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Transient and steady-state analysis

Q =

 −1 1 0
0 −2 2

0.1 0 −0.1



Transient analysis: the master equation

If X is a CTMC (continuous time Markov chain) with generator Q:

where Pi (t) = P(X (t) = i).

Steady-state analysis

If the chain is irreducible,

� The equation πQ = 0 has a unique solution such that∑
i πi = 1.

� limi→∞ Pi (t) = πi
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The state space explosion

313 ≈ 106 states.

We need to keep track of SN states

P(X1(t) = i1, . . . ,Xn(t) = in)

The generator Q has SN entries.

The decoupling assumption is

P(X1(t) = i1, . . . ,Xn(t) = in)︸ ︷︷ ︸
SN variables

≈ P(X1(t) = i1) . . .P(Xn(t) = in)︸ ︷︷ ︸
N×S variables

Question: when is this (not) valid?
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A cache-replacement policy
G. Van Houdt, 2015

Application

data source

cache

requests

one item is replaced
(at random)

miss
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A cache-replacement policy
G. Van Houdt, 2015

Application

data source

cache

requestshit

one item is replaced
(at random)

miss
Model:

� Items have the same size.

� Cache can store m items.

� There are n items. Item i is
requested with probability pi .

Goal
� Compute P(item 1 is in cache)

� Compute hit probability.
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A cache-replacement policy
G. Van Houdt, 2015

Application

data source

cache

requestshit

one item is replaced
(at random)

miss Markov model

State space : set of m distinct items.

Transitions:

{i1 . . . im} 7→ {i1 . . . ik−1, j , ik+1 . . . in}

with probability pj/m.
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Application

data source

cache

requestshit

one item is replaced
(at random)

miss

Markov model

State space : set of m distinct items.

Transitions:

{i1 . . . im} 7→ {i1 . . . ik−1, j , ik+1 . . . in}

with probability pj/m.

Decoupling assumption

P(i1 . . . im) ≈ P(i1)︸︷︷︸
=:xi1

. . .P(im)
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Application

data source

cache

requestshit

one item is replaced
(at random)

miss

If we zoom on object k :

out in cache

pk

1

m

∑
j not in cache

pj︸ ︷︷ ︸
≈
∑

j pj (1−xj )

Mean-field model

Let xk := P(item k is in the cache).

ẋk = pk(1− xk)−
∑

`(p`(1−x`))
m xk .
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A cache-replacement policy: simulation
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Figure: Popularities of objects change every 2000 steps.
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Stationary distribution

Fixed point equation

� 0 = ẋk = pk(1− xk)−
∑

`(p`(1−x`))
m xk .

�
∑

k xk = m.

(ref: Dan and Towsley, Gast Van Houdt, ... )

Algorithm: easy to solve:

1. Define xk(T ) the solution of pk(1− xk)− Txk .
� xk(T ) = pk/(1 + T )

2. Find T such that
∑

k(1− xk(T )) = m.

SFM, Bertinoro, June 21, 2016 9 / 59



www.quanticol.eu

Stationary distribution

Fixed point equation
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Decoupling and ẋ = xQ(x)

P(X1(t) = i1, . . . ,Xn(t) = in) ≈ P(X1(t) = i1)︸ ︷︷ ︸
=x1,i1

(t)

. . .P(Xn(t) = in)︸ ︷︷ ︸
=xn,in (t)

When we zoom on one object

P(X1(t + dt) = j |X1(t) = i) ≈ E [P(X1(t) = j |X1 = i ∧ X2 . . .Xn)]

≈ Q
(1)
i ,j (x) :=

∑
i2...in

K(i ,i2...in)→(j ,j2...jn)x2,i2 . . . xn,in

We then get:
d

dt
x1,j(t) ≈

∑
i

x1,iQ
(1)
i ,j
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Transient regime

Theorem (Snitzman (99), Kurtz (70’), Benaim, Le Boudec
(08),...)

For fixed t, the decoupling assumption is equivalent to the mean-field
convergence.

