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ABSTRACT
We investigate a dynamic, adaptive resource allocation scheme with
the aim of accelerating the convergence of multi-start population-
based search heuristics (PSHs) running on multiple parallel proces-
sors. Given that each initialization of a PSH performs differently
over time, we develop an exponential learning scheme which al-
locates computational resources (processors) to each variant in an
online manner, based on the performance level attained by each
initialization. For the well-known example of (µ + λ)–evolution
strategies, we show that the time required to reach the target qual-
ity level of a given optimization problem is significantly reduced
and that the utilization of the parallel system is likewise optimized.
Our learning approach is easily implementable with currently avail-
able batch management systems and provides notable performance
improvements without modifying the employed PSH, so it is very
well-suited to improve the performance of PSHs in large-scale par-
allel computing environments.
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1. INTRODUCTION
For massively complex industrial problems (such as large pa-

rameter optimization or design optimization), exact solution meth-
ods are rarely applicable: the search space is often too large to be
fully explorable and/or a mathematical model of the optimization
problem is hard to obtain. In such cases, population-based random-
ized search heuristics (PSH) like evolutionary algorithms or parti-
cle swarms have become very popular because they do not require
a specific mathematical model of the optimization problem. For
instance, when using computational fluid dynamics in order to op-
timize the aerodynamic properties of a vehicle’s shape, it is impos-
sible to define a formal fitness expression and one uses simulations
in order to determine the fitness function of a candidate solution.

In this context, a widely used class of population-based random-
ized search strategies are the so-called evolution strategies (ES): at
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each iteration, an ES (see also Section 3.2) provides certain solu-
tion candidates (which are commonly denoted as individuals), and
selects the best ones based on selection-recombination mechanisms
inspired by evolutionary biology. In this way, the next generation
of individuals will be biased towards regions of the search space
where better solutions have already been found, so the quality of
the solution is improved at each iteration of the ES until a termina-
tion criterion is fulfilled.

Of course, this iterative process requires the fitness evaluation of
every newly generated individual, a calculation which involves very
complex simulations in an industrial setting: for instance, since
the 1990s, aerodynamic optimization of real-world design objects
requires extremely demanding computational fluid dynamics sim-
ulations that are all but impossible to execute in individual ma-
chines [1]. On the other hand, recent developments in high per-
formance computing and clusters allow the evaluation of increas-
ingly complex models on comparatively cheap hardware by virtue
of parallelization. As a result, the performance of a PSH depends
not only on its internal structure and convergence properties, but
also on the efficient scheduling of the parallel machines – a factor
which becomes even more important if the evaluations are time-
consuming and the simulation times vary. More importantly, if one
employs several different initializations of a PSH in order to reduce
the risk of getting stuck in a local optimum (the so-called multi-
start approach), allocating computational resources between better-
and worse-performing initializations becomes a crucial issue.

In this paper, we seek to reduce the time required to reach a cer-
tain fitness value for a given optimization problem using multi-start
PSHs by optimizing the allocation of computational resources to
different variants of the PSH in an online, adaptive way. In con-
trast to cooperative problem-solving strategies [2] which require
a significant level of interaction and coordination between differ-
ent heuristics (or multiple initializations of the same heuristic), we
consider here a fully decentralized setting where no such central
coordination is possible; in a similar vein, any modifications of
the PSH that would have to be performed by a central coordinator
(such as model-assisted evaluations [3]) are likewise not consid-
ered. Instead, we only adjust the amount of resources assigned to
each PSH over time based on its performance record: inspired by
the process of natural selection, variants with fitter individuals ob-
tain more resources, allowing them to spread faster and explore the
more profitable regions of the problem’s search space. More pre-
cisely, we compare the best fitness value achieved by each heuris-
tic at arbitrary timestamps, and depending on the fitness progress
of each PSH so far (normalized by the number of already evalu-
ated individuals), we reassign resources by means of an exponential
stimulus-response scheme which is intimately related to the repli-
cator dynamics of evolutionary game theory [4, 5].



In particular, the dynamic resource allocation scheme that we
propose has the following pleasant properties:
• It is easy to implement in existing batch scheduling systems

(such as Torque/PBS, LSF, etc.).
• It applies to every PSH that could benefit from a multi-start

approach.
• No modifications in the internal algorithmic structure are re-

quired, so the original search heuristics remain untouched.
• There are no cooperation and/or central control requirements

beyond the resource allocation policy of the batch scheduler.

