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Abstract. We present a new family of min-max optimization algorithms that auto-
matically exploits the geometry of the gradient data observed at earlier iterations to
perform more informative extra-gradient steps in later ones. Thanks to this adaptation
mechanism, the proposed methods automatically detect whether the problem is smooth
or not, without requiring any prior tuning by the optimizer. As a result, the algorithm
simultaneously achieves order-optimal convergence rates, i.e., it converges to an ε-optimal
solution within O(1/ε) iterations in smooth problems, and within O(1/ε2) iterations
in non-smooth ones. Importantly, these guarantees do not require any of the standard
boundedness or Lipschitz continuity conditions that are typically assumed in the literature;
in particular, they apply even to problems with singularities (such as resource allocation
problems and the like). This adaptation is achieved through the use of a geometric
apparatus based on Finsler metrics and a suitably chosen mirror-prox template that
allows us to derive sharp convergence rates for the methods at hand.

1. Introduction

The surge of recent breakthroughs in generative adversarial networks (GANs) [21], robust
reinforcement learning [45], and other adversarial learning models [30] has sparked renewed
interest in the theory of min-max optimization problems and games. In this broad setting, it
has become empirically clear that, ceteris paribus, the simultaneous training of two (or more)
antagonistic models faces drastically new challenges relative to the training of a single one.
Perhaps the most prominent of these challenges is the appearance of cycles and recurrent (or
even chaotic) behavior in min-max games. This has been studied extensively in the context
of learning in bilinear games, in both continuous [17, 34, 44] and discrete time [13, 19, 20, 35],
and the methods proposed to overcome recurrence typically focus on mitigating the rotational
component of min-max games.

The method with the richest history in this context is the extra-gradient (EG) algorithm
of Korpelevich [26] and its variants. The EG algorithm exploits the Lipschitz smoothness of
the problem and, if coupled with a Polyak–Ruppert averaging scheme, it achieves an O(1/T )
rate of convergence in smooth, convex-concave min-max problems [38]. This rate is known
to be tight [37, 43] but, in order to achieve it, the original method requires the problem’s
Lipschitz constant to be known in advance. If the problem is not Lipschitz smooth (or the
algorithm is run with a vanishing step-size schedule), the method’s rate of convergence drops
to O(1/

√
T ).
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Our contributions. Our aim in this paper is to provide an algorithm that automatically
adapts to smooth / non-smooth min-max problems and games, and achieves order-optimal
rates in both classes without requiring any prior tuning by the optimizer. In this regard, we
propose a flexible algorithmic scheme, which we call AdaProx, and which exploits gradient
data observed at earlier iterations to perform more informative extra-gradient steps in later
ones. Thanks to this mechanism, and to the best of our knowledge, AdaProx is the first
algorithm that simultaneously achieves the following:

(1) An O
(
1/
√
T
)
convergence rate in non-smooth problems and O(1/T ) in smooth ones.

(2) Applicability to min-max problems and games where the standard boundedness /
Lipschitz continuity conditions required in the literature do not hold.

(3) Convergence without prior knowledge of the problem’s parameters (e.g., whether the
problem’s defining vector field is smooth or not, its smoothness modulus if it is, etc.).

Our proposed method achieves the above by fusing the following ingredients: a) a family
of local norms – a Finsler metric – capturing any singularities in the problem at hand; b) a
suitable mirror-prox template; and c) an adaptive step-size policy in the spirit of Rakhlin &
Sridharan [48]. We also show that, under a suitable coherence assumption, the sequence of
iterates generated by the algorithm converges, thus providing an appealing alternative to
iterate averaging in cases where the method’s “last iterate” is more appropriate (for instance,
if using AdaProx to solve non-monotone problems).

Related work. There have been several works improving on the guarantees of the original
extra-gradient/mirror-prox template. We review the most relevant of these works below;
for convenience, we also tabulate these contributions in Table 1. Because many of these
works appear in the literature on variational inequalities [16], we also use this language in
the sequel.

In unconstrained problems with an operator that is locally Lipschitz continuous (but
not necessarily globally so), the golden ratio algorithm (GRAAL) [32] achieves convergence
without requiring prior knowledge of the problem’s Lipschitz parameter. However, GRAAL
provides no rate guarantees for non-smooth problems – and hence, a fortiori, no interpo-
lation guarantees either. By contrast, such guarantees are provided in problems with a
bounded domain by the generalized mirror-prox (GMP) algorithm of Stonyakin et al. [52]
under the umbrella of Hölder continuity. Still, nothing is known about the convergence of
GRAAL/GMP in problems with singularities (i.e., when the problem’s defining vector field
blows up at a boundary point of the problem’s domain).

Another method that simultaneously achieves an O(1/
√
T ) rate in non-smooth problems

and an O(1/T ) rate in smooth ones is the recent algorithm of Bach & Levy [2]. The BL
algorithm employs an adaptive, AdaGrad-like step-size policy which allows the method to
interpolate between the two regimes – and this, even with noisy gradient feedback. On the
negative side, the BL algorithm requires a bounded domain with a (Bregman) diameter that
is known in advance; as a result, its theoretical guarantees do not apply to problems with an
unbounded domain. In addition, the BL algorithm makes crucial use of operator boundedness
and Lipschitz continuity; extending the BL method beyond this standard framework is a
highly non-trivial endeavor which formed a big part of this paper’s motivation.

Operators with singularities were treated in a recent series of papers [1, 18, 53] by means of
a “Bregman continuity” or “Lipschitz-like” condition in the spirit of Bauschke et al. [4] and Lu
et al. [29]. Albeit different, the adaptive methods presented in [1, 18] are both order-optimal in
the smooth case, without requiring any knowledge of the problem’s smoothness modulus. On
the other hand, like GRAAL – but unlike GMP – they do not provide any rate interpolation
guarantees between smooth and non-smooth problems. Finally, the method of [53] provides
an “inexact model” framework that unifies the approach of [18] and [52], providing rate
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EG [26, 38] GRAAL [32] GMP [52] AMP [1, 18] BL [2] AdaProx [ours]
Param. Agnostic 7 3 Partial 3 Partial 3

Rate Interpolation 7 7 3 7 3 3

Unb. Domain 7 3 7 7 7 3

Singularities 7 7 7 3 7 3

Table 1: Overview of related work. For the purposes of this table, “parameter-
agnostic” means that the method does not require prior knowledge of the parame-
ters of the problem it was designed to solve (Lipschitz modulus, domain diameter,
etc.); “rate interpolation” means that the algorithm’s convergence rate is O(1/T )
or O

(
1/
√
T
)
in smooth / non-smooth problems respectively; “unbounded domain”

is self-explanatory; and, finally, “singularities” means that the problem’s defining
vector field may blow up at a boundary point of the problem’s domain.

interpolation in the Hölder case and convergence in problems with singularities;1 however,
in problems with an unbounded domain, it still requires an initial guess of a compact set
containing a solution.

2. Problem Setup and Blanket Assumptions

We begin in this section by reviewing some basics for min-max problems and games.

2.1. Min-max / Saddle-point problems. A min-max game is a saddle-point problem of the
form

min
θ∈Θ

max
φ∈Φ
L(θ, φ) (SP)

where Θ, Φ are convex subsets of some ambient real space and L : Θ×Φ→ R is the problem’s
loss function. In the game-theoretic interpretation of (SP), the player controlling θ seeks to
minimize L(θ, φ) for any value of the maximization variable φ, while the player controlling φ
seeks to maximize L(θ, φ) for any value of the minimization variable θ. Accordingly, solving
(SP) consists of finding a Nash equilibrium (NE), i.e., an action profile (θ∗, φ∗) ∈ Θ×Φ such
that

L(θ∗, φ) ≤ L(θ∗, φ∗) ≤ L(θ, φ∗) for all θ ∈ Θ, φ ∈ Φ. (1)
By the minimax theorem of von Neumann [54], Nash equilibria are guaranteed to exist when
Θ,Φ are compact and L is convex-concave (i.e., convex in θ and concave in φ). Much of our
paper is motivated by the question of calculating a Nash equilibrium (θ∗, φ∗) of (SP) in the
context of von Neumann’s theorem; we expand on this below.

2.2. Games. Going beyond the min-max setting, a continuous game in normal form is
defined as follows: First, consider a finite set of players N = {1, . . . , N}, each with their own
action space Ki ∈ Rdi (assumed convex but possibly not closed). During play, each player
selects an action xi from Ki with the aim of minimizing a loss determined by the ensemble
x := (xi;x−i) := (x1, . . . , xN ) of all players’ actions. In more detail, writing K :=

∏
iKi

for the game’s total action space, we assume that the loss incurred by the i-th player is
`i(xi;x−i), where `i : K → R is the player’s loss function.

In this context, a Nash equilibrium is any action profile x∗ ∈ K that is unilaterally stable,
i.e.,

`i(x
∗
i ;x
∗
−i) ≤ `i(xi;x∗−i) for all xi ∈ Ki and all i ∈ N . (NE)

If each Ki is compact and `i is convex in xi, existence of Nash equilibria is guaranteed by
the theorem of Debreu [14]. Given that a min-max problem can be seen as a two-player

1Personal communication with P. Dvurechensky suggests that the method of [53] can be further adapted
to problems with singularities under the metric boundedness framework presented in this paper.
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zero-sum game with `1 = L, `2 = −L, von Neumann’s theorem may in turn be seen as a
special case of Debreu’s; in the sequel, we describe a first-order characterization of Nash
equilibria that encapsulates both.