For example (remember Luca’s talk), if x 7→ xQ(x) is
Lipschitz-continuous then, as the number of objects N goes to
infinity:

lim
N→∞

P(Xk(t) = i) = xk,i (t),

where x satisfies ẋ = xQ(x).
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The fixed point method

Transient regime

Stationary

Markov chain

ṗ = pK

πK = 0

t →∞

Mean-field

ẋ = xQ(x)

xQ(x) = 0
fixed points

N →∞

Method was used in many papers: Bianchi 001 Ramaiyan et al. 082

Kwak et al. 053 Kumar et al 084

1
Performance analysis of the IEEE 802.11 distributed coordination function.

2
Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability.

3
Performance analysis of exponenetial backoff.

4
New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs.
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ẋ = xQ(x)

xQ(x) = 0
fixed points

N →∞

?

Method was used in many papers: Bianchi 001 Ramaiyan et al. 082

Kwak et al. 053 Kumar et al 084

1
Performance analysis of the IEEE 802.11 distributed coordination function.

2
Fixed point analys is of single cell IEEE 802.11e WLANs: Uniqueness, multistability.

3
Performance analysis of exponenetial backoff.

4
New insights from a fixed-point analysis of single cell IEEE 802.11 WLANs.

SFM, Bertinoro, June 21, 2016 14 /

59



www.quanticol.eu

Does it always work?56

SIRS model:
� A node S becomes I at rate 1 (external infection)
� When a S meets an I, it becomes infected at rate 1/(S + a)
� An I recovers at rate 5.
� A node R becomes S by:

� meeting a node S (rate 10S)
� alone (at rate 10−3).

S

I

R

1 + 10I
S+a 5

10S + 10−3

5Benaim Le Boudec 08
6Cho, Le Boudec, Jiang, On the Asymptotic Validity of the Decoupling

Assumption for Analyzing 802.11 MAC Protoco. 2010
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Does it always work?78

S

I

R

1 + 10I
S+a 5

10S + 10−3

� Markov chain is irreducible.

� Unique fixed point xQ(x) = 0.

Fixed point Stat. measure
xQ(x) = 0 N = 1000

xS xI πS πI
a = .3 0.209 0.234 0.209 0.234

a = .1 0.078 0.126 0.11 0.13

7Benaim Le Boudec 08
8Cho, Le Boudec, Jiang, On the Asymptotic Validity of the Decoupling

Assumption for Analyzing 802.11 MAC Protoco. 2010
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What happened?
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What happened?

(xS = 0.078, xI = 0.126), (πS = 0.11, πI = 0.13)
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Fixed points?

Transient regime

Stationary

Markov chain

ṗ = pK

πK = 0

t →∞

Mean-field

ẋ = xQ(x)

xQ(x) = 0
fixed points

N →∞

N →∞

t →∞if yes

then yes

Theorem ((i) Benaim Le Boudec 08,(ii) Le Boudec 12)

The stationary distribution πN concentrates on the fixed points if :

(i) All trajectories of the ODE converges to the fixed points.

(ii) (or) The Markov chain is reversible.
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Steady-state: theorem

Theorem

Let us consider a mean-field model for which xN converges to the
solution of ẋ = f (x). Then:

� If all trajectories converge to a unique fixed point x∗, the πN

converges to x∗.

Note: unique fixed point implies the decoupling assumption:

SFM, Bertinoro, June 21, 2016 20 /
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Quiz

Consider the SIRS model:

0.0
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1.0

1.0

0.0

0.0 1.00.0

1.0

1.0

0.0

0.0 1.0

Fixed point
true stationnary distribution

limit cycle

R

S

I

positive correlation

Under the stationary distribu-
tion πN :

(A) As there are no fixed
point, there is no such
stationary distribution.

(B) P(X1 = S ,X2 = S) ≈
P(X1 = S)P(X2 = S)

(C) P(X1 = S ,X2 = S) >
P(X1 = S)P(X2 = S)

(D) P(X1 = S ,X2 = S) <
P(X1 = S)P(X2 = S)

Answer: C

P(X1(t) = S ,X2(t) = S) = x1(t)2. Thus: positively correlated.
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(C) P(X1 = S ,X2 = S) >
P(X1 = S)P(X2 = S)

(D) P(X1 = S ,X2 = S) <
P(X1 = S)P(X2 = S)

Answer: C

P(X1(t) = S ,X2(t) = S) = x1(t)2. Thus: positively correlated.SFM, Bertinoro, June 21, 2016 21 /
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Lyapunov functions
How to show that trajectories converge to a fixed point?