In this framework, our evaluation with simulations of well-known
test functions (see Section 6) shows that we achieve a better uti-
lization of the parallel system and that we significantly speed up
the convergence to the predefined quality level.

In the next section, we detail our resource allocation problem
in the light of well-studied learning problems and we motivate the
choice of our methodology. In Section 3, we present the precise
formulation of our problem and we point out certain parallelization
and convergence issues that appear in PSHs. Our proposed learning
scheme is then presented in detail in Section 4, and its performance
is examined and assessed in Sections 5 and 6.

2. BACKGROUND
The parallelization of PSHs has been extensively addressed in

the literature – for instance, see Alba and Tomassini [6] for a good
survey on existing approaches and technical solutions. Most of
these works however modify the internal structure of the PSHs to
take advantage of parallel resources and parallel communication
models; in particular, the usage of parallel agents is often realized
as collaborative or competitive search [7, 8].

On the other hand, from a learning point of view, our resource
allocation problem bears close ties to the class of discrete choice
problems known as “learning with expert advice” [9]. In this class
of problems, a decision-maker (agent) is asked to choose between
the advice of K “experts”, and his reward is based on how good
each expert’s advice is. Of course, the performance of each ex-
pert is not constant over time, so the agent seeks to maximize his
long-term payoff by selecting with higher probability the advice of
experts who seem to be performing well and assigning lower proba-
bility to the rest. Accordingly, in our context, we will seek to devise
a learning scheme for the allocation of computational resources so
that the PSH variant which seems to be closer to reaching the target
quality level gets more resources than others that lag consistently
behind.

To that end, an approach which has met with particular success
is that of Boltzmann-driven learning [10] where one keeps and up-
dates a score variable for each expert by aggregating the expert’s
performance over time, and then choosing an expert at each in-
stance with probability that is exponentially proportional to these
scores – for a detailed account of this “exponential learning” pro-
cess and its ties to evolutionary biology, see, e.g. [11, 12, 13, 9]
and references therein. That said, a tacit assumption that underlies
this “expert advice” literature is that the decision of the agent does
not affect the performance of each expert: experts are not swayed
in their predictions by what the agent does. In our computational
setting however, this assumption fails spectacularly and for an un-
avoidable reason: by allocating more resources to a heuristic, this
heuristic will run faster (and hence perform better), so we can no
longer assume that the agent’s decision-making does not interfere
with the expert’s advice.

Accordingly, the main challenge that needs to be overcome is
how to estimate the speedup in the performance of a PSH variant

that has been afforded extra resources, and how to compare the
performance of different variants on an even keel. To overcome
this challenge of spurious speedups, we introduce in Section 4.1 an
unbiased estimator which compensates the performance profile of
a heuristic by normalizing the fraction of resources allocated to it,
and in so doing, we manage to compare the various PSH variants
on an even keel.

3. PROBLEM FORMULATION
In this section, we describe the basic system model for a gen-

eral multi-start PSH; for the sake of concreteness however, we will
mostly focus on the widely used class of (µ + λ)–Evolution Strate-
gies (see Section 3.2).

3.1 System Model
We consider a set K = {1, . . . ,K} of K realizations of a popu-

lation-based randomized search heuristic. In each generation i =

1, 2 . . . , a heuristic must evaluate λ individuals in order to deter-
mine the objective values of its population – themselves represent-
ing the values of a global objective function f that we seek to min-
imize. Obviously, a new generation (i.e. the submission of λ new
individuals to be simulated) can only start if all individuals of the
incumbent generation have been completed, so each heuristic gen-
erates a set of λ jobs in each generation i. The simulation performed
to determine an individual’s objective will be regarded as a job and
indexed by j, and we will also assume that the internal creation of
the next generation (i.e., the process of selection, mutation, and re-
combination) requires negligible time compared to the actual job
execution time.

We further consider a set of M identical machines (e.g., proces-
sors of a cluster) where evaluations can be performed in parallel.1

Since we consider an online problem where the execution time of a
job is only known after its completion, the scheduling on uniform
or related parallel machines may only be done heuristically [14],
and is beyond the scope of this paper. Here, the execution time
of a job only depends on its processing time p j (and thus not on a
particular machine allocation), and the internal machine scheduling
is realized (as in most batch scheduling systems) in a First-Come-
First-Served fashion.

