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Quiz: what is the value of energy?

Average price is 20$/MWh.
Average production is 0.

1 0$.

YES: If you are a private
consumer.

2 150k$

YES: If you buy on the
real-time electricity market
(Texas, mar 3 2012)

3 −150k$.

NO (but YES for the red
curve! Texas, march 3rd
2012)
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Can we understand real-time electricity prices?

Source: Cho-Meyn 2006.

Prices
in
$/MWh

Time of the day Time of the day

Is it price manipulation or an efficient market?
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Motivation and (quick) related work

Control by prices and distributed optimization

PowerMatcher: multiagent control in the electricity infrastructure –
Kok et al. (2005)

Real-time dynamic multilevel optimization for demand-side load
management – Ha et al. (2007)

Theoretical and Practical Foundations of Large-Scale Agent-Based
Micro-Storage in the Smart Grid – Vytelingum et al (2011)

Dynamic Network Energy Management via Proximal Message Passing
– Kraning et al (2013)

Fluctuations of prices in real-time electrical markets

Dynamic competitive equilibria in electricity markets – Wang et al
(2012)
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Issue: The electric grid is a large, complex system

It is governed by a mix of economics (efficiency) and regulation (safety).
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Our contribution

We study a simple real-time market model that includes demand-response.

Real-time prices can be used for control
I Socially optimal
I Provable and decentralized methods

However:
I There is a high price fluctuation
I Demand-response makes forecast more difficult
I Market structure provide no incentive to install large demand-response

capacity
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We consider the simplest model that takes the dynamical
constraints into account (extension of Wang et al. 2012)

•Demand Supplier

Flexible loads Storage (e.g. battery)

Each player has internal utility/constraints and exchange energy
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Two examples of internal utility functions and constraints
Generator: generates G (t) units of energy at time t.

I Cost of generation: cG (t).
I Ramping constraints: ζ− ≤ G (t + 1)− G (t) ≤ ζ+.

Flexible loads: population of N thermostatic appliances: Markov model

=

Consumption can be
anticipated/delayed
but

I Fatigue effect

I Mini-cycle
avoidance

I Internal cost: temperature deadband.
I Constraints: Markov evolution and temperature deadband, switch

on/off.
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We assume perfect competition between 2, 3 or 4 players
(supplier, demand, storage operator, flexible demand aggregator)

Player i maximizes:

argmax
Ei∈internal constraints of i

E

∫ ∞
0

Wi (t)︸ ︷︷ ︸
internal utility

− P(t)Ei (t)︸ ︷︷ ︸
(spot price)×(bought/sold energy)

dt
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We assume perfect competition between 2, 3 or 4 players
(supplier, demand, storage operator, flexible demand aggregator)

Player i maximizes:

argmax
Ei∈internal constraints of i

Players share a common probabilistic forecast model

E

∫ ∞
0

Wi (t)︸ ︷︷ ︸
internal utility

−

Players cannot influence P(t).

P(t)Ei (t)︸ ︷︷ ︸
(spot price)×(bought/sold energy)

dt
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Definition: a competitive equilibrium is a price for which
players selfishly agree on what should be bought and sold.

(Pe ,E e
1 , . . . ,E

e
j ) is a competitive equilibrium if:

For any player i , E e
i is a selfish best response to P:

argmax
Ei∈internal constraints of i

E

∫ ∞
0

Wi (t)︸ ︷︷ ︸
internal utility

− P(t)Ei (t)︸ ︷︷ ︸
bought/sold energy

dt


The energy balance condition: for all t:∑

i∈players

E e
i (t) = 0.
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An (hypothetical) social planner’s problem wants to
maximize the sum of the welfare.

(E e
1 , . . . ,E

e
j ) is socially optimal if it maximizes E


∫ ∞

0

∑
i∈ players

Wi (t)︸ ︷︷ ︸
social utility

dt

,

subject to

For any player i , E e
i satisfies the constraints of player i .

The energy balance condition: for all t:∑
i∈players

E e
i (t) = 0.
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The market is efficient (first welfare theorem)

Theorem

For any installed quantity of demand-response or
storage, any competitive equilibrium is socially optimal.

If players agree on what should be bought or sold, then it corresponds to a
socially optimal allocation.
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Proof. The first welfare theorem is a Lagrangian
decomposition

For any price process P:

max
Ei satisfies constraints i

∀t :
∑

i Ei (t) = 0

E

 ∑
i∈players

∫
Wi (t)dt


social planner’s problem

≤
∑

i∈players

max
Ei satisfies constraints i

E
[∫

(Wi (t) + P(t)Ei (t))dt

]selfish response to prices

If the selfish responses are such that
∑
i

Ei (t) = 0, the inequality is an

equality.
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What is the price equilibrium? Is it smooth?

Production has ramping constraints,

Demand does not.
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Fact 1. Without storage or DR, prices are never equal to
the marginal production cost (Wang et al. 2012)

No storage
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Fact 2. Perfect storage leads to a price concentration

Small storage Large storage
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Fact 3. Because of (in)efficiency, the price oscillates, even
for large storage

0 5 10
0
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15000

price
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Perfect storage: price becomes equal
to the marginal production cost

Realistic storage: two modes in
√
η

and 1/
√
η
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Reminder: If there exists a price such that selfish decisions leads to
energy balance, then these decisions are optimal.

