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Can we understand real-time electricity prices?

Source: Cho-Meyn 2006.
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Is it price manipulation or an efficient market?
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Motivation and (quick) related work

Control by prices and distributed optimization

o PowerMatcher: multiagent control in the electricity infrastructure —
Kok et al. (2005)

@ Real-time dynamic multilevel optimization for demand-side load
management — Ha et al. (2007)

@ Theoretical and Practical Foundations of Large-Scale Agent-Based
Micro-Storage in the Smart Grid — Vytelingum et al (2011)

@ Dynamic Network Energy Management via Proximal Message Passing
— Kraning et al (2013)

Fluctuations of prices in real-time electrical markets

@© Dynamic competitive equilibria in electricity markets — Wang et al
(2012)
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Issue: The electric grid is a large, complex system

It is governed by a mix of economics (efficiency) and regulation (safety).
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Our contribution

We study a simple real-time market model that includes demand-response.

@ Real-time prices can be used for control
» Socially optimal
» Provable and decentralized methods

@ However:

» There is a high price fluctuation
» Demand-response makes forecast more difficult

» Market structure provide no incentive to install large demand-response

capacity

Nicolas Gast — 6 / 35



Outline

o Real-Time Market Model and Market Efficiency
© Numerical Computation and Distributed Optimization
© Consequences of the (In)Efficiency of the Pricing Scheme

@ Summary and Conclusion
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Outline

0 Real-Time Market Model and Market Efficiency
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We consider the simplest model that takes the dynamical
constraints into account (extension of Wang et al. 2012)

Each player has internal utility/constraints and exchange energy
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Two examples of internal utility functions and constraints

o Generator: generates G(t) units of energy at time t.
» Cost of generation: cG(t).
» Ramping constraints: (~ < G(t+1) — G(t) < (.

Nicolas Gast — 10 / 35



Two examples of internal utility functions and constraints

o Generator: generates G(t) units of energy at time t.
» Cost of generation: cG(t).

» Ramping constraints: (~ < G(t+1) — G(t) < ¢

undesirable states

@ Flexible loads: population of N thermostatic appliances: Markov model

undesirable states
S/
y=0 2

y=Y;

ax

Consumption can be
/? <IN Entlapated/delayed
| / N H ut
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» Fatigue effect

» Mini-cycle
; avoidance

f f
r=0

internal
@ = Xmax

state
> Internal cost: temperature deadband.

» Constraints: Markov evolution and temperature deadband, switch
on /off.
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We assume perfect competition between 2, 3 or 4 players

(supplier, demand, storage operator, flexible demand aggregator)

Player i maximizes:

oo
arg max E / Wi(t) - P(t)E;i(t) dt
E;€cinternal constraints of / 0 N——" N———r

internal utility  (spot price)x (bought/sold energy)
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We assume perfect competition between 2, 3 or 4 players

(supplier, demand, storage operator, flexible demand aggregator)

Player i maximizes:

arg max /OOO Wi(t) - P(t)E(t) dt

E;€internal constraints of /

internal utility  (spot price)x|bought/sold energy)
Players share a common probabilistic forecast model

Players cannot influence P(t).
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Definition: a competitive equilibrium is a price for which
players selfishly agree on what should be bought and sold.

(P, Ef, ..., E7) is a competitive equilibrium if:

e For any player i, Ef is a selfish best response to P:

oo

argmax E / Wi(t) — P(t)Ei(t) dt

E;€cinternal constraints of | 0 S—— SN———
internal utility ~ bought/sold energy

@ The energy balance condition: for all t:

> Ef(t)=0.

i€players
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An (hypothetical) social planner’s problem wants to
maximize the sum of the welfare.

o0
(Ef,..., Ef) is socially optimal if it maximizes E / Z Wi(t) dt |,
0 i€ players
L social utility
subject to

e For any player i, Ef satisfies the constraints of player /.
@ The energy balance condition: for all t:

> Ef(t)=0.

i€players
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The market is efficient (first welfare theorem)

Theorem

For any installed quantity of demand-response or
storage, any competitive equilibrium is socially optimal.

If players agree on what should be bought or sold, then it corresponds to a
socially optimal allocation.
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Proof. The first welfare theorem is a Lagrangian
decomposition

For any price process P:

social planner’s problem

E| Y /W,-(t)dt

max
E; satisfies constraints i icplayers
Vt:)  Ei(t)=0

<

D

i€players

selfish response to prices

max E [/(W,(t) + P(t)Ei(t))dt

E,' satisfies constraints i

If the selfish responses are such that Z Ei(t) = 0, the inequality is an

equality.

1

Nicolas Gast — 15 / 35



Proof. The first welfare theorem is a Lagrangian
decomposition

For any price process P:

social planner’s problem

max E g Wi;(t)dt
E; satisfies constraints i icplayers

Vt:>  Ei(t)=0

selfish response to prices

-y max B | [0+ OB

icplayers E; satisfies constraints i

If the selfish responses are such that Z Ei(t) =0, the inequality is an

1

equality.
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What is the price equilibrium? Is it smooth?
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What is the price equilibrium? Is it smooth?