For a heuristic k ∈ K , the best found value of the objective func-
tion f in generation i will be denoted by fk(i). As mentioned before,
we assume the minimization of f throughout this paper, and we
also assume that each generation improves on the previous one, i.e.
fk(i − 1) ≥ fk(i) (an assumption which is actually the evolutionary
drive behind (µ+λ)–evolutionary strategies). Additionally, we con-
sider the best found objective value at a timestamp t and we again
guarantee that fk(t′) ≥ fk(t) whenever t′ ≤ t; on the other hand,
since we are not considering cooperation and communication be-
tween heuristics we might well have fk(t′) > f`(t′) and fk(t) < f`(t)
for two heuristics k, ` ∈ K , and t′ < t.

Since all evaluations of a population within a generation are in-
dependent of each other, they can be executed in parallel. Thus,
PSHs are well-suited to be executed on multi-core systems, clus-
ters, or cloud-computing systems. The generation-based nature of
these heuristics creates barriers in the parallel execution schedule.
The problem occurs if the processing time for simulating an indi-
vidual’s fitness vary. Since new individuals are created by selection
and variation depending on the fitness properties of the previous
1Our resource adaption approach can be realized in arbitrary ma-
chine environments, so the restriction to parallel machines is hardly
restrictive. We restrict ourselves to this model because it does not
require the explicit modeling of machine-dependent job execution
times.



generation, the parallel evaluation of an generation i can only start
if all λ individuals of the previous generation i − 1 have been eval-
uated.
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Figure 1: Typical fitness progress for a multiple runs of a PSH.

The convergence behavior of randomized search heuristics is
only hardly predictable but it can be influenced by several algo-
rithm parameters such as selection pressure or mutation rates. Once
however the algorithm configuration is fixed, the heuristic’s con-
vergence behavior is determined by the random operators of the
algorithms. Thus, the number of generations required to reach a
solution below a predefined fitness values may well vary between
two runs of otherwise identically configured PSH (cf. Figure 1).

3.2 (µ + λ)–Evolution Strategies
As we mentioned before, our approach applies to any PSH that

is amenable to multiple initializations. However, for the sake con-
creteness, we will focus in what follows on the popular class of
PSHs known as (µ + λ)–evolution strategies (ES) – for a detailed
description and examples of other popular and practically relevant
PSHs, see [15]. As all PSHs, an ES searches within a "popula-
tion" of solutions wherein each individual represents a certain can-
didate solution of the optimization problem. The quality of this
solution is called the “fitness” of an individual, and it is determined
by evaluating the individual on the optimization problem. Follow-
ing Schwefel and Rudolph [15], µ denotes here the number of par-
ents while λ denotes the number of all offspring created by these
parents within one synchronized generation. In the (µ + λ)-ES the
offspring and their λ parents are merged before the µ fittest indi-
viduals are selected from the µ+ λ population (in particular, fitness
never decreases), so each generation calls for the evaluation of λ
individuals, and all these evaluations are independent.

4. ONLINE RESOURCE ALLOCATION
Before we start our adaptive resource allocation scheme, all heuris-

tics must be initialized since the first parent population of µ indi-
viduals must be evaluated. We do not perform any update step
during this phase and assume that at the initial timestamp t = 0 the
µ progenitors have completed their evaluation. Once the K heuris-
tics are initialized, we execute them in parallel assigning initially
an equal portion of mk(0) = M/K resources to each heuristic. The
jobs are assigned in a LIST-scheduling fashion to the machines, and
as soon as a machine idles, it is assigned to a new job from any of
the heuristics. Besides the already described dependencies between
iterations and the resulting availability of jobs, we ensure that at no
time more than mk(t) jobs are simultaneously executed for every
heuristic k.

In Figure 2, we illustrate a typical scheduling and resource as-
signment concept assuming for simplicity identical processing times

Figure 2: Scheduling and resource allocation concept for two
PSHs and identical processing times in each evaluation. Each
PSH has to evaluate λ = 12 individuals per generation and the
cluster consists of M = 8 machines. The numbers denote the
generation the evaluation belongs to.

for all evaluations. From timestamp δ and onwards, PSH k gets
three of the eight resource assigned while PSH ` is allowed to use
five resources at a time. At timestamp t = 5 heuristic ` has to
finish generation 2 before it can start the next generation. The as-
signed resources cannot be entirely utilized by heuristic ` and the
machines become idle. It would be possible to use idle resource
to perform evaluations of other heuristics. However, we want to
ensure that the updated resource allocations can be fulfilled during
the next interval. This might become impossible if machines get
occupied by other heuristics in a work-stealing like fashion.