In most cases of interest, the players’ loss functions are individually subdifferentiable on
a subset X of K with riK ⊆ X ⊆ K [22, 49]. This means that there exists a (possibly
discontinuous) vector field Vi : X → Rdi such that

`i(x
′
i;x−i) ≥ `i(xi;x−i) + 〈Vi(x), x′i − xi〉 (2)

for all x ∈ X , x′ ∈ K and all i ∈ N [22]. In the simplest case, if `i is differentiable at x,
then Vi(x) can be interpreted as the gradient of `i with respect to xi. The raison d’être of
the more general definition (2) is that it allows us to treat non-smooth loss functions that
are common in machine learning (such as L1-regularized losses). We make this distinction
precise below:

(1) If there is no continuous vector field Vi(x) satisfying (2), the game is called non-
smooth.

(2) If there is a continuous vector field Vi(x) satisfying (2), the game is called smooth.

Remark. We stress here that the adjective “smooth” refers to the game itself: for instance, if
`(x) = |x| for x ∈ R, the game is not smooth and any V satisfying (2) is discontinuous at 0.
In this regard, the above boils down to whether the (individual) subdifferential of each `i
admits a continuous selection.

2.3. Resource allocation and equilibrium problems. The notion of a Nash equilibrium cap-
tures the unilateral minimization of the players’ individual loss functions. In many pratical
cases of interest, a notion of equilibrium is still relevant, even though it is not necessarily
attached to the minimization of individual loss functions. Such problems are known as
“equilibrium problems” [16, 27]; to avoid unnecessary generalities, we focus here on a relevant
problem that arises in distributed computing architectures (such as GPU clusters and the
like).

To state the problem, consider a distributed computing grid consisting of N parallel
processors that serve demands arriving at a rate of ρ per unit of time (measured e.g., in
flop/s). If the maximum processing rate of the i-th node is µi (without overclocking), and jobs
are buffered and served on a first-come, first-served (FCFS) basis, the mean time required to
process a unit demand at the i-th node is given by the Kleinrock M/M/1 response function
τi(xi) = 1/(µi−xi), where xi denotes the node’s load [6]. Accordingly, the set of feasible loads
that can be processed by the grid is X := {(x1, . . . , xN ) : 0 ≤ xi < µi, x1 + · · ·+ xN = ρ}.

In this context, a load profile x∗ ∈ X is said to be balanced if no infinitesimal process
can be better served by buffering it at a different node [42]; formally, this amounts to the
so-called Wardrop equilibrium condition

τi(x
∗
i ) ≤ τj(x∗j ) for all i, j ∈ N with x∗i > 0. (WE)

We note here a crucial difference between (WE) and (NE): if we view the grid’s computing
nodes as “players”, the constraint

∑
i xi = ρ means that there is no allowable unilateral

deviation (x∗i ;x
∗
−i) 7→ (xi;x

∗
−i) with xi 6= x∗i . As a result, (NE) is meaningless as a

requirement for this equilibrium problem.
As we discuss below, this resource allocation problem will require the full capacity of our

framework.

2.4. Variational inequalities. Importantly, all of the above problems can be restated as a
variational inequality of the form

Find x∗ ∈ X such that 〈V (x∗), x− x∗〉 ≥ 0 for all x ∈ X . (VI)
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In the above, X is a convex subset of Rd (not necessarily closed) that represents the problem’s
domain. The problem’s defining vector field V : X → Rd is then given as follows: In min-max
problems and games, V is any field satisfying (2); otherwise, in equilibrium problems of the
form (WE), the components of V are Vi = τi (we leave the details of this verification to the
reader).

This equivalent formulation is quite common in the literature on min-max / equilibrium
problems [15, 16, 27, 33], and it is often referred to as the “vector field formulation” [3, 9, 24].
Its usefulness lies in that it allows us to abstract away from the underlying game-theoretic
complications (multiple indices, individual subdifferentials, etc.) and provides a unifying
framework for a wide range of problems in machine learning, signal processing, operations
research, and many other fields [16, 50]. For this reason, our analysis will focus almost
exclusively on solving (VI), and we will treat V and X ⊆ Rd, d =

∑
i di, as the problem’s

primitive data.

2.5. Merit functions and monotonicity. A widely used assumption in the literature on
equilibrium problems and variational inequalities is the monotonicity condition

〈V (x)− V (x′), x− x′〉 ≥ 0 for all x, x′ ∈ X . (MC)

In single-player games, monotonicity is equivalent to convexity of the optimizer’s loss function;
in min-max games, it is equivalent to L being convex-concave [27]; etc. In the absence of
monotonicity, approximating an equilibrium is PPAD-hard [12], so we will state most of our
results under (MC).

Now, to assess the quality of a candidate solution x̂ ∈ X , we will employ the restricted
merit function

GapC(x̂) = supx∈C〈V (x), x̂− x〉, (3)

where the “test domain” C is a nonempty convex subset of X [16, 25, 40]. The motivation
for this is provided by the following proposition:

Proposition 1. Let C be a nonempty convex subset of X . Then: a) GapC(x̂) ≥ 0 whenever
x̂ ∈ C; and b) if GapC(x̂) = 0 and C contains a neighborhood of x̂, then x̂ is a solution of
(VI).

Proposition 1 generalizes an earlier characterization by Nesterov [40] and justifies the
use of GapC(x) as a merit function for (VI); to streamline our presentation, we defer the
proof to the paper’s supplement. Moreover, to avoid trivialities, we will also assume that
the solution set X ∗ of (VI) is nonempty and we will reserve the notation x∗ for solutions of
(VI). Together with monotonicity, this will be our only blanket assumption.

3. The Extra-Gradient Algorithm and its Limits

Perhaps the most widely used solution method for games and variational inequalities (VIs)
is the extra-gradient (EG) algorithm of Korpelevich [26] and its variants [31, 47, 48]. This
algorithm has a rich history in optimization, and it has recently attracted considerable
interest in the fields of machine learning and AI, see e.g., [9, 13, 19, 23, 24, 35, 36] and
references therein.

In its simplest form, for problems with closed domains, the algorithm proceeds recursively
as

Xt+1/2 = Π(Xt − γtVt), Xt+1 = Π(Xt − γtVt+1/2), (EG)

where Π(x) = arg minx′∈X ‖x′ − x‖ is the Euclidean projection on X , Vt := V (Xt) for
t = 1, 3/2, . . . , and γt > 0, is the method’s step-size. Then, running (EG) for T iterations,
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the algorithm returns the “ergodic average”

X̄T =

∑T
t=1 γtXt+1/2∑T

t=1 γt
. (4)

In this setting, the main guarantees for (EG) date back to [38] and can be summarized as
follows:

(1) For non-smooth problems (discontinuous V ): Assume V is bounded, i.e., there exists
some M > 0 such that

‖V (x)‖ ≤M for all x ∈ X . (BD)

Then, if (EG) is run with a step-size of the form γt ∝ 1/
√
t, we have

GapC(X̄T ) = O
(
1/
√
T
)
. (5)

(2) For smooth problems (continuous V ): Assume V is L-Lipschitz continuous, i.e.,

‖V (x)− V (x′)‖ ≤ L‖x− x′‖ for all x, x′ ∈ X . (LC)

Then, if (EG) is run with a constant step-size γ < 1/L, we have

GapC(X̄T ) = O(1/T ). (6)

Remark. In the above, ‖·‖ is tacitly assumed to be the standard Euclidean norm. Non-
Euclidean considerations will play a crucial role in the sequel, but they are not necessary for
the moment.

Importantly, the distinction between smooth and non-smooth problems cannot be lifted:
the bounds (5) and (6) are tight in their respective problem classes and they cannot be
improved without further assumptions [37, 43]. Moreover, we should also note the following:

(1) The algorithm changes drastically from the non-smooth to the smooth case: non-
smoothness requires γt ∝ 1/

√
t, but such a step-size cannot achieve a fast O(1/T )

rate.
(2) If (EG) is run with a constant step-size, L must be known in advance; otherwise,

running (EG) with an ill-adapted step-size (γ > 1/L) could lead to non-convergence.

We illustrate this failure of (EG) in Fig. 1. As we discussed in the introduction, our aim
in the sequel will be to provide a single, adaptive algorithm that simultaneously achieves
the following: a) an order-optimal O

(
1/
√
T
)
convergence rate in non-smooth problems and

O(1/T ) in smooth ones; b) convergence in problems where the boundedness / Lipschitz
continuity conditions (BD) / (LC) no longer hold; and c) achieves all this without prior
knowledge of the problem’s parameters.

4. Rate Interpolation: the Euclidean Case

As a prelude to our main result, we provide in this section an adaptive version of (EG)
that achieves the “best of both worlds” in the Euclidean setting of Section 3, i.e., an O

(
1/
√
T
)

convergence rate in problems satisfying (BD), and an O(1/T ) rate in problems satisfying
(LC). Our starting point is the observation that, if the sequence Xt produced by (EG)
converges to a solution of (VI), the difference

δt := ‖Vt+1/2 − Vt‖ = ‖V (Xt+1/2)− V (Xt)‖ (7)

must itself become vanishingly small if V is (Lipschitz) continuous. On the contrary, if V is
discontinuous, this difference may remain bounded away from zero (consider for example
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Figure 1: The behavior of (EG) in the bilinear min-max problem L(θ, φ) = θφ
with θ, φ ∈ [−1, 1]. Given the clipping at [−1, 1], this problem is smooth with
L = 1; instead, in the unconstrained case, both (BD) and (LC) fail. Still, even
in the constrained case, running (EG) with a step-size only slightly above the
1/L bound (L = 1, γ = 1.04) results in a dramatic convergence failure (left
plot). Tuning the step-size of (EG) resolves this problem (center), but a constant
step-size makes the algorithm unnecessarily conservative towards the end. The
proposed AdaProx algorithm automatically exploits previous gradient data to
perform more informative extra-gradient steps in later ones, thus achieving faster
convergence without tuning.

the L1 loss `(x) = |x| near 0). Based on this observation, we consider the adaptive step-size
policy:

γt+1 = 1
/√

1 +
∑t
s=1 δ

2
s . (8)

The intuition behind (8) is as follows: If V is not smooth and lim inft→∞ δt > 0, then γt
will vanish at a Θ

(
1/
√
t
)
rate, which is the optimal step-size schedule for problems satisfying

(BD) but not (LC). Instead, if V satisfies (LC) and Xt converges to a solution x∗ of (VI), it
is plausible to expect that the infinite series

∑
t δ

2
t is summable, in which case the step-size

γt will not vanish as t→∞. Furthermore, since δt is defined in terms of successive gradient
differences, it automatically exploits the variation of the gradient data observed up to time t,
so it can be expected to adjust to the “local” Lipschitz constant of V around a solution x∗ of
(VI).