@ Production has ramping constraints,

@ Demand does not.
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Fact 1. Without storage or DR, prices are never equal to
the marginal production cost (Wang et al. 2012)

generation - demand

price
4
2
0 L L s L
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No storage
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Fact 1. Without storage or DR, prices are never equal to
the marginal production cost (Wang et al. 2012)
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Fact 2. Perfect storage leads to a price concentration
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Fact 3. Because of (in)efficiency, the price oscillates, even
for large storage

0s Distribution has

two modes
025 /

ons
1 .
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Distribution

Perfect storage: price becomes equal Realistic storage: two modes in /7
to the marginal production cost and 1/,/7
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Outline

© Numerical Computation and Distributed Optimization
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Reminder: If there exists a price such that selfish decisions leads to
energy balance, then these decisions are optimal.

Price P(t)

Demand ° Supplier

Theorem

For any installed quantity of demand-response or
storage:

@ There exists such a price.

e We can compute it (convergence guarantee).
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We design a decentralized optimization algorithm based on
an iterative scheme

— lterative algorithm based on ADMM

Generator
Price P(1) 1. forecast price r(),...,P(T), E Demand
U 2. forecasts consumption E :
3. Update price Fridges
Theorem
The algorithm converges. J
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We use ADMM iterations.

Augmented Lagrangian:

L(EP):= > Wi(E)+DP(t) (Za(r))—g (E(t) - E(1)°

i€players t,i

ADMM (alternating direction method of multipliers):

EF ¢ argmaxL,(E, EX, P¥) for each player (distributed)
E
EK1 ¢ arg max Lp(EkH, E., P projection (easy)
E st. Zi E,:O
pktl .= pk_ p(z EFTY) price update
i
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ADMM converges because the problem is convex

@ Utility functions and constraints are convex
» e.g., Ramping constraints, batteries capacities, flexible appliances
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ADMM converges because the problem is convex

@ Utility functions and constraints are convex

@ We represent forecast errors by multiple trajectories

forecast error (in GW)

0 t1 8h t 2 16h 24h
time (in hours)

» Extension of Pinson et al (2009).
» Using covariance of data from the UK
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ADMM converges because

the problem is convex

@ Utility functions and constraints are convex
@ We represent forecast errors by multiple trajectories

© We approximate the behavior of the flexible appliances by a

mean-field approximation

« Susceptible
 Expose
+ Infected
= Recovered
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density
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Mean-field approximation

(limit as number of appliances is large)
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The algorithm is distributed: each flexible appliance
computes its best-response to price

Price

| best response

possible

¥
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= ctio action 14— - - -
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Outline

© Consequences of the (In)Efficiency of the Pricing Scheme
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Reminder: we know how to compute a price such that selfish decision
leads to a social optimum.

We can evaluate the effect of more flexible load / more storage.
@ |s the price smooth?

@ Impact on social welfare.
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In a perfect world, the benefit of demand-response is
similar to perfect storage

100 ¢

Storage n=0.7

, Storage n=1

= + = Fridge L, Ymax=0

= + = Fridge L, Ymax=20min

Social Welfare 50t

0 5 10 15
Installed flexible power (in GW?)

@ No charge/discharge inefficiencies for demand-response (we can only
anticipate or delay consumption).

2The forecast errors correspond to a total wind capacity of 26GW.
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Problem of demand-response: synchronization might

lead to forecast errors

day N day N+1
100 100
actual consumption (day—ahead)\ forecast
80 80 actual
No Demand-response
60 60

Total
consumption 40

20

40
Actual consumption|is

0
0
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Problem of demand-response: synchronization might

lead to forecast errors
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Problem of demand-response. Non-observablity is
detrimental if the penetration is large

We assume that:
@ The demand-response operator knows the state of its fridges

@ The day-ahead forecast does not.

Social Welfare

40() | —e— Fridges L, Ymax=0 (d.—a. cannot observe)
20 = # = Fridges L, Ymax=20min (d-a cannot observe)
== Fridges L, Ymax=20min (d.-a. can observe)

0 20 40 60 80 100
Installed flexible power (in GW?3)

3The forecast errors correspond to a total wind capacity of 26GW.
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Problem of the market structure. Incentive to install
less demand-response than the social optimal.

40 . .
’ e =——4— Battery n=0.7
30} v & |—+Batteryn=1 ]
» ~ ] = ® —Fridges L, Ymax=0
Welfare for storage ~ ~ @ — Fridges L, Ymax=2min|

owner / demand- 20|
response operator

10 o~ . - ]
nll TR -.!

0 . T
0 5 10 15

Installed flexible power (in GW*)

*The forecast errors correspond to a total wind capacity of 26GW.
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Outline

@ Summary and Conclusion
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Summary

1. Real-time market model (generation dynamics, flexible loads, storage)

Price P(t)
Demand ] Supplier

N
r

LFJe}i,b',e,'eaés,l LStorage (e.g. battery) |

2. A price such that selfish decisions are feasible leads to a social
optimum.

3. We know how to compute the price.

@ Trajectorial forecast, mean field and ADMM

4. Benefit of demand-response: flexibility, efficiency
Drawbacks: non-observability, under-investment
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Perspectives

@ Distributed optimization in smart-grid
> In distribution networks.

» Methodology:

* Distributed Lagrangian (ADMM) is powerful
* Use of trajectorial forecast makes it computable

@ Optimization in Systems with many small agents.
@ Virtual prices and/or virtual markets:

» Bike-sharing systems (to solve the optimization problem but not to
define prices for users).
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Model and Forecast

@ Dynamic competitive equilibria in electricity markets, G. Wang, M.
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