4.1 Updating the allocation of resources
To optimize the allocation of resources per heuristic, we will

score each heuristic’s performance over time and then assign to
each heuristic an amount of resources which is (roughly) exponen-
tially proportional to this score. Specifically, at time t (counted
every δ units of time), we measure the fitness values fk(t) of each
heuristic k ∈ K and we iteratively define the heuristic’s score as

Uk(t + δ) = ηk(t)
(
Uk(t) −

fk(t)
max`∈K{ fl(t)}

)
(1)

with Uk(0) = 0 for all heuristics. In the above, ηk(t) is a normaliza-
tion factor defined as

ηk(t) =
nk(t)

max`∈K{n`(t)}
(2)

where nk(t) represents the overall number of evaluations that heuris-
tic k has executed by timestamp t. This factor weighs the perfor-
mance of a heuristic based on the number of evaluations it has al-
ready performed, so ηk compensates for the fact that the more eval-
uations a heuristic has executed, the better its objective value will
be. As such, this aggregation method can be seen essentially as a
moving average between the (normalized) performance history of
heuristic k and its current fitness.

Indeed, by a slight rearrangement of terms, we obtain:

Uk(t + δ) − Uk(t) =
(
ηk(t) − 1

)
Uk(t) −

ηk(t) fk(t)
maxl∈K{ fl(t)}

, (3)

or, descending to continuous time for simplicity:

U̇k(t) = (ηk(t) − 1)Uk(t) − f k(t), (4)



where f k denotes the rightmost term of Equation (3), i.e. the rel-
ative performance of a heuristic normalized with regards to the
fraction of resources that were allocated to it. Thus, if we set
τ(t) =

∫ t

0
(1 − ηk(s))ds and then multiply both sides of this expres-

sion with the integrating factor eτ(s), a simple integration yields:

Uk(t) = −

∫ t

0
e−(τ(t)−τ(s)) f (s)ds. (5)

This last expression (which can also be verified by differentiat-
ing under the integral sign) shows that the scores Uk(t) can be in-
terpreted as exponential moving averages of the heuristic’s normal-
ized performances, taken with respect to a non-uniform time-scale
that accounts for the fact that the amount of resources allocated to
a heuristic changes over time (and, thus, the time that it takes a
heuristic to reach a given performance level should be scaled com-
mensurately). Importantly, this is a different kind of averaging than
the one induced by η in (1): η represents a normalization average
over resources whereas the exponential factor in the integral of (3)
represents a discounting of past information in order to construt an
exponentially moving average over time.

Needless to say, better-scoring heuristics should be getting more
resources; hence, inspired by its widespread use in the theory of
learning [9], we will assign computational resources based on the
Boltzmann–Gibbs stimulus-response scheme:

Xk(t) =
exp{αUk(t)}∑K
`=1 exp{αU`(t)}

, (6)

where Xk(t) is the fraction of resources appointed to heuristic k at
time t. In this equation, the factor α < 1 represents the inverse
temperature of the Boltzmann distribution and will control the ex-
ploration/exploitation tradeoff of the dynamic policy (6). Since a
small α induces a high temperature the learning speed is decreased
as the behavior of (6) becomes less greedy. A pre-experimental
study revealed that α = 5 is a reasonable choice to ensure both fast
learning and more-than-adequate adaptivity over a wide range of
experimental parameters.

Now, following (6) the actual number of allocated resources will
be determined using the expression:

mk(t + 1) = bXk(t) · (M − K)c + 1, (7)

which guarantees that at least one resource is assigned to every
heuristic at all times. To further guarantee that all resources are
used for every instance we assign the remaining

M̄(t + 1) = M −
∑K

k=1
mk(t + 1) (8)

resources to the M̄(t + 1) currently best performing heuristics – and
to avoid initialization issues, we set M̄(0) = 0. Finally, to ensure the
numerical stability of the discrete updating scheme in Equation (1)
during the following steps, we shift the scores to zero level for all
heuristics and actually use the updating rule:

Uk(t + δ)← Uk(t + δ) −max
`∈K
{U`(t + δ)}. (9)

Thanks to the exponential updating rule (6), this transformation
does not affect the actual allocation profile because only differences
in scores matter for the updating step.