Our step-size policy and motivation are similar in spirit to the “predictable sequence”
approach of [48]. However, making our reasoning precise (especially the summability of∑
t δ

2
t in the smooth case) involves considerable conceptual and technical difficulties that we

present in detail in the supplement. For now, we only state (without proof) our main result
for problems satisfying (BD) or (LC).

Theorem 1. Suppose V satisfies (MC), let C be a compact neighborhood of a solution of
(VI), and let H = supx∈C‖X1 − x‖2. If (EG) is run with the adaptive step-size policy (8),
we have:

a) If V satisfies (BD): GapC(X̄T ) = O
(
H + 4M3 + log(1 + 4M2T )√

T

)
. (9a)

b) If V satisfies (LC): GapC(X̄T ) = O
(
H
/
T
)
. (9b)

Theorem 1 (which is proved in the sequel as a special case of Theorem 2) should be
compared to the corresponding results of Bach & Levy [2]. In the non-smooth case, [2]
provides a bound of the form Õ(αMD/

√
T ) with D2 = 1

2 maxx∈X ‖x‖2 − 1
2 minx∈X ‖x‖2

(recall that [2] only treats problems with a bounded domain), and α = max{M/M0,M0/M}
whereM0 is an initial estimate ofM . The worst-case value of α is O(M) when good estimates
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are not readily available; in this regard, (9a) essentially replaces the O(D) constant of Bach
& Levy [2] by O(M). Since D = ∞ in problems with an unbounded domain, Theorem 1
provides a significant improvement in this regard.

In terms of L, the smooth guarantee of Bach & Levy [2] is Õ(α2LD2/T ), so the multi-
plicative constant in the bound also becomes infinite in problems with an unbounded domain.
In our case, D2 is replaced by H (which is also finite) times an addiitional multiplicative
constant which is increasing in M and L (but is otherwise asymptotic, so it is not included
in the statement of Theorem 1). This removes an additional limitation in the results of Bach
& Levy [2]; going beyond this improvement, in the next sections we drop even the Euclidean
regularity requirements (BD)/(LC), and we provide a corresponding rate interpolation result
that does not require either condition.

5. Finsler Regularity

To motivate our analysis outside the setting of (BD)/(LC), consider the vector field

Vi(x) = (µi − xi)−1 + λ1{xi > 0}, i = 1, . . . , N, (10)

which corresponds to the distributed computing problem of Section 2.3 plus a regularization
term designed to limit the activation of computing nodes at low loads. Clearly, we have
‖V (x)‖ → ∞ whenever xi → 0+, so (BD) and (LC) both fail (the latter even if λ = 0).
On the other hand, if we consider the “local” norm ‖v‖x,∗ =

∑d
i=1(µi − xi) |vi|, we have

‖V (x)‖x,∗ ≤ d+ λ
∑d
i=1 µi, so V is bounded relative to ‖·‖x,∗. This observation motivates

the use of a local – as opposed to global – norm, which we define formally as follows:

Definition 1. A Finsler metric on a convex subset X of Rd is a continuous function F : X ×
Rd → R+ which satisfies the following properties for all x ∈ X and all z, z′ ∈ Rd:

(1) Subadditivity: F (x; z + z′) ≤ F (x; z) + F (x; z′).
(2) Absolute homogeneity: F (x;λz) = |λ|F (x; z) for all λ ∈ R.
(3) Positive-definiteness: F (x; z) ≥ 0 with equality if and only if z = 0.

Given a Finsler metric on X , the induced primal / dual local norms on X are respectively
defined as

‖z‖x = F (x; z) and ‖v‖x,∗ = max{〈v, z〉 : F (x; z) = 1} (11)

for all x ∈ X and all z, v ∈ Rd. We will also say that a Finsler metric on X is regular
when ‖v‖x′,∗/‖v‖x,∗ = 1 + O(‖x′ − x‖x) for all x, x′ ∈ X , v ∈ Rd. Finally, for simplicity,
we will also assume in the sequel that ‖·‖x ≥ ν‖·‖ for some ν > 0 and all x ∈ X (this last
assumption is for convenience only, as the norm could be redefined to ‖·‖x ← ‖·‖x + ν‖·‖
without affecting our theoretical analysis).

When X is equipped with a regular Finsler metric as above, we will say that it is a Finsler
space.

Example 5.1. Let F (x; z) = ‖z‖ where ‖·‖ denotes the reference norm of X = Rd. Then the
properties of Definition 1 are satisfied trivially. J

Example 5.2. For a more interesting example of a Finsler structure, consider the set X =

(0, 1]d and the metric ‖z‖x = maxi|zi|/xi, z ∈ Rd, x ∈ X . In this case ‖v‖x,∗ =
∑d
i=1 xi|vi|

for all v ∈ Rd, and the only property of Definition 1 that remains to be proved is that of
regularity. To that end, we have

‖v‖x′,∗ − ‖v‖x,∗ ≤
∑d
i=1|vi| · |x′i − xi| =

∑d
i=1 xi|vi| · |x′i − xi|/xi ≤ ‖v‖x,∗ · ‖x′ − x‖x. (12)

Hence, by dividing by ‖v‖x,∗, we readily get ‖v‖x′,∗/‖v‖x,∗ ≤ 1+‖x−x′‖x i.e., ‖·‖x is regular
in the sense of Definition 1. As we discuss in the sequel, this metric plays an important role
for distributed computing problems of the form presented in Section 2.3. J
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With all this in hand, we will say that a vector field V : X → Rd is

(1) Metrically bounded if there exists some M > 0 such that

‖V (x)‖x,∗ ≤M for all x ∈ X . (MB)

(2) Metrically smooth if there exists some L > 0 such that

‖V (x′)− V (x)‖x,∗ ≤ L‖x′ − x‖x′ for all x′, x ∈ X . (MS)

The notion of metric boundedness/smoothness extends that of ordinary boundedness/Lipschitz
continuity to a Finsler context; note also that, even though neither side of (MS) is unilaterally
symmetric under the change x↔ x′, the condition (MS) as a whole is. Our next example
shows that this extension is proper, i.e., (BD)/(LC) may both fail while (MB)/(MS) both
hold:

Example 5.3. Consider the change of variables xi  1 − xi/µi in the resource allocation
problem of Section 2.3. Then, writing Vi(x) = −(1/xi)− λ1{xi < 1} for the transformed
field (10) under this change of variables, we readily get Vi(x)→ −∞ as xi → 0+; as a result,
both (BD) and (LC) fail to hold for any global norm on Rd. Instead, under the local norm
‖z‖x = maxi|z|i/xi, we have:

(1) For all λ ≥ 0, V satisfies (MB) with M = d(1 + λ): ‖V (x)‖x,∗ ≤
∑d
i=1 xi · (1/xi + λ) =

d(1 + λ).
(2) For λ = 0, V satisfies (MS) with L = d: indeed, for all x, x′ ∈ X , we have

‖V (x′)−V (x)‖x,∗ =
∑d

i=1
xi

∣∣∣∣ 1

x′i
− 1

xi

∣∣∣∣ =
∑d

i=1

|x′i − xi|
x′i

≤ dmaxi
|x′i − xi|

x′i
= d‖x′−x‖x′ .

(13)

6. The AdaProx Algorithm and its Guarantees

The method. We are now in a position to define a family of algorithms that is capable of
interpolating between the optimal smooth/non-smooth convergence rates for solving (VI)
without requiring either (BD) or (LC). To do so, the key steps in our approach will be to
(i) equip X with a suitable Finsler structure (as in Section 5); and (ii) replace the Euclidean
projection in (EG) with a suitable “Bregman proximal” step that is compatible with the
chosen Finsler structure on X .

We begin with the latter (assuming that X is equipped with an arbitrary Finsler structure):

Definition 2. We say that h : Rd → R ∪ {∞} is a Bregman-Finsler function on X if:
(1) h is convex, lower semi-continuous (l.s.c.), cl(domh) = cl(X ), and dom ∂h = X .
(2) The subdifferential of h admits a continuous selection ∇h(x) ∈ ∂h(x) for all x ∈ X .
(3) h is strongly convex, i.e., there exists some K > 0 such that

h(x′) ≥ h(x) + 〈∇h(x), x′ − x〉+ K
2 ‖x

′ − x‖2x (14)

for all x ∈ X and all x′ ∈ domh.
The Bregman divergence induced by h is defined for all x ∈ X , x′ ∈ domh as

D(x′, x) = h(x′)− h(x)− 〈∇h(x), x′ − x〉 (15)

and the associated prox-mapping is defined for all x ∈ X and y ∈ Rd as

Px(y) = arg minx′∈X {〈y, x− x′〉+D(x′, x)}. (16)
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Definition 2 is fairly technical, so some clarifications are in order. First, to connect this
definition with the Euclidean setup of Section 4, the prox-mapping (16) should be seen as the
Bregman equivalent of a Euclidean projection step, i.e., Π(x+ y)! Px(y). Second, a key
difference between Definition 2 and other definitions of Bregman functions in the literature
[5, 7, 8, 10, 25, 39, 40, 51] is that h is assumed strongly convex relative to a local norm –
not a global norm. This “locality” will play a crucial role in allowing the proposed methods
to adapt to the geometry of the problem. For concreteness, we provide below an example
that expands further on Examples 5.2 and 5.3:

