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A MODEL OF DEMAND RESPONSE 
 

1. 
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Le Boudec, Tomozei, Satisfiability of Elastic Demand in the Smart Grid, Energy 2011 

and ArXiv.1011.5606 



Demand Response 

= distribution network 
operator may interrupt / 
modulate power 

 

elastic loads support graceful 
degradation 

 

Thermal load (Voltalis),  
washing machines (Romande 
Energie«commande 
centralisée») 
e-cars, 

Voltalis Bluepod switches off 
thermal load for 60 mn 
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Our Problem Statement 

Does demand response work  ? 
Delays 

Returning  load  

Problem Statement 
Is there a control mechanism that can 
stabilize demand ? 
 

We leave out for now the details of 
signals and algorithms  
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Macroscopic Model of Cho and Meyn [1], 
non elastic demand, 

mapped to discrete time  
Step 1: Day-ahead 
market 

Forecast demand: 
𝐷𝑓 𝑡  

Forecast supply: 
𝐺𝑓 𝑡 = 𝐷𝑓 𝑡 + 𝑟0 

Step 2: Real-time market 

Actual demand 
𝐷𝑎 𝑡 = 𝐷 𝑡 + 𝐷𝑓 𝑡   

Actual supply  𝐺𝑎 𝑡 =
𝐺 𝑡 − 1 + 𝐺𝑓 𝑡 + 𝑀(𝑡) 

deterministic 

random control 

We now add the effect of elastic demand / 
flexible service 
Some demand can be «frustrated» (delayed) 

 



Our Macroscopic Model with Elastic Demand 
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Returning Demand 

Expressed 

Demand 

Frustrated 

Demand 

Satisfied 

Demand 

Evaporation 

Control 

Randomness 

Supply 

Natural Demand 

Reserve 

(Excess supply) 

Ramping Constraint 

Backlogged Demand 

min (𝐸𝑎 𝑡 , 𝐺𝑎 𝑡 ) 



Backlogged Demand 

We assume 
backlogged demand 
is subject to two 
processes: update 
and re-submit 

Update term 
(evaporation): 𝜇𝑍 𝑑𝑡 
with 𝜇 > 0 or 𝜇 < 0 
𝜇 is the evaporation 
rate (proportion lost 
per time slot) 

Re-submission term 
𝜆𝑍 𝑑𝑡  
1/𝜆 (time slots) is 
the average delay 
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Supply 

Returning  
Demand 

Expressed 
Demand 

Frustrated 
Demand 

Satisfied 
Demand 

Backlogged Demand 

Natural Demand 

Evaporation 

Control 

Randomness 

Reserve 
(Excess supply) 



Assumption : (𝑀 –  𝐷)  = ARIMA(0, 1, 0) 
typical for deviation from forecast 

𝑀 𝑡 + 1 − 𝐷 𝑡 + 1 −𝑀 𝑡 − 𝐷 𝑡 ≔ 𝑁 𝑡 + 1 ∼ 𝑁(0, 𝜎2) 

 
 
 
 
 
 
 
 
 

2-d Markov chain on continuous state space 
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Macroscopic Model, continued 

S. Meyn 
“Dynamic Models and Dynamic Markets 
for Electric Power Markets” 



The Control Problem 
Control variable:   
𝐺(𝑡 − 1)  
production bought one 
time slot ago in real time 
market 

Controller sees only supply 
𝐺𝑎(𝑡) and expressed 
demand 𝐸𝑎(𝑡) 

Our Problem:  
keep backlog 𝑍(𝑡) stable 

Ramp-up and ramp-down 
constraints 

 𝜉 ≤  𝐺(𝑡) ⎼ 𝐺(𝑡 − 1)  ≤  𝜁 
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Threshold Based Policies 

Forecast supply is adjusted to 
forecast demand   

 

R(t) := reserve = excess of 
demand over supply 
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Threshold policy:  

if 𝑅(𝑡)  <  𝑟 ∗ increase supply to come as close 
to 𝑟∗as possible (considering ramp up 
constraint) 

else decrease supply to come as close to 𝑟∗as 
possible (considering ramp down constraint) 

 

 

 

 



Simulation 

Large 
excursions 
into negative 
reserve and 
large 
backlogs are 
typical 
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r* 



ODE Approximation 
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r* 



Findings : Stability Results 

If evaporation 𝜇 is positive, 
system is stable (ergodic, 
positive recurrent Markov 
chain) for any threshold 𝑟 ∗ 

 

If evaporation 𝜇 is negative, 
system unstable  for any 
threshold 𝑟 ∗ 

Delay does not play a role in  
stability 

Nor do ramp-up / ramp 
down constraints or size of 
reserve 
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Evaporation 

Negative evaporation 𝜇 means: 
delaying a load makes the 
returning load larger than the 
original one. 

 

Could this happen ? 
 

Q. Does letting your house cool down 
now imply 
spending more heat in total  
compared to  
keeping temperature constant ?  