Remark. It should be noted that this resource allocation scheme
does not boil down to a “winner-takes-all” policy, whereby the
“best” heuristic gets all computational resources. Thanks to the
normalization of execution times, underperforming heuristics still
get a share of the resources, so if they start performing well, the
online learning scheme will re-allocate resources accordingly.

5. ASSESSING EVALUATION RESULTS
Our implementation of the (µ+λ)-ES follows closely the detailed

description in [16]. We thus consider different population sizes (a
parameter which has a strong influence on the convergence behav-
ior and also influences the resource adaptation process), and based
on Schwefel’s recommendation [17], we took a ratio of µ/λ ≈ 1/7
for all simulations. The parameter settings above may well be im-
proved on for specific cases, but this parameter range leads to a
better overall convergence rate on average [17]. More to the point,
since we will show that it is possible to accelerate the algorithm
performance by improved resource assignments the actual conver-
gence behavior is only of minor importance – it only serves as an
example which can be substituted by any other population-based
randomized search heuristic.

5.1 Definition of Performance Criteria
As noted before, we are interested in minimizing the overall time

it takes to reach a predefined level of our objective function. Thus,
in order to evaluate our results, we consider the following perfor-
mance metrics (for a single run of all experiments with the same
configuration):

Tl : Amount of time that the online learning approach required to
reach the predefined quality threshold f0.

Tu : Amount of time that the fastest heuristic would have taken to
reach the predefined quality threshold f0 assuming uniform
resource allocation: mk(t) = M/K.

Tb : Amount of time that the fastest heuristic (i.e., the heuristic that
requires fewest iterations to reach f0) would have taken if all
M resource had been exclusively assigned to it.

Tw : Amount of time that the slowest heuristic (i.e., the heuristic
that requires most iterations to reach f0) would have taken if
all M resource had been exclusively assigned to it.

To measure the improvements of the online learning approach
over a static uniform allocation, we define the average gain G over
uniform resource allocation in Equation (10).

G =
Tu − Tl

Tu
(10)

Furthermore, we define the average efficiency Eu of the uniform
allocation, see Equation (11),

Eu =
Tw − Tu

Tw − Tb
(11)

and the average efficiency El of the online learned allocations, see
Equation (12).

El =
Tw − Tl

Tw − Tb
(12)

In all cases, we compare the required time with the discrepancy
between the worst and best heuristics: if we observe a negative ef-
ficiency, then simply choosing a heuristic at random and assigning
all resources to it would have been the better choice (naïve as this
might seem). In such cases, neither uniform allocation nor online
learning is reasonable, so a sophisticated approach seems meaning-
less (the uncertainty is just too high).

Importantly, a standard evaluation criterion that is used in the
learning literature to assess the performance of a dynamic learning
scheme is its regret series:

Rk(t) =
1
t

[∑t

n=1

(
f ∗k (n) − f (n)

)]
+

(13)



where f (n) is the value achieved at step n of the process, f ∗k (n) is
the value that would have been achieved by heuristic k at stage n
if all resources had been allocated to heuristic k for all n ≤ t (see,
e.g., Cesa-Bianchi and Lugosi [9] and references therein). In other
words, the regret series Rk simply measures how much has been
lost in terms of performance by not using heuristic k all the time:
if k is consistently worse than all possible resource allocation to
other heuristics then Rk will be identically equal to 0, whereas if k
consistently outperforms all other heuristics, Rk will vanish if and
only if all available resources are allocated to k. As a result, the
standard objective in learning is to devise a learning scheme which
is asymptotically consistent in the sense that limt→0 Rk(t) = 0 for
all k (for an extended discussion of this issue, see [9, 18, 19] and
references therein).