Example 6.1. Consider the local norm ‖z‖x = maxi|zi|/xi on X = (0, 1]d and let h(x) =∑d
i=1 1/xi on (0, 1]d. We then have

D(x′, x) =

d∑
i=1

[
1

x′i
− 1

xi
+
x′i − xi
x2
i

]
=

d∑
i=1

(x′i − xi)2

x2
ix
′
i

≥
d∑
i=1

(1− x′i/xi)2 ≥ ‖x′ − x‖2x (17)

i.e., h is 1-strongly convex relative to ‖·‖x on X . J

With all this is in place, the extra-gradient method can be adapted to our current setting
as follows:

Xt+1/2 = PXt
(−γtVt) δt = ‖Vt+1/2 − Vt‖Xt+1/2,∗

Xt+1 = PXt
(−γtVt+1/2) γt+1 = 1

/√
1 +

∑t
s=1 δ

2
s

(AdaProx)

with Vt = V (Xt), t = 1, 3/2, . . . , as in Section 3. In words, this method builds on the
template of (EG) by (i) replacing the Euclidean projection with a mirror step; (ii) replacing
the global norm in (8) with a dual Finsler norm evaluated at the algorithm’s leading state
Xt+1/2. The first of these two steps is the main ingredient of the mirror-prox (MP) algorithm
of Nemirovski [38]; the name “AdaProx” has beeen chosen precisely because the proposed
method can be seen as a mirror-prox method that adapts between the smooth and non-smooth
regimes.

Convergence speed. With all this in hand, our main result for AdaProx can be stated as
follows:

Theorem 2. Suppose V satisfies (MC), let C be a compact neighborhood of a solution of
(VI), and set H = supx∈C D(x,X1) Then, the AdaProx algorithm enjoys the guarantees:

a) If V satisfies (MB): GapC(X̄T ) = O
(
H +M3(1 + 1/K)2 + log(1 + 4M2(1 + 2/K)2T )√

T

)
.

(18a)

b) If V satisfies (MS): GapC(X̄T ) = O
(
H
/
T
)
. (18b)

For the constants that appear in Eq. (18), we refer the reader to the discussion following
Theorem 1 (of course, since Theorem 1 is a special case of Theorem 2, it is not surprising
that the same remarks apply). As for the proof of Theorem 2, it is quite intricate, so we defer
it to the paper’s supplement. We only mention here that its key element is the determination
of the asymptotic behavior of the adaptive step-size policy γt in the non-smooth and smooth
regimes, i.e., under (MB) and (MS) respectively. At a very high level, (MB) guarantees that
the difference sequence δt is bounded, which implies in turn that

∑T
t=1 γt = Ω(

√
T ) and

eventually yields the bound (18a) for the algorithm’s ergodic average X̄T . On the other
hand, if (MS) kicks in, we have the following finer result:

Lemma 1. Assume V satisfies (MS). Then, a) γt decreases monotonically to a strictly
positive limit γ∞ = limt→∞ γt > 0; and b) the sequence δt is square summable: in particular,∑∞
t=1 δ

2
t = 1/γ2

∞ − 1.
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Figure 2: Numerical comparison between the extra-gradient (EG), Bach–Levy (BL)
and AdaProx algorithms (red circles, green squares and blue triangles respectively).
The figure on the left shows the methods’ convergence in a 100×100 bilinear game;
the one on the right shows the methods’ convergence in a non-convex/non-concave
covariance learning problem. In both cases, the parameters of the EG and BL
algorithms have been tuned with a grid search (AdaProx has no parameters to
tune). All curves have been averaged over S = 100 sample runs, and the 95%
confidence interval is indicated by the shaded area.

By means of this lemma (which we prove in the paper’s supplement), it follows that∑T
t=1 γt ≥ γ∞T = Ω(T ). Because the algorithm’s rate of convergence is controlled by this

quantity, it ultimately follows that AdaProx enjoys an O(1/T ) rate of convergence under
(MS). However, the details of the ensuing calculations are quite complicated, so we defer
them to the supplement.

Trajectory convergence. In complement to Theorem 2, we also provide a trajectory conver-
gence result that governs the actual iterates of the AdaProx algorithm:

Theorem 3. Suppose that 〈V (x), x− x∗〉 < 0 whenever x∗ is a solution of (VI) and x is not.
If, in addition, V satisfies (MB) or (MS), the iterates Xt of AdaProx converge to a solution
of (VI).

The importance of this result is that, in many practical applications (especially in non-
monotone problems), it is more common to harvest the “last iterate” of the method (Xt)
rather than its ergodic average (X̄T ); as such, Theorem 3 provides a certain justification for
this design choice.

The proof of Theorem 3 relies on non-standard arguments, so we relegate it to the
supplement. Structurally, the first step is to show that Xt visits any neighborhood of a
solution point x∗ ∈ X ∗ infinitely often (this is where the coherence assumption 〈V (x), x−x∗〉
is used). The second is to use this trapping property in conjunction with a suitable “energy
inequality” to establish convergence via the use of a quasi-Fejér technique as in [11]; this
part is detailed in a separate appendix.

7. Numerical Experiments

We conclude in this section with a numerical illustration of the convergence properties of
AdaProx in two different settings: a) bilinear min-max games; and b) a simple Wasserstein
GAN in the spirit of Daskalakis et al. [13] with the aim of learning an unknown covariance
matrix.

Bilinear min-max games. For our first set of experiments, we consider a min-max game of
the form of the form L(θ, φ) = (θ − θ∗)>A(φ − φ∗) with θ, φ ∈ R100 and A ∈ R100 × R100

(drawn i.i.d. component-wise from a standard Gaussian). To test the convergence of AdaProx
beyond the “full gradient” framework, we ran the algorithm with stochastic gradient signals of
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the form Vt = V (Xt)+Ut where Ut is drawn i.i.d. from a centered Gaussian distribution with
unit covariance matrix. We then plotted in Fig. 2 the squared gradient norm ‖V (X̄T )‖2 of
the method’s ergodic average X̄T after T iterations (so values closer to zero are better). For
benchmarking purposes, we also ran the extra-gradient (EG) and Bach–Levy (BL) algorithms
[2] with the same random seed for the simulated gradient noise. The step-size parameter
of the EG algorithm was chosen as γt = 0.025/

√
t, whereas the BL algorithm was run with

diameter and gradient bound estimation parameters D0 = .5 and M0 = 2.5 respectively
(both determined after a hyper-parameter search since the only theoretically allowable values
are D0 = M0 =∞; interestingly, very large values for D0 and M0 did not yield good results).
The experiment was repeated S = 100 times, and AdaProx gave consistently faster rates.

Covariance matrix learning. Going a step further, we also considered the covariance learning
game

L(θ, φ) = Ex∼N (0,Σ)[x
>θx]− Ez∼N (0,I)[z

>θ>φθz], θ, φ ∈ Rd × Rd. (19)
The goal here is to generate data drawn from a centered Gaussian distribution with unknown
covariance Σ; in particular, this model follows the Wasserstein GAN formulation of Daskalakis
et al. [13] with generator and discriminator respectively given by G(z) = θz and D(x) = x>φx
(no clipping). For the experiments, we took d = 100, a mini-batch of m = 128 samples per
update, and we ran the EG, BL and AdaProx algorithms as above, tracing the square norm
of V as a measure of convergence. Since the problem is non-monotone, there are several
disjoint equilibrium components so the algorithms’ behavior is considerably more erratic;
however, after this initial warm-up phase, AdaProx again gave the faster convergence rates.
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Appendix A. Properties of the restricted gap function

In this appendix, we discuss the basic properites of the restricted merit function GapC
introduced in (3). For completeness, we provide the proof of Proposition 1,which itself is an
extension of a similar result by Nesterov [40]:

Proof of Proposition 1. Let x∗ ∈ X be a solution of (VI) so 〈V (x∗), x−x∗〉 ≥ 0 for all x ∈ X .
Then, by monotonicity, we get:

〈V (x), x∗ − x〉 ≤ 〈V (x)− V (x∗), x∗ − x〉+ 〈V (x∗), x∗ − x〉
= −〈V (x∗)− V (x), x∗ − x〉 − 〈V (x∗), x− x∗〉 ≤ 0, (A.1)

so GapC(x
∗) ≤ 0. On the other hand, if x∗ ∈ C, we also get Gap(x∗) ≥ 〈V (x∗), x∗ − x∗〉 = 0,

so we conclude that GapC(x
∗) = 0.