A solution of d
dt x(t) = xQ(x(t)) converges to the fixed points of

xQ(x) = 0, if there exists a Lyapunov function f , that is:

� Lower bounded: infx f (x) > +∞
� Decreasing along trajectories:

d

dt
f (x(t)) < 0,

whenever x(t)Q(x(t)) 6= 0.

How to find a Lyapunov function
� Energy? Distance? Entropy? Luck?

SFM, Bertinoro, June 21, 2016 22 /
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The relative entropy is a Lyapunov function
for Markov chains

Let Q be the generator of an irreducible Markov chain and π be its
stationary distribution. Let P(t) be the solution of d

dtP(t) = P(t)Q.

Theorem (e.g. Budhiraja et al 15, Dupuis-Fischer 11)

The relative entropy

R(P‖π) =
∑
i

Pi log
Pi

πi

is a Lyapunov function:

d

dt
R(P(t)‖π) < 0,

with equality if and only if P(t) = π.

SFM, Bertinoro, June 21, 2016 23 /
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Relative entropy for mean-field models

Assume that Q(x) be a generator of an irreducible Markov chain and
let π(x) be its stationary distribution. Let P(t) be the solution of
d
dtP(t) = P(t)Q(P(t)). Then

d

dt
R(P(t)‖π(t)) =

d

dt
P(t)

∂

∂P
R(P(t), π(t))︸ ︷︷ ︸
≤0

+
d

dt
π(t)

∂

∂π
R(P(t), π(t))︸ ︷︷ ︸

=−
∑

i xi (t) d
dt

log πi (t)

≤ −
∑
i

xi (t)
d

dt
log πi (t)

Theorem

If there exists a lower bounded integral F (x) of
−
∑

i xi (t) d
dt log πi (t), then x 7→ R(x‖π(x)) + F (x) is a Lyapunov

function for the mean-field model.

SFM, Bertinoro, June 21, 2016 24 /
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The decoupling assumption: conclusion

� Decoupling ≈ mean-field convergence

� If the rates are continuous, convergence holds for the transient
regime

� The stationary regime should be handle with care
� The uniqueness of the fixed point is not enough.
� Lyapunov functions can help but are not easy to find.

SFM, Bertinoro, June 21, 2016 25 /
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Outline

1 The decoupling method: finite and infinite time horizon
Illustration of the method
Finite time horizon: some theory
Steady-state regime

2 Rate of convergence

3 Optimal control and mean-field games
Centralized control
Decentralized control and games

4 Conclusion and recap
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A martingale argument

The drift of a mean-field model is X (t) satisfies

lim
dt→0

1

dt
E [X (t + dt)− X (t)|X (t) = x ] = f (x)

lim
dt→0

1

dt
var [X (t + dt)− X (t)− f (X (t))|X (t) = x ] ≤ C/N

This means that:

M(t) = X (t)− (x0 −
∫ t

0
f (X (s))ds)

is such that:

E [M(t) | Fs ] = M(s)︸ ︷︷ ︸
M(t) is a martingale

∧ var [M(t)] ≤ Ct/N︸ ︷︷ ︸
Small variance

.
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Martingale concentration results

Let M(t) be such that:

E [M(t) | Fs ] = M(s)︸ ︷︷ ︸
M(t) is a martingale

∧ var [M(t)] ≤ C/N︸ ︷︷ ︸
Small variance

.

Then: (Doob’s inequality):

P

[
sup
t≤T
‖M(t)‖ ≥ ε

]
≤ C

Nε2
.

SFM, Bertinoro, June 21, 2016 28 /
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Mean-field convergence

Going back to slide 1, we have:

X (t) = x0 +

∫ t

0
f (X (s))ds + M(t)︸ ︷︷ ︸

small by previous slide

Is X (t) close to ẋ = f (x)?