Nonetheless, the regret series as defined above suffers from two
very important drawbacks in our setting: First of all, it is a fictitious
criterion in the sense that Rk cannot be calculated unless we know
the value f ∗k (n) that the k-th heuristic would have achieved at each
n ≤ t if all resources had been assigned to it. Even more impor-
tantly, consistency is an unbalanced criterion in the sense that Rk

could stay unboundedly positive for perfectly reasonable resource
allocation policies. To illustrate this last point, assume the follow-
ing example which, despite its simplicity, captures the essence of
the problem: we are given two heuristics, A and B with A two times
slower than B, so that f ∗A(n) = 2 f ∗B(n) = 2n for all n; assume fur-
ther for simplicity that the performance of each heuristic depends
linearly on the fraction of alloted resources. Then, if we allocate
resources with a ratio 2 : 1 in favor of the slow heuristic A, we will
have f (n) = max{2/3 × n, 1/3 × 2n} = 2n/3. In turn, this yields a
positive and bounded away from zero regret series RA for the slower
heuristic, indicating (quite falsely!) a regret for not giving all re-
sources to the slow heuristic A.

In view of the above, we see that regret-based consistency is not
a suitable performance evaluation criterion for our resource alloca-
tion scheme, so, in all our experiments, our analysis will be focused
on the runtime evaluation criteria defined at the beginning of this
section.

6. SIMULATION SETUP AND RESULTS
To investigate the performance of our approach in challenging

optimization problems with wildly varying convergence behaviors,
we focused our experiments on two well-known test problems for
evolutionary algorithms, the Ackley and Rastrigin functions [20,
21]. Of course, real-world problems might exhibit different behav-
ior than these artificially constructed functions; the reason that we
chose to focus on these highly challenging problems is that they
represent the worst-case scenarios that could arise in real-world
conditions, and they are also precisely the type of problems that
require a massively parallel computing environment to boot.

Specifically, the first test problem that we are considering is the
Ackley function [20] in its standard variant. The problem is find-
ing a string ~x = {x1, x2, . . . , xN}, with xi ∈ (−32.768, 32.768), that
minimizes Equation (14).

F1(~x) = 20
(
1 − e−0.2

√
1
N

∑
i x2

i

)
+ e − e

1
N

∑
i cos(2πxi) (14)

Next, we also consider the Rastrigin function first proposed in [21]
as a typical example of a (2-dimensional) non-linear multimodal
function:

F2(~x) = 20+
∑2

i=1

(
x2

i − 10 cos(2πxi)
)
, xi ∈ (−5.12, 5.12). (15)

6.1 Experimental setup

µ λ K M δ p j

3 21 4/6/8 40/60/80 7/5 ∼ U(1, 5)/E(2)
4 30 4/6/8 40/60/80 9/6 ∼ U(1, 5)/E(2)
5 35 4/6/8 40/60/80 11/7 ∼ U(1, 5)/E(2)
6 40 4/6/8 40/60/80 12/8 ∼ U(1, 5)/E(2)
15 100 4/6/8 40/60/80 30/20 ∼ U(1, 5)/E(2)

Table 1: Detailed configuration of the discussed experiments.
Note that δ is independent of the number of heuristics since we
always chose M = 10K. It depends only on the processing time
estimate and the population size. Here we use P̄(U(1, 5)) = 3
and P̄(E(2)) = 2.

In our experiments, we run each ES until it falls below an ob-
jective quality threshold of f0 = 10−4 and we simulate a compute
cluster with M = 10K computational resources (reflecting a reason-
able load/resource scaling). The details of our experimental setup
are shown in Table 1; in what follows, we will simply give a short
account of some important experimental issues.

To begin with, in real batch-systems like PBS/Torque, the sched-
uler is only triggered at discrete timestamps. Due to performance
issues the number of scheduling decisions is limited (although it
might slightly reduce the utilization), so we submit new jobs only
at integer time units (t = 1, 2, . . .) while the online resource alloca-
tion is updated every δ units of time with

δ =
⌈
P̄M−1λK

⌉
, (16)

where P̄ involves the estimated mean execution time of an evalu-
ation. Of course, in an online scheduling context the processing
times of jobs are not known n advance, so we determine this value
by a rough estimation based on pre-experimental reasoning; how-
ever, experiments showed that even a very coarse estimate is al-
ready sufficient, so we will not elaborate further on this issue.

Another important aspect of our simulations is the distribution
of the jobs’ execution times. Unfortunately, there exists no stan-
dard model for the processing times of sequential jobs submitted to
clusters. The closest results that we could find was the analysis of
[22] where the authors show that the runtimes in common workload
traces follows a hyper-gamma distribution – however, the model of
[22] refers to parallel workloads only. In light of the above, we
chose instead to sample processing times p j ∼ U(a, b) for each
evaluation form a uniform distribution over the interval [a, b], and
from an exponential distribution p j ∼ E(ρ) with mean ρ (in the
displayed experiments, we chose ρ = 2). Our simulations showed
that our approach is fairly indifferent to the processing time distri-
butions, see Figures 3 and 4, so knowledge of the exact distribution
of processing times does not seem to be particularly important.