For the converse statement, assume that GapC(x̂) = 0 for some x̂ ∈ C and suppose that C
contains a neighborhood of x̂ in X . First, we claim that the following inequality holds:

〈V (x), x− x̂〉 ≥ 0 for all x ∈ C. (A.2)

Indeed, assume to the contrary that there exists some x1 ∈ C such that

〈V (x1), x1 − x̂〉 < 0. (A.3)

This would then give
0 = GapC(x̂) ≥ 〈V (x1), x̂− x1〉 > 0, (A.4)



ADAPTIVE EXTRA-GRADIENT METHODS FOR MIN-MAX OPTIMIZATION AND GAMES 13

which is a contradiction. Now, we further claim that x̂ is a solution of (VI),i.e.,:

〈V (x̂), x− x̂〉 ≥ 0 for all x ∈ X . (A.5)

If we suppose that there exists some z1 ∈ X such that 〈V (x̂), z1 − x̂〉 < 0, then, by the
continuity of V , there exists a neighborhood U ′ of x̂ in X such that

〈V (x), z1 − x〉 < 0 for all x ∈ U ′. (A.6)

Hence, assuming without loss of generality that U ′ ⊂ U ⊂ C (the latter assumption due to
the assumption that C contains a neighborhood of x̂), and taking λ > 0 sufficiently small so
that x = x̂+λ(z1− x̂) ∈ U ′, we get that 〈V (x), x− x̂〉 = λ〈V (x), z1− x̂〉 < 0, in contradiction
to (A.2). We conclude that x̂ is a solution of (VI), as claimed. �

Appendix B. Properties of Bregman functions and proximal mappings

In this appendix, we present some basic facts about Bregman functions and proximal
mappings. Similar results exist in the literature in different contexts (see e.g., [25, 40, 41]
and references therein), but given that many of our results rely on the use of local – as
opposed to global – norms, we provide here complete statements and proofs. We then have
the following basic lemma connecting the above notions:

Lemma B.1. Let h be a Bregman function on X . Then, for all p ∈ domh, x ∈ dom ∂h and
all y ∈ ∂h(x), we have

〈∇h(x), x− p〉 ≤ 〈y, x− p〉. (B.1)

Proof. By a simple continuity argument, it is sufficient to show that the inequality holds for
the relative interior riX of X . In order to show this, pick a base point p ∈ riX , and let

φ(t) = h(x+ t(p− x))− [h(x) + 〈y, t(p− x)〉] for all t ∈ [0, 1]. (B.2)

Since, h is strongly convex and y ∈ ∂h(x) due to the first equivalence, it follows that φ(t) ≥ 0
with equality if and only if t = 0. Since, ψ(t) = 〈∇h(x+ t(p− x))− y, p− x〉 is a continuous
selection of subgradients of φ and both φ and ψ are continuous over [0, 1], it follows that φ is
continuously differentiable with φ′ = ψ on [0, 1]. Hence, with φ convex and φ(t) ≥ 0 = φ(0)
for all t ∈ [0, 1], we conclude that φ′(0) = 〈∇h(x) − y, p − x〉 ≥ 0 and thus we obtain the
result. �

The basic ingredient for establishing connections in the Bregman framework is a general-
ization of the rule of cosines which is known in the literature as the “three-point identity”
[10] and will be the main tool for deriving the main estimations for our analysis. Being more
precise, we have the following lemma:

Lemma B.2. Let h be a Bregman function on X . Then, for all p ∈ X and all x, x′ ∈ X ◦, we
have:

D(p, x′) = D(p, x) +D(x, x′) + 〈∇h(x′)−∇h(x), x− p〉 (B.3)

The proof of this lemma follows as in the classic Bregman case [10] so we omit it and
proceed to derive some key bounds for the Bregman divergence before and after a mirror
step:

Proposition B.1. Let h be a local Bregman function with strong convexity modulus K > 0.
Fix some p ∈ X and let x+ = Px(v) for some x ∈ X ◦ and v ∈ Rd. We then have:

D(p, x+) ≤ D(p, x)−D(x+, x) + 〈v, x+ − p〉 (B.4)

Proof. By the three-point identity established in Lemma B.2, we get:

D(p, x) = D(p, x+) +D(x+, x) + 〈∇h(x)−∇h(x+), x+ − p〉 (B.5)
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By rearranging the terms we get:

D(p, x+) = D(p, x)−D(x+, x) + 〈∇h(x+)−∇h(x), x+ − p〉 (B.6)

Due to (B.1) and the fact that x+ = Px(v) so ∇h(x) + v ∈ ∂h(x+), we get the result. �

Thanks to the above estimations, we obtain the following inequalities relating the Bregman
divergence between two prox-steps:

Proposition B.2. Let h be a Bregman function compatible on X . Letting x+
1 = Px(v1) and

x+
2 = Px(v2), we have:

D(p, x+
2 ) ≤ D(p, x) + 〈v2, x

+
1 − p〉+ [〈v2, x

+
2 − x

+
1 〉 −D(x+

2 , x)] (B.7a)

≤ D(p, x) + 〈v2, x
+
1 − p〉+ 〈v2 − v1, x

+
2 − x

+
1 〉 −D(x+

2 , x
+
1 )−D(x+

1 , x). (B.7b)

Proof. For the first inequality, by applying Proposition B.1 for x+
2 = Px(v2), we get:

D(p, x+
2 ) ≤ D(p, x)−D(x+

2 , x) + 〈v2, x
+
2 − p〉

= D(p, x) + 〈v2, x
+
1 − p〉+ [〈v2, x

+
2 − x

+
1 〉 −D(x+

2 , x)] (B.8)

For the second inequality, we need to bound 〈v2, x
+
2 − x+

1 〉 − Dh(x+
2 , x). In particular,

applying again Proposition B.1 for p = x+
2 , we get:

D(x+
2 , x

+
1 ) ≤ D(x+

2 , x) + 〈v1, x
+
1 − x

+
2 〉 −D(x+

1 , x) (B.9)

and hence:
D(x+

2 , x) ≥ D(x+
2 , x

+
1 ) +D(x+

1 , x)− 〈v1, x
+
1 − x

+
2 〉. (B.10)

So, combining the above inequalities we get:

〈v2, x
+
2 − x

+
1 〉 −D(x+

2 , x) ≤ 〈v2, x
+
2 − x

+
1 〉 −D(x+

2 , x
+
1 )−D(x+

1 , x)− 〈v1, x
+
2 − x

+
1 〉 (B.11)

and thus we get the second inequality as well. �

Appendix C. Main bounds and energy inequality

In this appendix, we shall provide the bound of the variation of the operators, i.e.,

‖V (Xt+1/2)− V (Xt)‖2Xt,∗ (C.1)

that lies in the core of our analysis. To begin with, we recall that (X , ‖·‖x) is a regular
Finsler space, i.e., ‖v‖x,∗/‖v‖x′,∗ = 1 + O(‖x − x′‖x). However, in what follows we shall
assume the more general condition:

‖v‖x,∗/‖v‖x′,∗ ≤ 1 + β [‖x− x′‖x + ‖x− x′‖x′ ] for some β > 0 (C.2)

Remark 1. It is straightforward for one to observe that a regular Finsler space satisfies (C.2)
for β = 1.

Owning this regularity geometrical property for the problem’s domain we shall proceed
into showing that

‖V (Xt+1/2)− V (Xt)‖2Xt,∗ (C.3)

is uniformly bounded. More precisely, we have the following lemma.

Lemma C.1. Suppose that V satisfies (MB). Then, the sequence ‖V (Xt+1/2)− V (Xt)‖2Xt,∗
is bounded. In particular, the following inequality holds:

‖V (Xt+1/2)− V (Xt)‖2Xt,∗ ≤ C
2 (C.4)

with C = 2M + β 4M
K .
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Proof. It suffices to show that: ‖V (Xt+1/2)− V (Xt)‖Xt+1/2,∗ is bounded. More precisely, by
the triangle inequality we have:

‖V (Xt+1/2)− V (Xt)‖Xt+1/2,∗ ≤ ‖V (Xt+1/2)‖Xt+1/2,∗ + ‖V (Xt)‖Xt+1/2,∗ (C.5)

Let us now bound the (RHS) part of (C.5) term by term. In particular, we have:
• For the first term ‖V (Xt+1/2)‖Xt+1/2,∗ we readily get due to (MB):

‖V (Xt+1/2)‖Xt+1/2,∗ ≤M (C.6)

• For the second term ‖V (Xt)‖Xt+1/2,∗, we have:

‖V (Xt)‖Xt+1/2,∗ ≤ ‖V (Xt)‖Xt,∗ + β
[
‖Xt −Xt+1/2‖Xt

+ ‖Xt −Xt+1/2‖Xt+1/2

]
≤M + β

[
‖Xt −Xt+1/2‖Xt

+ ‖Xt −Xt+1/2‖Xt+1/2

]
(C.7)

Therefore, it suffices to show that the quantity ‖Xt−Xt+1/2‖Xt +‖Xt−Xt+1/2‖Xt+1/2

is bounded from above. Indeed, we have:

D(Xt, Xt+1/2) +D(Xt+1/2, Xt) = 〈∇h(Xt)−∇h(Xt+1/2), Xt −Xt+1/2〉
≤ γt〈V (Xt), Xt −Xt+1/2〉
≤Mγt‖Xt −Xt+1/2‖Xt

where the last inequality is obtained due to (MB). Moreover, due to (14) we get:

D(Xt, Xt+1/2) +D(Xt+1/2, Xt) ≤ γtM
√

2

K
D(Xt+1/2, Xt)

≤M
√

2

K

[
D(Xt, Xt+1/2) +D(Xt+1/2, Xt)

]
which yields

D(Xt, Xt+1/2) +D(Xt, Xt+1/2) ≤ 2M2

K
(C.8)

Hence, due to the local strong convexity (14) of h, we get:

K

2

[
‖Xt −Xt+1/2‖2Xt

+ ‖Xt −Xt+1/2‖2Xt+1/2

]
≤ 2M2

K
(C.9)

which in turn implies that:

‖Xt −Xt+1/2‖Xt
≤ 2M

K
and ‖Xt −Xt+1/2‖Xt+1/2

≤ 2M

K
(C.10)

and so,

‖Xt −Xt+1/2‖Xt + ‖Xt −Xt+1/2‖Xt+1/2
≤ 4M

K
(C.11)

Moreover, by combining (C.7) and (C.11) we get:

‖V (Xt)‖Xt+1/2,∗ ≤M + β
4M

K
(C.12)

Summarizing, (C.5) combined with (C.7) and (C.12) yields:

‖V (Xt+1/2)− V (Xt)‖Xt+1/2,∗ ≤ 2M + β
4M

K
(C.13)

and hence the result follows. �

We now proceed to prove the energy inequality stated in Lemma C.2.
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Lemma C.2. For all x ∈ X , the iterates Xt of AdaProx satisfy the recursive bound:

D(x,Xt+1) ≤ D(x,Xt)−γt〈V (Xt+1/2), Xt+1/2−x〉+γt〈V (Xt+1/2)−V (Xt), Xt+1−Xt+1/2〉
−D(Xt+1, Xt+1/2)−D(Xt+1/2, Xt) (C.14)

Proof. The result follows directly by setting X+
1 = Xt+1/2, X+

2 = Xt+1, x = Xt, v1 =
−γtV (Xt) and v2 = −γtV (Xt+1/2) in Proposition B.2. �

Appendix D. Rate interpolation guarantees

In this appendix, we provide the proof of the the regime-agnostic rate interpolation
guarantees of the UniProx. In order, to provide the necessary the respective rates we shall
provide an intermediate result concerning the case of (MS). Formally, we have the following
lemma.