•
Price P(t)

Demand Supplier

Flexible loads Storage (e.g. battery)

Theorem

For any installed quantity of demand-response or
storage:

There exists such a price.

We can compute it (convergence guarantee).
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We design a decentralized optimization algorithm based on
an iterative scheme

Price P(t)

Generator

Demand

...

Fridges

1. forecast price P(1), . . . , P(T ), Ē

2. forecasts consumption E

3. Update price

Iterative algorithm based on ADMM

Theorem

The algorithm converges.
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We use ADMM iterations.

Augmented Lagrangian:

Lρ(E ,P) :=
∑

i∈players

Wi (Ei ) +
∑
t

P(t)

(∑
i

Ei (t)

)
− ρ

2

∑
t,i

(
Ei (t)− Ēi (t)

)2

ADMM (alternating direction method of multipliers):

E k+1 ∈ argmax
E

Lρ(E , Ē k ,Pk) for each player (distributed)

Ē k+1 ∈ argmax
Ē s.t.

∑
i Ēi=0

Lρ(E k+1, Ē , ,Pk) projection (easy)

Pk+1 := Pk − ρ(
∑
i

E k+1
i ) price update
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ADMM converges because the problem is convex

1 Utility functions and constraints are convex
I e.g., Ramping constraints, batteries capacities, flexible appliances
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ADMM converges because the problem is convex

1 Utility functions and constraints are convex

2 We represent forecast errors by multiple trajectories

0 t_1 8h t_2 16h 24h

−10

−5

0

5

10

time (in hours)

fo
re

ca
st

 e
rr

or
 (

in
 G

W
)

Z1=Z3

=Z5=Z7

Z2=Z4

=Z6=Z8

Z4=Z8 Z2=Z6

Z1=Z5
Z3=Z7

Z6

Z1

Z2

Z3 Z7

I Extension of Pinson et al (2009).
I Using covariance of data from the UK
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ADMM converges because the problem is convex

1 Utility functions and constraints are convex

2 We represent forecast errors by multiple trajectories

3 We approximate the behavior of the flexible appliances by a
mean-field approximation

Original system Mean-field approximation
(limit as number of appliances is large)
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The algorithm is distributed: each flexible appliance
computes its best-response to price

=

Object = Markov chain
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Average x−state (mean field approx.)

Nicolas Gast – 25 / 35



Outline

1 Real-Time Market Model and Market Efficiency

2 Numerical Computation and Distributed Optimization

3 Consequences of the (In)Efficiency of the Pricing Scheme

4 Summary and Conclusion

Nicolas Gast – 26 / 35



Reminder: we know how to compute a price such that selfish decision
leads to a social optimum.

•
Price P(t)

Demand Supplier

Flexible loads Storage (e.g. battery)

We can evaluate the effect of more flexible load / more storage.

Is the price smooth?

Impact on social welfare.
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In a perfect world, the benefit of demand-response is
similar to perfect storage

Social Welfare

Installed flexible power (in GW2)

No charge/discharge inefficiencies for demand-response (we can only
anticipate or delay consumption).

2The forecast errors correspond to a total wind capacity of 26GW.
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Problem of demand-response: synchronization might
lead to forecast errors

No Demand-response

Total
consumption

Actual consumption is
close to forecast

With Demand-response

Total
consumption

Problem if we cannot
observe the initial state
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Problem of demand-response. Non-observablity is
detrimental if the penetration is large

We assume that:

The demand-response operator knows the state of its fridges

The day-ahead forecast does not.

Social Welfare

Installed flexible power (in GW3)

3The forecast errors correspond to a total wind capacity of 26GW.
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Problem of the market structure. Incentive to install
less demand-response than the social optimal.

Welfare for storage
owner / demand-
response operator

Installed flexible power (in GW4)

4The forecast errors correspond to a total wind capacity of 26GW.
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Summary

1. Real-time market model (generation dynamics, flexible loads, storage)

•

Price P(t)

Demand Supplier

Flexible loads Storage (e.g. battery)

2. A price such that selfish decisions are feasible leads to a social
optimum.

3. We know how to compute the price.

Trajectorial forecast, mean field and ADMM

4. Benefit of demand-response: flexibility, efficiency
Drawbacks: non-observability, under-investment
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Perspectives

Distributed optimization in smart-grid
I In distribution networks.

I Methodology:
F Distributed Lagrangian (ADMM) is powerful
F Use of trajectorial forecast makes it computable

Optimization in Systems with many small agents.

Virtual prices and/or virtual markets:
I Bike-sharing systems (to solve the optimization problem but not to

define prices for users).
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Model and Forecast

Dynamic competitive equilibria in electricity markets, G. Wang, M.
Negrete-Pincetic, A. Kowli, E. Shafieepoorfard, S. Meyn and U. Shanbhag, Control
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Klockl. Wind energy, 12(1):51-62, 2009

Storage and Demand-response

Impact of storage on the efficiency and prices in real-time electricity markets. N
Gast, JY Le Boudec, A ProutiÃ¨re, DC Tomozei, e-Energy 2013

Impact of Demand-Response on the Efficiency and Prices in Real-Time Electricity
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ADMM

Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
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