6.2 Experimental results
Figure 3(a) shows the improvement of the online learning ap-

proach over a static uniform allocation for several population size
configurations. Since the median gain is positive for all settings,
the exponential learning scheme is superior to a static uniform re-
source assignment. For smaller populations, improvements lie be-
tween 7.5 % (3 + 21 and k = 8) and 15.23 % (3 + 21 and k = 4), but
for larger populations, our adaptive resource allocation scheme is
particularly advantageous: we observe a gain in convergence time
between 30.47 % (15 + 100 and k = 8) and 36.6 % (15 + 100 and
k = 8) over the simpler uniform allocation scheme.

However, the larger population configurations also highlight the
only drawback that we were able to identify in our adaptive re-



source allocation scheme. Figure 3(b) shows the efficiency of a
uniform allocation scheme and it reveals that resource sharing and
a multi-start variant is not advantageous in those cases: apparently,
the evolution strategy converges faster to the desired quality level
if all resources are assigned to any arbitrary heuristic. One possible
explanation of this phenomenon is that the explorative power of a
(15 + 100)-population is so large that any multi-start variant will
converge quickly to the optimal solution. In our approach, we al-
ways have to share the resource among the multi-start variant. for
large populations, giving all resources to a single start of the PSH
would have been obviously advantageous. Even the online adaption
of the resource can not ameliorate this tendency entirely although
results are slightly improved, see Figure 3(c).

In this way, a natural question that emerges is the following: do
multi-start variants with online resource sharing lead to advantages
in optimization time? To answer this question, we present the aver-
aged absolute optimization durations (in seconds) in Table 3. Re-
sults are given for the Rastrigin function (F2(~x)) over 40 runs and
for both uniformly and exponentially sampled processing times (we
only present the results of F2(~x) due to space limitations). Quali-
tatively, the results for F2(~x) which would correspond to Figure 3,
are similar. First, using multi-start variants on the parallel resources
pays off in any case, since Tu becomes always smaller with increas-
ing values of K. The learning (Tl) improves these values in every
case over static shares Tu. This tendency is even stronger if the
processing times are exponentially distributed (cf. Table 3).

7. CONCLUSION
We presented an approach to accelerate the convergence of any

kind of population-based randomized search heuristic (PSH) that is
executed on parallel computing installations. Taking a multi-start
approach, we executed multiple initializations of the same PSH
to solve the same optimization problem and used an exponential
learning technique in order to adapt the fraction of computational
resources assigned to each heuristic based on its performance en-
velope. The novelty of the approach lies in that the overall opti-
mization process revolves exclusively around resource assignment:
in particular, the actual PSH does not need to be modified and any
kind of optimizer that is able to deliver intermediate results (to com-
pare the current progress) may be improved with the approach pre-
sented in this paper. Our resource adaption scheme is particularly
suited for evolutionary algorithms: evaluations with two common
test functions and randomly generated processing times show that
our online learning scheme yielded significant performance im-
provements and was robust to the processing time distribution.

An open (but orthogonal) question for further research is whether
it really pays off to have a multi-start variant with online resource
adaptation instead of a significantly larger population size – a ques-
tion which we did not address due to space limitations. Indeed, this
investigation requires a thorough look into the quality/speed trade-
off between exploring greater regions of the state space (multi-start)
and potential premature convergence in local optima (single run
of PSH with large explorative power). In this context, we also
have to investigate self-adaptation of the mutation step-size for the
large population ES and alternative PSHs like particle swarms or
population-based ant colony optimization algorithms.
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Figure 3: Boxplots of population-based search heuristic configurations over 40 runs on problem F1(~x) with uniformly sampled
processing times (U(1, 5)). The configurations comprise various population sizes (µ + λ) and number of heuristics (k = 4, 6, 8).
Figure (a) shows the gain of the online learning over uniform allocation in %. Figure (b) shows the efficiency of uniform allocation
and Figure (c) the efficiency of the online learning approach.
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Figure 4: Boxplots of population-based search heuristic configurations over 40 runs on the F1(~x) with exponentially sampled process-
ing times (E(2)). The configurations comprise various population sizes (µ+ λ) and number of heuristics (k = 4, 6, 8). Figure (a) shows
the gain of the online learning over uniform allocation in %. Figure (b) shows the efficiency of uniform allocation and Figure (c) the
efficiency of the online learning approach.