Lemma D.1. Assume V satisfies (MS) and Xt, Xt+1/2 are the iterates of AdaProx. Then,
the following hold:

(1) γt → inft∈N γt = γ∞ > 0

(2) The sequence ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ is summable. In particular, we have:

+∞∑
t=1

‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ =
1

γ2
∞
− 1 (D.1)

Proof. Since γt is decreasing and bounded from below (γt ≥ 0), then we readily obtain that
its limit exists and more precisely we have:

lim
t→+∞

γt = inf
t∈N

γt = γ∞ ≥ 0 (D.2)

Let us now assume that γ∞ = 0. Then, by recalling (C.14):

D(p,Xt+1) ≤ D(p,Xt)−γt〈V (Xt+1/2), Xt+1/2−p〉+γt〈V (Xt+1/2)−V (Xt), Xt+1−Xt+1/2〉
−D(Xt+1/2, Xt)−D(Xt+1, Xt+1/2) (D.3)

By rearranging the above and telescoping t = 1, . . . , T we get:

T∑
t=1

γt〈V (Xt+1/2), Xt+1/2 − p〉 ≤ D(p,X1) +

T∑
t=1

γt〈V (Xt+1/2)− V (Xt), Xt+1 −Xt+1/2〉

−
T∑
t=1

D(Xt+1/2, Xt)−
T∑
t=1

D(Xt+1, Xt+1/2) (D.4)

whereas, by applying Fenchel-Young inequality to the above we readily get:

T∑
t=1

γt〈V (Xt+1/2), Xt+1/2 − p〉 ≤ D(p,X1) +
1

2K

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

+
K

2

T∑
t=1

‖Xt+1 −Xt+1/2‖2Xt+1/2
−

T∑
t=1

D(Xt+1/2, Xt)−
T∑
t=1

D(Xt+1, Xt+1/2) (D.5)

and by considering that by (14):

K

2

T∑
t=1

‖Xt+1 −Xt+1/2‖2Xt+1/2
−

T∑
t=1

D(Xt+1, Xt+1/2) ≤ 0 (D.6)

we finally obtain:
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T∑
t=1

γt〈V (Xt+1/2), Xt+1/2 − p〉 ≤ D(p,X1) +
1

2K

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

−
T∑
t=1

D(Xt+1/2, Xt) (D.7)

Therefore, by the definition (MS) we have:

T∑
t=1

γt〈V (Xt+1/2), Xt+1/2 − p〉 ≤ D(p,X1) +
1

2K

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

− K

2L2

T∑
t=1

‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ (D.8)

which becomes:

T∑
t=1

γt〈V (Xt+1/2), Xt+1/2−p〉 ≤ D(p,X1)+

T∑
t=1

[
γ2
t

2K
− K

4L2

]
‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗

− K

4L2

T∑
t=1

‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ (D.9)

Now, by setting p = x∗ with x∗ being a solution of (VI) and using the fact that 〈V (Xt+1/2), Xt+1/2−
x∗〉 ≥ 0 and D(x∗, X1) ≤ D′ (by the compatibility of h), we obtain:

K

4L2

T∑
t=1

‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗ ≤ D
′+

T∑
t=1

[
γ2
t

2K
− K

4L2

]
‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗

(D.10)
Moreover, by observing that the quantity

[
γ2
t

2K −
K

4L2

]
≤ 0, whenever γt ≤

√
2K/2L and

since we assumed that γt → 0, there exists some t0 ∈ N such that:[
γ2
t

2K
− K

4L2

]
≤ 0 for all t ≥ t0 (D.11)

Therefore, (D.10) becomes:

1

γT+1
−1 =

T∑
t=1

‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗ ≤ D
′+

t0∑
t=1

[
γ2
t

2K
− K

4L2

]
‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗

(D.12)
In addition, since 1/γT+1 → +∞, by the fact that γt → 0, this yields that:

+∞ ≤ D′ +
t0∑
t=1

[
γ2
t

2K
− K

4L2

]
‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ (D.13)

which is a contradiction. Hence, we get that:

lim
t→+∞

γt = inf
t∈N

γt = γ∞ > 0 (D.14)

In order to prove our second claim, we first recall the definition of γt:

γt =
1√

1 +
∑t−1
j=1‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

(D.15)
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whereas by developing and rearranging we have:
t−1∑
j=1

‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗
=

1

γ2
t

− 1 (D.16)

Hence, by taking limits on both sides we get:
+∞∑
t=1

‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗
= lim
t→+∞

t−1∑
j=1

‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗
=

1

γ2
∞
−1 (D.17)

where 0 ≤ 1
γ2
∞
− 1 < +∞, since 0 < γ∞ ≤ 1 and therefore the result follows. �

Proof of Theorem 2. By recalling (C.14) we have:

D(p,Xt+1) ≤ D(p,Xt)−γt〈V (Xt+1/2), Xt+1/2−p〉+γt〈V (Xt+1/2)−V (Xt), Xt+1−Xt+1/2〉
−D(Xt+1/2, Xt)−D(Xt+1, Xt+1/2) (D.18)

We start our analysis rearranging (C.14). In particular, by telescoping t = 1, . . . , T we get:

T∑
t=1

γt〈V (Xt+1/2), Xt+1/2 − p〉 ≤ D(p,X1) +

T∑
t=1

γt〈V (Xt+1/2)− V (Xt), Xt+1 −Xt+1/2〉

−
T∑
t=1

D(Xt+1/2, Xt)−
T∑
t=1

D(Xt+1, Xt+1/2) (D.19)

On the other hand, since V is monotone, we readily get:

γt〈V (p), Xt+1/2 − p〉 ≤ γt〈V (Xt+1/2), Xt+1/2 − p〉 (D.20)

Thus, combining (D.20) and (D.19), dividing by
∑T
t=1 γt and setting X̄T =

[∑T
t=1 γt

]−1∑T
t=1 γtXt+1/2

we get:

〈V (p), X̄T−p〉 ≤ D(p,X1)+

T∑
t=1

γt〈V (Xt+1/2)−V (Xt), Xt+1−Xt+1/2〉−
T∑
t=1

D(Xt+1/2, Xt)

−
T∑
t=1

D(Xt+1, Xt+1/2) (D.21)

whereas, by applying Fenchel-Young inequality to the above we readily get:

〈V (p), X̄T−p〉 ≤ D(p,X1)+
1

2K

T∑
t=1

γ2
t ‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗+

K

2

T∑
t=1

‖Xt+1−Xt+1/2‖2Xt+1/2

−
T∑
t=1

D(Xt+1/2, Xt)−
T∑
t=1

D(Xt+1, Xt+1/2) (D.22)

Thus, if C is a compact neighbourhood of the solution set X ∗, considering that by (14):

K

2

T∑
t=1

‖Xt+1 −Xt+1/2‖2Xt+1/2
−

T∑
t=1

D(Xt+1, Xt+1/2) ≤ 0 (D.23)

and taking suprema on both sides, yields:

GapC(X̄T ) ≤

[
T∑
t=1

γt

]−1

(sup
p∈C

D(p,X1) +
1

2K

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗
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−
T∑
t=1

D(Xt+1/2, Xt)) (D.24)

Case 1: Convergence under (MB). Therefore, in order to determine the convergence speed of
XT under (MB), we shall examine the asymptotic behaviour of each term of the nominator
on the (RHS) of (D.31). In particular, we have the following:

• For the first term: we readily get by the compactness of C,

sup
p∈C

D(p,X1) ≤ D′ for some constant D′ > 0. (D.25)

by the compatibility of the regularizer h.
• For the second term:

∑T
t=1 γ

2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

, we have:

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

=

T∑
t=1

(γ2
t − γ2

t+1)‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

+

T∑
t=1

γ2
t+1‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

(D.26)

Hence, γt is non-increasing and therefore (γ2
t − γ2

t+1 ≥ 0), and γt ≤ 1 the above
becomes:

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

≤ C2 +

T∑
t=1

γt+1‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

≤ C2 +

T∑
t=1

‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

1 +
∑t
j=1‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

≤ C2 + 1 + log(1 +

T∑
t=1

‖V (Xt+1/2)− V (Xt)‖2Xt+1/2
)

with the last inequality being obtained by Lemma F.1 which combined with (MB)
yields:

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

≤ C2 + 1 + log(1 + C2T ) (D.27)

Finally, for
∑T
t=1 γt, we have the following upper-bound

T∑
t=1

γt =

T∑
t=1

1√
1 +

∑t−1
j=1‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

≥
T∑
t=1

1√
1 + tC2

(D.28)

which yields:
T∑
t=1

γt = Ω(
√
T ) and

T∑
t=1

γt → +∞ (D.29)

Now, by combining (D.25), (D.27) and (D.29) we readily get that under (MB) we get that:

GapC(X̄T ) = O(1/
√
T ). (D.30)
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Case 2: Convergence under (MS). We now suppose that V satisfies (MS) condition. By
applying Lemma D.1 along with :

T∑
t=1

γt〈V (Xt+1/2), Xt+1/2 − p〉 ≤ D(p,X1) +
1

2K

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

−
T∑
t=1

D(Xt+1/2, Xt) (D.31)

by examining the asymptotic behaviour term by term, we get:
• For the first term D(x∗, X1), since x∗ ∈ domV = domh and X1 ∈ dom ∂h, we have:

D(x∗, X1) < +∞ (D.32)

• For the second term
∑T
t=1 γ

2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗we have:

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ ≤

T∑
t=1

‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ (D.33)

and by applying Lemma D.1 we have:

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ ≤

1

γ2
∞
− 1 (D.34)

with γ∞ = inft γt > 0.
Finally, by applying Lemma D.1 once more by considering γ∞ = inft∈N γt > 0 we have:

T∑
t=1

γt ≥ γ∞
T∑
t=1

1 = γ∞T (D.35)

which yields:
T∑
t=1

γt = Ω(T ) (D.36)

and the result follows. �

Appendix E. Last iterate’s convergence analysis

In this appendix, we establish the convergence of the sequence generated by (AdaProx),
i.e., its so-called last iterate. In particular, we show that the actual iterates (before averaging)
of AdaProx converge towards the solution set X ∗.This result comprises of two parts: first we
extract convergent subsequences of Xt, Xt+1/2 to the said set; then we apply the "trapping"
argument described in Section 6 .

