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What are “smart” cities?

Smart-* = Monitor, Model, Manage
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Smart cities are composed of many interacting individuals

� Individual objectives lead to collective behaviour.
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“Smart”-* involve more decentralized control

Example 1: Smart-grids
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Research challenge

Develop tractable models for collective adaptive systems.

� Build model from systems (automatic)

� Obtain macroscopic properties in order to help system designers.

April 9, 2015 5 / 42



www.quanticol.eu

Example of questions that we want to answer

� Smart grid – (How) Can we use prices for distributed control?

Gast, Le Boudec, Proutière, Tomozei – Impact of Storage on the Efficiency and Prices in Real-Time Electricity
Markets. ACM e-Energy ’13,
Gast, Le Boudec, Tomozei – Impact of demand-response on the efficiency and prices in real-time electricity
markets. ACM e-Energy ’14,

� Bike-sharing – Can we regulate the system without manually
redistributing the bikes?

Fricker Gast (2014) – Incentives and redistribution in homogeneous bike-sharing systems with stations of finite
capacity. EURO Journal on Transportation.
Waserhole, Jost (2012) – Vehicle Sharing System Pricing Regulation : A Fluid Approximation
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Outline

1 Bike-sharing systems: an overview

2 Mean-field approximation for performance evaluation

3 Macroscopic properties of bike-sharing systems
The homogeneous model
Adding some heterogeneity
Frustration of the demand

4 Conclusion
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Who has already used a bike-sharing system and what
was your experience?
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Bike-sharing is a rather new transportation system.

Map of Velib’ stations in Paris (France).

Example of Velib’:

� 20000 bikes

� 2000 stations.
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Bike-sharing systems

Use it for
a while

take a bike

return it (wherever you want)
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The main problem is the lack of resource

(a) Empty station (b) Full station

Problematic states

The system’s operator want to anticipate and avoid those states.
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How to manage them?

To take good strategic decisions, one need to identify bottlenecks.

Decisions:

� Planning (number of stations, location, size)

� Long term: static pricing, number of bikes.

� Short term operating decisions: dynamic pricing, repositioning.
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State of the art

Visualization of existing systems

� Traces analysis, clustering (Borgnat et al. 10, Vogel et al. 11,
Nair et al. 11, Côme et al. 13. . . )

Short-term / mid-term prediction of availability

� (Ji Won Yoon et al. 12, Guenther et al. 12)

Bike re-positioning (classical RO problem)

� Redistribution based of forecast [Raviv et al. 11, Chemla et al.
13, Pfrommer 13,. . . ]

Planing using macroscopic data
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Visualizing the data: usage varies (data from paris, 2014)

Example : temporal variation

moving
bikes

weekday

weekend

time of the day
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Visualizing the data: usage varies (data from paris, 2014)

Example: spatial variation

Solution:
clustering?

Source: http://www.bicyclette-app.com/fr/ April 9, 2015 15 / 42
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Visualizing the data: usage varies (data from paris, 2014)

Example: spatio-temporal variation

Côme et al (2013) – Spatio-temporal analysis of Dynamic Origin-Destination data using Latent Dirichlet Allocation.
Application to the Vélib’ Bike Sharing System of Paris
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Prediction is for trip planning, multi-modal transportation

Cityride: a predictive bike sharing journey advisor
Ji Won Yoon, Fabio Pinelli, and Francesco
Calabrese, 2012

April 9, 2015 16 / 42



www.quanticol.eu

Our objective

We want to understand the emergent behavior of the model and to
build a rigorous mathematical model that can be analyzed quickly
and fed by data.
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We consider a markovian model

λi (t) take an object

Use it for
a while

Expo(1/µij )

return it

Routing matrix Pij (t)

if station full
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QUANTICOL Research Vision

The QUANTICOL’s objective is to develop an innovative formal
design framework consisting of:

� an unambiguous way of describing the behaviour;

� a logic

� model checking
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Stochastic process algebras

� Models consists of agents which engage in actions at some rate.

c

b

a

� The language is used to generate a Continuous Time Markov
Chain (CTMC) for performance modelling.

CTMC model
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Problem: the state space grows exponentially with the
number of objects.

1 object 10 objects 60 objects
3 states 310 ≈ 105 states 360 ≈ 1028 states

� Only simulation?
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www.quanticol.eu

Mean Field Approximation

We view the population of objects more abstractly, assuming that
individuals are indistinguishable.
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Mean Field Approximation

An occupancy measure records the proportion of agents that are
currently exhibiting each possible state.
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Example: Fluid Model Checking
L.Bortolussi and J.HIllston, Fluid Model Checking, CONCUR 2012

Z	  

%	  

e.g. agent Z is in the blue state until it enters the red state and this
must occur within time 1.7.