Processing Time ∼ U(1, 5) Processing Time ∼ E(2)
µ + λ 3+21 4+30 5+35 6+40 15+100 µ + λ 3+21 4+30 5+35 5+35 6+40

Average Tb Average Tb
K=4 1270.33 643.58 535.76 373.73 459.85 K=4 2185.64 1189.02 1013.96 728.44 643.79
K=6 909.24 513.11 415.12 329.23 340.49 K=6 1563.15 952.45 788.95 643.63 534.36
K=8 683.02 449.49 359.86 329.66 279.06 K=8 1185.85 828.04 683.09 642.75 504.45

Average Tw Average Tw
K=4 9447.47 6070.25 5193.26 3362.32 922.88 K=4 16239.86 11229.63 9876.43 6550.66 1288.59
K=6 8846.67 8394.89 6237.05 4213.93 744.49 K=6 15244.93 15499.63 11856.80 8223.91 1168.56
K=8 9512.00 8716.71 7045.93 5217.18 787.73 K=8 16330.41 16094.16 13428.35 10170.93 1421.76

Average Tu Average Tu
K=4 1872.82 1298.05 1318.86 1016.13 1429.19 K=4 2752.20 1652.56 1533.94 1185.03 1556.82
K=6 1332.73 988.12 996.75 882.23 1350.82 K=6 1987.23 1286.34 1164.10 1016.80 1472.83
K=8 993.22 856.79 848.25 862.34 1345.67 K=8 1500.02 1109.70 996.65 995.02 1465.85

Average Tl Average Tl
K=4 1809.38 1122.08 1083.63 784.58 947.58 K=4 2552.45 1524.03 1439.48 984.83 1062.55
K=6 1223.73 831.80 775.60 738.83 928.75 K=6 1769.90 1104.13 989.05 922.90 1044.15
K=8 872.40 800.28 671.08 691.35 917.18 K=8 1250.70 1035.00 855.78 867.30 1016.35

Table 2: Ackley Function over 40 runs.
Processing Time ∼ U(1, 5) Processing Time ∼ E(2)

µ + λ 3+21 4+30 5+35 6+40 15+100 µ + λ 3+21 4+30 5+35 6+40 15+100
Average Tb Average Tb

K=4 726.87 561.31 388.96 339.26 333.73 K=4 1106.01 920.56 667.02 593.53 376.75
K=6 685.71 345.14 308.59 250.56 244.30 K=6 1033.57 561.38 523.75 437.34 331.11
K=8 511.64 286.01 262.56 217.19 190.32 K=8 772.53 470.61 445.73 380.79 307.20

Average Tw Average Tw
K=4 8269.21 6326.30 6066.77 4951.90 748.49 K=4 12493.72 10370.81 10291.12 8658.72 860.73
K=6 9235.50 8458.56 7228.31 5699.95 1516.46 K=6 13966.17 13873.15 12269.04 9941.66 2053.86
K=8 9593.47 9431.75 7707.12 7182.11 1366.91 K=8 14507.25 15462.75 13084.37 12552.53 2204.08

Average Tu Average Tu
K=4 1074.58 1130.26 956.03 922.98 1035.93 K=4 1352.06 1189.07 882.53 833.81 801.79
K=6 1004.99 670.11 742.15 672.31 970.96 K=6 1309.81 723.13 691.49 606.01 757.23
K=8 747.36 547.97 618.11 570.55 916.25 K=8 995.53 605.05 590.84 521.74 714.76

Average Tl Average Tl
K=4 1097.50 1002.13 737.48 775.18 727.40 K=4 1377.85 1160.00 814.63 796.00 607.13
K=6 964.88 566.60 577.28 543.45 620.78 K=6 1214.33 658.45 650.30 559.43 522.28
K=8 689.13 458.08 504.40 445.58 618.83 K=8 854.48 544.48 546.45 479.33 516.58

Table 3: Absolute results values (time in seconds) for the Rastrigin function (F2(~x)) over 40 runs.
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