Lemma E.1. Suppose that V satisfies (MB) (respectively (MS)) and Xt, Xt+1/2 are the
iterates of AdaProx. Then, the following hold:

(1) ‖Xt+1/2 −Xt‖ → 0 while t→ +∞

(2) max{D(Xt+1/2, Xt), D(Xt, Xt+1/2)} ≤ 2M2

K γ2
t

Proof. For the proof of the first claim, we shall treat the cases of (MB) and (MS) individually.



ADAPTIVE EXTRA-GRADIENT METHODS FOR MIN-MAX OPTIMIZATION AND GAMES 21

Case 1: Under (MB) condition. Since γt is decreasing and bounded from below, then we
readily obtain that. its limit exists and more precisely:

lim
t→+∞

γt = γ∞ ≥ 0 (E.1)

We shall distinguish two individual cases:
• γ∞ > 0: By recalling the definition of the adaptive step-size:

γt =
1√

1 +
∑t−1
j=1‖V (Xj+1/2)− V (Xj)‖2Xj+1/2

(E.2)

whereas by rearranging and developing we have:
t−1∑
j=1

‖V (Xj+1/2)− V (Xj)‖2Xj+1/2
=

1

γ2
t

− 1 (E.3)

Therefore, by taking limits on both sides:
+∞∑
t=1

‖V (Xj+1/2)− V (Xj)‖2Xj+1/2
= lim
t→+∞

1

γ2
t

− 1 =
1

γ2
∞
− 1 ≥ 0 (E.4)

Hence, by recalling (C.14) we have:
T∑
t=1

D(Xt+1/2, Xt) ≤ D(x∗, X1) +

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

≤ D(x∗, X1) +

T∑
t=1

‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

which in turn by (E.4) yields
∑+∞
t=1 D(Xt+1/2, Xt) < +∞ and henceD(Xt+1/2, Xt)→

0. Moreover, by applying (14):
K

2
‖Xt+1/2 −Xt‖2Xt

≤ D(Xt+1/2, Xt) (E.5)

Now, by recalling µ‖·‖ ≤ ‖·‖x, we get:

‖Xt+1/2 −Xt‖2 ≤
1

µ2
‖Xt+1/2 −Xt‖2Xt

(E.6)

and the result follows.
• γ∞ = 0: By the prox-step, we get:

〈∇h(Xt)−∇h(Xt+1/2), Xt −Xt+1/2〉 ≤ γt〈V (Xt), Xt −Xt+1/2〉
≤ γt‖V (Xt)‖Xt,∗‖Xt −Xt+1/2‖Xt

(E.7)

On the other hand, we have:

〈∇h(Xt)−∇h(Xt+1/2), Xt −Xt+1/2〉 = D(Xt, Xt+1/2) +D(Xt+1/2, Xt) (E.8)

Thus, we get by (14):

D(Xt, Xt+1/2) +D(Xt+1/2, Xt) ≤ γt‖V (Xt)‖Xt,∗‖Xt −Xt+1/2‖Xt

≤ γtM
√

2

K

[
D(Xt, Xt+1/2) +D(Xt+1/2, Xt)

]
where the last inequality is obtained due to (MB); which in turn yields:

D(Xt, Xt+1/2) +D(Xt+1/2, Xt) ≤
2M2

K
γ2
t (E.9)
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So, a fortiori we have:

D(Xt, Xt+1/2) ≤ 2M2

K
γ2
t (E.10)

Moreover, by (14):

K

2
‖Xt+1/2 −Xt‖2Xt+1/2

≤ D(Xt, Xt+1/2) ≤ 2M2

K
γ2
t (E.11)

Now, by recalling µ‖·‖ ≤ ‖·‖x, we get:

‖Xt+1/2 −Xt‖2 ≤
1

µ2
‖Xt+1/2 −Xt‖2Xt

(E.12)

and the result follows since we assumed that γt → 0.

Case 2: Under (MS) condition. Following similar reasoning as above, we have:
T∑
t=1

D(Xt+1/2, Xt) ≤ D(x∗, X1) +

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

≤ D(x∗, X1) +

T∑
t=1

‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

which by taking limits on both sides and by applying Lemma D.1 we get that:
+∞∑
t=1

D(Xt+1/2, Xt) < +∞ (E.13)

Therefore, D(Xt+1/2, Xt)→ 0, whereas by applying (14) we obtain:

K

2
‖Xt+1/2 −Xt‖2Xt

≤ D(Xt+1/2, Xt) (E.14)

Now, by recalling µ‖·‖ ≤ ‖·‖x, we get:

‖Xt+1/2 −Xt‖2 ≤
1

µ2
‖Xt+1/2 −Xt‖2Xt

(E.15)

and the result follows.
On the other hand, for the second claim, we have by the prox-step:

D(Xt, Xt+1/2) +D(Xt+1/2, Xt) ≤ γt〈V (Xt), Xt+1/2 −Xt〉
≤ γtM‖Xt+1/2 −Xt‖Xt

Therefore, by following the same reasoning with the first claim, we get:

D(Xt, Xt+1/2) +D(Xt+1/2, Xt) ≤
2M2

K
γ2
t (E.16)

and hence since D(·, ·) ≥ 0, we have:

D(Xt+1/2, Xt) ≤
2M2

K
γ2
t and D(Xt, Xt+1/2) ≤ 2M2

K
γ2
t (E.17)

and so the result follows �

Remark 2. We shall point out that (1) in Lemma E.1 establishes the convergence with
respect to the global ambient reference norm of Rd.

Proposition E.1. Suppose that V satisfies (MB) (respectively (MS)). Then, the iterates
Xt, Xt+1/2 of AdaProx possess convergent subsequences towards the equilibrium set X ∗.
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Proof. By Lemma E.1, it suffices to show that Xt+1/2 possesses such a subsequence. Assume
to the contrary that it does not. That implies that:

lim inf
t

dist(Xt+1/2,X ∗) = δ > 0 (E.18)

which in turn yields,
lim inf

t
〈V (Xt+1/2), Xt+1/2 − x∗〉 = c > 0 (E.19)

Now, by setting p = x∗ for some x∗ ∈ X ∗ in (C.14), we get:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈V (Xt+1/2), Xt+1/2 − x∗〉+ γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2

≤ D(x∗, Xt)− cγt + γ2
t ‖V (Xt+1/2)− V (X)‖2Xt+1/2

whereas by telescoping t = 1, . . . , T we obtain:

D(x∗, XT ) ≤ D(x∗, X1)−
T∑
t=1

γt

[
c−

∑T
t=1 γ

2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗∑T

t=1 γt

]
(E.20)

Having this established this general setting, we shall examine the asymptotic behaviour
term by term for each regularity case individually, which in both cases shall lead to a
contradiction.

Case 1: Under (MB) condition.

• For the first term:
∑T
t=1 γt, due to (AdaProx) we have by (D.29) that:

T∑
t=1

γt → +∞ and
T∑
t=1

γt = Ω(
√
T ) (E.21)

• For the second term

∑T
t=1 γ

2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗∑T

t=1 γt
, we first examine the

denominator. In particular, due to (AdaProx) we get:

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ =

T∑
t=1

‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

1 +
∑t−1
j=1‖V (Xj+1/2)− V (Xj)‖2Xj+1/2,∗

(E.22)

which by recalling (D.27) we obtain:

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ = O(log T ) (E.23)

So, by combining (E.21) and (E.23) we readily obtain:∑T
t=1 γ

2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗∑T

t=1 γt
→ 0 while T → +∞ (E.24)

Therefore, by letting T → +∞, the inequality (E.20) yields D(x∗, XT )→ −∞, contradiction.

Case 2: Under (MS) condition. Examining the asymptotic behaviour of (E.20) term by term
under the light of (MS) condition we get the following:

• For
∑T
t=1 γt, (MS) guarantees by (D.36):

T∑
t=1

γt = Ω(T ) and
T∑
t=1

γt → +∞ (E.25)
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• For
∑T

t=1 γ
2
t ‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗∑T

t=1 γt
, (D.1) guarantees:

T∑
t=1

γ2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

= O(1) (E.26)

which combined with (D.36) gives us:∑T
t=1 γ

2
t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗∑T

t=1 γt
→ 0 (E.27)

Therefore, y letting T → +∞, the inequality (E.20) yields that D(x∗, XT ) → −∞, a
contradiction. �

Having all this at hand, we are finally in the position to prove the main result of this
section; namely the convergence of the actual iterates of the method. For that we will need
an intermediate lemma that shall allow us to pass from a convergent subsequence to global
convergence (see also [11], [46]).

Lemma E.2. Let χ ∈ (0, 1], (αt)t∈N, (βt)t∈N non-negative sequences and (εt)t∈N ∈ l1(N) such
that t = 1, 2, . . . :

αt+1 ≤ χαt − βt + εt (E.28)
Then, αt converges.