SFM, Bertinoro, June 21, 2016 29 /
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SFM, Bertinoro, June 21, 2016 29 /

59



www.quanticol.eu

The initial value problem
“Dynamical systems 101”

The initial value problem:{
ẋ = f (x)
x(0) = x0 ∈ Rd .

The existence and solution is guaranteed by the Picard-Cauchy
theorem:

� If f is Lipschitz-continuous on Rd , then there exists a unique
solution on [0,T ].

SFM, Bertinoro, June 21, 2016 30 /

59



www.quanticol.eu

Uniqueness of solution
“Dynamical system 101 (ctn)”

Reminder: f is Lipschitz-continuous if there exists L such that:
∀x , y ∈ Rd :

‖f (x)− f (y)‖ ≤ L ‖x − y‖ .

If x(t) = x0 +
∫ t

0 f (x(s))ds and y(t) = y0 +
∫ t

0 f (y(s))ds + ε then

‖x(t)− y(t)‖ ≤ L

∫ t

0
‖x(s)− y(s)‖+ ‖x0 − y0‖+ ε.

Gronwall’s Lemma: this implies that

‖x(t)− y(t)‖ ≤ (‖x0 − y0‖+ ε)eLt .

SFM, Bertinoro, June 21, 2016 31 /
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Consequence

Theorem

If XN(0) = x0, then:

E

[
sup
t≤T

∥∥∥XN(t)− x(t)
∥∥∥] ≤ O

( 1√
N

)
eLT .
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Rate of convergence: recap and some
extensions

The speed of convergence can be extended to

� Non-smooth dynamics (one sided Lipschitz functions)

� Steady-state (if f is C 2 and unique attractor)

� E [X (t)]

It cannot be extended to

� General non-Lipschitz dynamics.

� Steady-state with no attractor.
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Outline

1 The decoupling method: finite and infinite time horizon
Illustration of the method
Finite time horizon: some theory
Steady-state regime

2 Rate of convergence

3 Optimal control and mean-field games
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Optimal control

� Stochastic optimal control: closed-loop policies
actions(t+1)=function(state(t)).

� Deterministic optimal control: open-loop policies are optimal.
SFM, Bertinoro, June 21, 2016 35 /
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Markov decision processes
Reference: Puterman (2014)

Example: You can throw a 6-face dice up to 5 times. You win the
number on the last dice. When should you stop?

Definition: a Markov decision process (MDP)

� State space

{1. . . 6}

/ action space

={stop, continue}

� Transition probabilities : p(X (t + 1) = j |X (t) = i , action)

p(X (t + 1) = i) = 1/6 if continue. p(X (t + 1) = X (t)) = 1 if
stop.

� Instantaneous cost: cost(t, state, action).

� Objective:
minE [cost(t,Xt , action)]
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Example of Markov decision process

You can throw a 6-face dice up to 5 times. You win the number on
the last dice. When should you stop?
Value iteration (Bellman’s equation)

Vt(i) = max
action

cost(t, i , action)+E [Vt+1(X (t + 1) | X (t) = i , action)] .

Example:

t 1 2 3 4 5
i

1

4.95 4.66 4.25 3.5 1

2

4.95 4.66 4.25 3.5 2

3

4.95 4.66 4.25 3.5 3

4

4.95 4.66 4.25 4 4

5

5 5 5 5 5

6

6 6 6 6 6
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The curse of dimensionality

To solve Bellman’s equation, we need to iterate over the whole state
space.

Vt(i) = min
action

cost(t, i , action)+E [Vt+1(X (t + 1) | X (t) = i , action)] .

Alternative:

� Approximate dynamic programming (learning)

� Mean-field optimal control

SFM, Bertinoro, June 21, 2016 38 /
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Example of mean-field control

MDP Mean-field optimization
Find π(t,X ) to minimize

V π,N = E

[∑
t

cost(Xt , π(t,Xt))

]

subject to P(Xt+1 = i |Xt =
j , π(.) = a) = Pi ,j ,a.