≠ return of the load: 

Q. Does letting your house 
cool down now imply 
spending more heat later ? 

A. Yes 
(you will need to heat up 
your house later -- delayed 
load) 
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Assume the house model of [6] 
 
 
 
 

𝜖 𝑑 𝑡

𝜏

𝑡=1

= 𝐾 𝑇 𝑡 − 𝜃 𝑡

𝜏

𝑡=1

+ 𝐶(𝑇 𝜏 − 𝑇(0) 
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leakiness inertia 

heat provided 
to building outside 

efficiency 

E, total energy  provided 
achieved to 

Scenario Optimal Frustrated 

Building 
temperature 

𝑇∗ 𝑡 , 𝑡 = 0…𝜏 𝑇 𝑡 , 𝑡 = 0…𝜏, 
  𝑇 𝑡 ≤ 𝑇∗(𝑡) 

Heat 
provided 𝐸∗ =

1

𝜖 
𝐾 𝑇∗ 𝑡 − 𝜃 𝑡

𝜏

𝑡=1

+ 𝐶 𝑇∗ 𝜏 − 𝑇∗ 0   

 

 
 

𝐸 < 𝐸∗ 



Findings 
Resistive heating system: 
evaporation is positive. 

 This is why Voltalis bluepod is 
accepted by users 
 

If heat = heat pump, coefficient of 
performance 𝜖 may be variable 
negative evaporation is possible 

 

Electric vehicle: delayed  charge 
may have to be faster, less efficient, 
negative evaporation is possible 
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Conclusions 

A first model of demand response with volatile demand 
and supply 

 

Suggests that negative evaporation makes system 
unstable 
Existing demand-response positive experience (with 
Voltalis/PeakSaver) might not carry over to other loads 

 

Model suggests that large backlogs are possible 
Backlogged load is a new threat to grid operation 
Need to measure and forecast backlogged load 
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COPING WITH WIND VOLATILITY 

2.  
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Gast, Tomozei, Le Boudec.  Optimal Storage Policies with Wind Forecast Uncertainties, 

GreenMetrics 2012 



Wind uncertainties and scheduling 

High wind penetration (60%) 

 

 

 

 

 

 

 

Wind > Demand 

Big storage/Demand 
response 

Low wind penetration (20%) 

 

 

 

 

 

 

 

Prediction error 

Schedule remaining 
production 
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vs 



Problem Statement 

 

Model 
20% wind penetration + prediction  

Schedule P(t+n) 

Imperfect storage (75% efficiency) 

 

Questions: 
Optimal storage size 

Lower bound when efficiency < 100%. 

Scheduling policies with small storage 
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Storage Model, from Bejan et al. [7] 

Demand forcast 

Wind forcast  

 

Goal:  schedule 

 

 

Mismatch: 
 

1. Storage system:  

 

 

 

2. Fast-ramping generation (gas) / Loss 
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Mismatch: 

To compensate the mismatch: 

1. Storage system 

 

 

 

 

2. Fast-ramping generation (gas) / Loss 

Power constraints 

Capacity constraints Efficiency of cycle (~70-80%) 

Storage Model, from Bejan et al. [7] 
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time t 

set 

Demand forecast Wind forecast 

t+n t+1 



Bsaic scheduling policy & metric 

Mismatch: 

Basic schedule: 

Ex: fixed reserve 

Metric:     loss energy    v.s.   Fast-ramping energy used 
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Wind data & forecasting 

Aggregate data from UK     (BMRA data archive https://www.elexonportal.co.uk/) 

 

 

 

 

 

 

 

 

 

 

 

Key parameter: prediction error   
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Demand perfectly predicted 
 
3 years data 

 
Scale wind production to 20% (max 26GW) 

 
 
 
Corrected day ahead forecast 
 
                                                             =19%  

https://www.elexonportal.co.uk/


  

 

 

 

 

 

 

 
Depends on storage characteristics 

Efficiency, maximum power (but not on size) 

Assumption valid if prediction is Arima 

Bound tight for large storage capacity 

     

 

 

 

Theorem.  Assume that the error                                    
conditioned to        is distributed as     . Then: 
 
 
 
 
  where 

A lower bound 
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Lower bound is attained for                      . 
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The BGK policy (from [7]) 

BGK [x] : try to maintain storage in a fixed level  
Compute estimate of storage size  

 

 

 

 

 

 

 

 

 

 

Close to lower bound for large storage 
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Scheduling policies for small storage 

 

Fixed reserve 

BGK [x] : try to maintain storage in a fixed level  

Compute estimate of storage size  

 

Dynamic reserve 
Based on a simplified Markov Decision Process:  

                         cost = energy loss  +     fast-ramping 

 

Optimal policy  

Apply        to                    : 
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Influence of storage capacity on       (      ) 
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Influence of storage capacity on perf. 
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Conclusion 

Maintain storage at fixed level: not optimal 
worse for low capacity 

 

50GWh and 6GW is enough for 26GW of wind 

 

Quality of prediction matters 

 

 

Still gap between lower bound and performance 
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Questions ? 