Proof. First, one shows that αt∈N is a bounded sequence. Indeed, one can derive directly
that:

αt+1 ≤ χt+1α0 +

t∑
k=0

χt−kεk (E.29)

Hence, (αt)t∈N lies in [0, α0 + ε], with ε =
∑+∞
t=0 εt. Now, one is able to extract a convergent

subsequence (αkt)t∈N, let say limt→+∞ αkt = α ∈ [0, α0 + ε] and fix δ > 0. Then, one can
find some t0 such that αkt0 − α <

δ
2 and

∑
m>tkt0

εm < δ
2 . That said, we have:

0 ≤ αt ≤ αkt0 +
∑

m>tkt0

εm <
δ

2
+ α+

δ

2
= α+ δ (E.30)

Hence, lim supt αt ≤ lim inft αt + δ. Since, δ is chosen arbitrarily the result follows. �

Proof of Theorem 3. Once more, we shall treat each regularity class individually.

Case 1: Under (MB) condition. For the (MB), b y denoting limt→+∞ γt = γ∞ case we shall
consider two cases for the asymptotic behaviour of the step-size γt.

• γ∞ > 0: By recalling the definition of γt:

γt =
1√

1 +
∑t−1
j=1‖V (Xj+1/2)− V (Xj)‖2Xj+1/2

(E.31)

whereas by rearranging we get:
t−1∑
j=1

‖V (Xj+1/1)− V (Xj)‖2Xj+1/2
=

1

γ2
t

− 1 (E.32)

and hence:
+∞∑
t=1

‖V (Xt+1/1)− V (Xt)‖2Xt+1/2
=

1

γ2
∞
− 1 < +∞ (E.33)
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Therefore, by recalling (C.14), we have for solution of (VI), x∗ ∈ X
D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈V (Xt+1/2), Xt+1/2 − x∗〉+ γ2

t ‖V (Xt+1/2)− V (Xt)‖2t+1/2,∗
(E.34)

which enables us to directly apply Lemma E.2 for αt = D(x∗, Xt), βt = γt〈V (Xt+1/2), Xt+1/2−
x∗〉 and εt = γ2

t ‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗.
• γ∞ = 0: Fix an equilibrium x∗ ∈ X ∗ and consider the "Bregman zone":

Dε = {x ∈ X : D(x∗, x) < ε} (E.35)

By the assumption for the regularizer h, it follows that there exists some δ > 0 such
that:

Bδ = {x ∈ X : ‖x∗ − x‖ < δ} (E.36)
is contained in Dε. Hence, by regularity assumption for the (3), it follows that:

〈V (x), x− x∗〉 ≥ c > 0 for some c ≡ c(ε) > 0 and for all x /∈ Dε, (E.37)

in particular, for all x ∈ D2ε \Dε. Assume now that x∗ is a limit point of Xt, i.e.,
Xt ∈ D2ε for infinitely many t ∈ N. Now, by the prox-step, we get: and hence,

γt〈V (Xt), Xt − x∗〉 ≤ 〈∇h(Xt)−∇h(Xt+1/2), Xt − x∗〉 (E.38)

whereas by Lemma B.2 and after rearranging we get:

D(x∗, Xt+1/2) ≤ D(x∗, Xt)− γt〈V (Xt), Xt − x∗〉+D(Xt, Xt+1/2)

≤ D(x∗, Xt)− γt〈V (Xt), Xt − x∗〉+ max{D(Xt, Xt+1/2), D(Xt, Xt+1/2)}
Therefore due to Lemma E.1 we obtain:

D(x∗, Xt+1/2) ≤ D(x∗, Xt)− γt〈V (Xt), Xt − x∗〉+
2M2

K
γ2
t (E.39)

We consider two cases:

(1) Xt ∈ D2ε \Dε: Then, 〈V (Xt), Xt − x∗〉 ≥ c > 0. So,

D(x∗, Xt+1/2) ≤ D(x∗, Xt)− cγt +
2M2

K
γ2
t (E.40)

Now, provided that 2M2γ2
t

K ≤ cγt or equivalently γt ≤ cK
2M2 . we get: D(x∗, Xt+1/2) ≤

2ε.
(2) Xt ∈ Dε: Then, in this case we have:

D(x∗, Xt+1/2) ≤ D(x∗, Xt) +
2M2

K
γ2
t (E.41)

Again, provided that 2M2

K γ2
t ≤ ε or equivalently γt ≤

√
2εK
2M we getD(x∗, Xt+1/2) ≤

2ε

Therefore, by summarizing the above we get that if γt ≤ min{
√

2εK
2M , cK

2M2 }, we have
that Xt+1/2 ∈ D2ε whenever Xt ∈ D2ε. Going further, due to Proposition B.2
by setting p = x∗, x1 = Xt+1/2, x+

2 = Xt+1, x = Xt, v1 = −γtV (Xt+1/2) and
v2 = −γtV (Xt+1/2) we get:

D(x∗, Xt+1) ≤ D(x∗, Xt)−γt〈V (Xt+1/2), Xt+1/2−x∗〉+γt〈V (Xt+1/2)−V (Xt), Xt+1−Xt+1/2〉
−D(Xt+1, Xt+1/2)−D(Xt+1/2, Xt) (E.42)

whereas by applying Fenchel’s inequality we obtain:

D(x∗, Xt+1) ≤ D(x∗, Xt)−γt〈V (Xt+1/2), Xt+1/2−x∗〉+
γ2
t

2K
‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗

+
K

2
‖Xt+1 −Xt+1/2‖2Xt+1/2

−D(Xt+1, Xt+1/2)−D(Xt+1/2, Xt) (E.43)
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Now, since K
2 ‖Xt+1 −Xt+1/2‖2Xt+1/2

−D(Xt+1, Xt+1/2) ≤ 0 by (14) we get:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈V (Xt+1/2), Xt+1/2 − x∗〉+
γ2
t

2K
‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗

(E.44)
which, in turn, by (C.13) the above yields:

D(x∗, Xt+1) ≤ D(x∗, Xt)− γt〈V (Xt+1/2), Xt+1/2 − x∗〉+
C2

2K
γ2
t (E.45)

with C = 2M + β 4M
K . Recall that Xt+1/2 ∈ D2ε by our previous claim. We now

consider the following two cases:

(1) Xt+1/2 ∈ D2ε \Dε: In this case: 〈V (Xt+1/2), Xt+1/2 − x∗〉 ≥ c > 0, so,

D(x∗, Xt+1) ≤ D(x∗, Xt)− cγt +
C2

2K
γ2
t (E.46)

which holds provided that C2γ2
t

2K ≤ cγt or equivalently γt ≤ 2cK
C2 ,

(2) Xt+1/2 ∈ Dε: First recall that:

D(Xt+1/2, Xt+1) +D(Xt+1, Xt+1/2) ≤ 2γ2
t

K
‖V (Xt+1/2)− V (Xt)‖2Xt+1/2,∗ ≤

2γ2
t

K
C2 (E.47)

Therefore, we get that:

‖Xt+1 −Xt+1/2‖2 ≤
4µ2C2

K2
γ2
t (E.48)

Now, let us define the following:

Dε(α) = max{D(x∗, x) : dist(x,Dε(x
∗)) < α} (E.49)

Clearly, Dε(α) is continuous relative to α and limα→0+ Dε(α) = ε. Therefore,
we have:

Dε(α) ≤ ε for all α ≤ α∗ with α∗ sufficiently small. (E.50)

Moreover, due to (E.48), we conclude that D(x∗, Xt+1) ≤ 2ε, provided that
γt ≤ α∗

2µCK.

We conclude thatXt+1 ∈ U2ε provided thatXt ∈ D2ε and γt ≤ min{ 2cK
M2 ,

√
2εK
2M , α∗

2µCK}.
Since, γt → 0 and Xt ∈ D2ε infinitely often (due to Proposition E.1) we conclude
that Xt ∈ D2ε for all sufficiently large t. With ε > 0 being arbitrary, the result
follows.

Case 2: Under (MS) condition. By plugging in αt = D(x∗, Xt), βt = γt〈V (Xt+1/2, Xt+1/2−
x∗〉 and εt = γ2

t ‖V (Xt+1/2)−V (Xt)‖2Xt+1/2,∗ in Lemma E.2 and combine it with Lemma D.1,
we get infx∗∈X∗‖x∗, Xt‖ converges. Thus, the result follows by applying Proposition E.1 �

Appendix F. Properties of Numerical Sequences

In this appendix, we provide the necessary inequality of numerical sequences. This
inequality is due to Bach & Levy [2] and Levy et al. [28] and will play an indispensable role
for establishing the last iterate convergence and universality of our method.

Lemma F.1. For all non-negative numbers α1, . . . αt, the following inequality holds:
T∑
t=1

αt

1 +
∑t
i=1 αi

≤ 1 + log(1 +

T∑
t=1

αt) (F.1)
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Proof. The lemma will proved by induction. The induction base T = 1 holds, since:
α1

1 + α1
≤ 1 ≤ 1 + log(1 + α1) (F.2)

Assume now that the lemma holds for T − 1. Then, we are left to show that it also holds for
T . Indeed, by the induction hypothesis, we get:

T∑
t=1

αt

1 +
∑t
i=1 αi

≤ 1 + log(1 +

T−1∑
t=1

αt) +
αT

1 +
∑T
t=1 αt

(F.3)

Thus, in order to complete the induction it suffices to show that:

1 + log(1 +

T−1∑
t=1

αt) +
αT

1 +
∑T
t=1 αt

≤ 1 + log(1 +

T∑
t=1

αt) (F.4)

By denoting x = αT /(1 +
∑T−1
t=1 αt), the above equation is equivalent:

log(x+ 1)− x

1 + x
≥ 0 (F.5)

which can be straighforwardly checked since H(x) = log(x + 1) − x
1+x ≥ 0 for all x ≥ 0.

Therefore, the result follows. �
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