Find a(t) to minimize

V a =

∫ T

0
cost(xt , at)dt

subject to ẋt = f (xt , at)

Theorem (G. Gaujal, Le Boudec 2012)

If the drift and costs are Lipschitz, then

� the VN,∗ → V ∗

� An open-loop policy a∗ is optimal

SFM, Bertinoro, June 21, 2016 39 /
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Mean-field control: example

   0

  20

  40

  60

  80

 0 20 40 60 80

 0

20

40

60

80

Proportion of Infected Population

Proportion of Susceptible Population

Pr
op

or
tio

n 
of

 R
ec

ov
er

ed
 a

nd
 V

ac
ci

na
te

d 
Po

pu
la

tio
n

OPT: MAX
MFE: MAX

OPT: MAX
MFE: NO

OPT: NO
MFE: NO

S

I R

V

γmI (t)

π(t)

ρ

SFM, Bertinoro, June 21, 2016 40 /

59



www.quanticol.eu

Outline

1 The decoupling method: finite and infinite time horizon
Illustration of the method
Finite time horizon: some theory
Steady-state regime
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Motivation

Mean field games (Lions and Lasry, 2007 and Caines, 2007) capture
the dynamic evolution of a large population of strategic players.
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Game Taxinomy

� static games: payoff
matrix per player.
Strategy of one player is a
(randomized) action.

Solution of the game:
Nash equilibrium.

� population games: infinite
number of identical
players.
Players profiles replaced
by action profiles.

Solution of the game:
Wardrop equilibrium

� Stochastic (repeated)
games: payoff is the
(disc.) sum from 0 to T .
Strategy of a player is a
policy (function).

Solution: Sub-game
Perfect Eq. + folk
theorem.

� Mean field games:
dynamic games over
infinite number of players.

Solution of the game:
mean field equilibrium.
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Static game example
The prisoner’s dilemma

Two possible actions: {C ,D}.
The cost matrix is:

C D

C 1, 1 3, 0

D 0, 3 2, 2

(1)

Lemma

There exists a unique Nash equilibrium that consists in playing D.
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Do the equilibria converge?

Static game (N players) Stochastic (repeated games)

population games Mean-field games

repeat

N →∞
repeat
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Do the equilibria converge?

Static game (N players) Stochastic (repeated games)

population games Mean-field games

repeat

N →∞
repeat

??N → +∞??

SFM, Bertinoro, June 21, 2016 45 /

59



www.quanticol.eu

Stochastic Games with Identical Players

Introduced by Shapley, 1953.
Here, players are interchangeable: the dynamics, the costs and the
strategies only depend on the population distribution.
State at time t:
X(t) = (X1(t), . . . ,Xn(t), . . . ,XN(t)), with Xn(t) ∈ S (finite set).

evolves in continuous time: player n takes actions An(t) ∈ A at
instants distributed w.r.t. a Poisson process, independently of the
others.
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Stochastic Games
Dynamics and costs

Players interact according to a mean-field model:

P

[
Xn(t + dt) = j

∣∣∣∣Xn(t) = i ,An(t) = a,M(t) = m

]
= Pij(a,m)dt

Strategy of a player: π : (X (t),m) 7→ A(t).

Instantaneous cost: C (Xn(t),An(t),M(t)).

Player n chooses a strategy πn to minimize her expected
β-discounted payoff V (πn, π), knowing the strategies of the others:

VN(πn, π) = E
[∫

e−βtC (Xn(t),An(t),M(t))

∣∣∣∣ An has d.b. πn

An′ has d.b. π (n′ 6= n)

]
.
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Stochastic Games
Nash Equilibria

Definition (Nash Equilibrium)

For a given set of strategies Π, a strategy π ∈ Π is called a
symmetric Nash equilibrium in Π for the N-player game if, for any
strategy πn ∈ Π,

VN(π, π) ≤ VN(πn, π).

