QV] + p · v, (51)

and hence, combining (39) and (49):∫ t

0

tr[(Q0 −Q(s))V(s)] ds+

∫ t

0

[
p0 − p(s)

]
· v(s) ds

≤ H∗(Y0,y0) +H(Q0,p0), (52)

where Q0 ∈ X+ and p0 ∈ X0 are the covariance and power
allocation components of P0 ∈ X respectively, and (Y0,y0)
are the initial conditions of (30). Thus, with V and v being
the gradient of Ψ(Q,p; t) along Q and p respectively, and
with Ψ(·; t) concave, our claim follows as in the last part of
the proof of Theorems 3.2 and 3.4.
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