� The agent is considered in the mean field created by the rest (it
is represented as a time-inhomogeneous CTMC.) April 9, 2015 25 / 42
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Fluid Model Checking L.Bortolussi and J.HIllston, Fluid Model Checking, CONCUR 2012

ZZ	  

P<0.2(Z@blue  U <1.7 Z@red)  
Property	  of	  object	  Z	  

in	  System	  

Model-‐Checking	  
Algorithm/tool	  

f1	   f2	  f3	  

f4	  

CSL	  formula	  
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The simplest case: homogeneous system with n stations

C = 4

C = 4

C = 4

λ

λ

λ

1
2

µ

1
2

µ

1
2

µ

1
2

µ

For all stations:

� Fixed capacity C

� Arrival rate λ.

� Routing matrix:
homogeneous.

� Travel time:
exponential of
mean 1/µ.

� Other destination
chosen if full (≈
local search).
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We take the limit as n goes to infinity

xi =
1

n
#{stations with i bikes}

∝ ρi

n→∞

For fixed N, Xi is a compli-
cated stochastic process

System is described by an ODE

Use mean field approximation [Kurtz 79]

� Study the system when the number of stations N goes to
infinity.
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Congestion due to random choices is not negligible

Theorem
� As n goes to infinity, at least 2n/(C + 1) stations are

problematic.

� The optimal fleet size is for C
2 + λ

µ bikes per station.
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If the capacity is C = 30 bikes and you use the system
twice a week, you cannot do a trip once a week.
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Improvement can be dramatic with simple incentives

Algorithm: we force the users to go to the station that has the least
number of bikes among the two closest to his destination.

6.5%

0.02%

Proportion of problematic station goes from 2/C to
√

C 2−C/2.
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When the stations have different popularities, the previ-
ous results do not hold.

Popularity of a station is described by (λi , pi ).

� The optimal fleet size can be different than C/2.

� Having stations of infinite capacities can worsen the situation.
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With two clusters, the optimal fleet size is not C/2

Two types of stations: popular and non-popular for arrivals:
λ1/λ2 = 2.

Prop. of
problematic

stations

Fleet size s

Performance is
not optimal for
a fleet size C/2
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Infinite capacities can worsen the situation

Theorem (Malyshev-Yakovlev 96)

When the stations have infinite capacity, then there exists a critical
fleet size sc such that if s > sc , bikes accumulate in a few stations.

Example: station 1 is a destination twice as popular as stations 2 to
9. There are 27 bikes for 9 stations.

number of
bikes in a
station

Time
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Having finite capacities prevent saturation of the demand.
What if we could frustrate some demand?

Model: we have a trip demand Λij (t) and an accepted demand
λij (t).

� Generous policy: λij (t) := Λij(t)

� Possible control λij (t) ≤ Λij (t)
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Frustrating demand can improve the balance of objects

A B

C

10

10

1

110

10
Users want to go to
C . Almost nobody
wants to go to A or
B.

Rate of trips (infinite capacities, infinite vehicles)

Generous policy ≈ 6 trips / time unit

Frustrating policy 20 trips / time unit

Optimal circulation 24 trips / time unit
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Dynamic scenarios have been explored in [Waserhole/Jost
2012]

Trips per
Second

half capacity is not optimal

Frustrating policies: +40% of successful trips
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Take-away message

Z	  

%	  

Mean-field approximation makes possible the study of large
systems.

Performance of bike-sharing is poor, even for homogeneous
scenarios (1/C of problematic stations). Incentives or frustration can
help.

If an ideal symmetric system works poorly, do not expect perfect
service in a real system ;)
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Limitations of the current approach and future work

This work is part of a bigger project quanƟcol. . ...............................

Visualization of traces and Influence of geometry.

Language and mathematical foundation.

Distributed control for electric distribution network.
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To learn more: http://mescal.imag.fr/membres/nicolas.gast/
the slides are online

www.quanticol.eu –

Mean-field models for performance evaluation Bortolussi and Hillston (2012), Fluid
Model Checking, CONCUR 2012
Benäım, Le Boudec (2012) A class of mean field interaction models for computer and communication systems,
Performance evaluation 2008

Bike-sharing systems Fricker Gast (2014) – Incentives and redistribution in homogeneous bike-sharing
systems with stations of finite capacity. EURO Journal on Transportation.
Fricker, Gast, Mohamed (2012). Mean field analysis for inhomogeneous bike sharing systems DMTCS Proc.
Waserhole, Jost (2012) – Vehicle Sharing System Pricing Regulation : A Fluid Approximation
Malyshev and Yakovlev. Condensation in large closed Jackson networks. Ann. Appl. Proba. 1996.
Côme et al (2013) – Spatio-temporal analysis of Dynamic Origin-Destination data using Latent Dirichlet Allocation.
Application to the Vélib’ Bike Sharing System of Paris
Ji Won Yoon et al. (2012) Cityride: a predictive bike sharing journey advisor

Smart-grids Gast, Le Boudec, Proutière, Tomozei – Impact of Storage on the Efficiency and Prices in
Real-Time Electricity Markets. ACM e-Energy ’13,
Gast, Le Boudec, Tomozei – Impact of demand-response on the efficiency and prices in real-time electricity markets.
ACM e-Energy ’14,
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