Existence is guaranteed when the dynamics and the costs are
continuous functions of the population (Fink, 1964).
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Mean-Field Game Model

In the mean-field limit, the population distribution mπ(t) ∈ P(S)
satisfies the mean-field equation:

ṁπ
j (t) =

∑
i∈S

∑
a∈A

mπ
i (t)Qij(a,m

π(t))πi ,a(mπ(t)). (2)

We focus on a particular player, that we call Player 0.
Thanks to the decoupling assumption, the P(X0 = j) = xj satisfies:

ẋj(t) =
∑
i∈S

∑
a∈A

xi (t)Qij(a,m
π(t))πni ,a(t). (3)
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Mean-Field Game Model
Instantaneous cost and mean-field equilibria

The discounted cost of Player 0 is

V (π0, π) =

∫ ∞
0

(∑
i∈S

∑
a∈A

xi (t)Ci ,a(mπ(t))π0
i ,a(mπ(t))e−βt

)
dt,

Definition (Mean-Field Equilibrium)

A strategy is a (symmetric) mean-field equilibrium if

V (πMFE , πMFE ) ≤ V (π, πMFE ).
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Convergence of continuous policies

Theorem (Existence of equilibrium, Doncel, G., Gaujal 2016)

Assume that Qij(a,m) and Cia(m) are continuous in m. Then, there
always exists a mean-field equilibrium.

Applying the Kakutani fixed point theorem for infinite dimension
spaces to the population distribution (instead of directly to
strategies). Does not require convexity assumptions as in Gomes,
Mohr, Souza, 2013.

Theorem (Convergence, Tembine et al., 2009)

If Ci ,a(m), Qij(a,m) and the policy πi (m) are continuous in m then
the population of the finite game converges to the solution of the
differential equation (2) and the evolution of one player converges to
the solution of (3).

Question: where is the catch?
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Non-convergence in General

We consider a matching game version of the prisoner’s dilemma. The
state space: S = {C ,D} and A = S. Population distribution is
m = (mC ,mD). Cost of a player:

Ci ,i (m) =

{
mC + 3mD if i = C
2mD if i = D

This is the expected cost of a player matched with another player at
random and using the cost matrix:

C D

C 1, 1 3, 0

D 0, 3 2, 2

(4)

Lemma

There exists a unique mean-field equilibrium π∞ that consists in
always playing D. SFM, Bertinoro, June 21, 2016 52 /
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Non-convergence in General (II)

Let us define the following stationary strategy for N players:

πN(M) =

{
D if MC < 1
C if MC = 1.

“play C as long as everyone else is playing C. Play D as soon as
another player deviates to D.”

Lemma

For β < 1 and N large, πN is a sub-game perfect equilibrium of the
N-player stochastic game.
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Non-convergence in General (proofs)

Assume that all players, except player 0, play the strategy πN and let
us compute the best response of player 0.
If at time t0, MC < 1, then the best response of player 0 is to play D.

If MC = 1 then using π, has a cost
1
N

∑∞
i=0 e

−βi/N =
∫

exp(−βt)dt + O(1/N) = 1/β + O(1/N).
If player 0 chooses action D, all players will also play D after the
next step. This implies that MD(t) ≈ 1− exp(−t) and that the
player 0 will suffer a cost equal to∫∞

0 (xC (t) + 2− 2e−t)e−βtdt + O(1/N) ≥ 2/(β(β + 1)) + O(1/N).
This shows that when β < 1, player 0 has no incentive to deviate
from the strategy πN so that, πN is a sug-game perfect equilibrium.
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Mean-field Games: Conclusion

With repeated game with a finite number of players, it is possible to
define many equilibria by using the “tit for tat” principle (Folk
Theorem).

When the number of players is infinite, the deviation of a single
player is not visible by the population, the equilibria based on the “tit
for tat” principle do not scale at the mean-field limit.

� This is all the more damaging because these equilibria have very
good social costs: mean-field games fail to describe the best
equilibria.

Are mean-field games good models?
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Recap

1. Mean-field ≈ decoupling assumption
� Valid for finite time.
� Infinite horizon should be handle with care

2. Rate of convergence
� O(1/

√
N) under a Lipschitz condition.

3. Controlled problems
� OK for centralized control
� Not that OK for games
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Thank you!

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr
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