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Is it price manipulation or an efficient market?

Source: Meyn 2012.
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Motivation and (quick) related work

Control by prices and distributed optimization

@ PowerMatcher: multiagent control in the electricity infrastructure — Kok et al. (2005)

@ Real-time dynamic multilevel optimization for demand-side load management — Ha et al.
(2007)

@ Theoretical and Practical Foundations of Large-Scale Agent-Based Micro-Storage in the
Smart Grid — Vytelingum et al (2011)

@ Dynamic Network Energy Management via Proximal Message Passing — Kraning et al
(2013)

Fluctuations of prices in real-time electrical markets

@ Dynamic competitive equilibria in electricity markets — Wang et al (2012)
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Issue: The electric grid is a large, complex system
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We study an idealistic real-time market model that
includes demand-response and storage

Question 1. Is there a contradiction between observed prices and
“Market efficiency”?

Question 2. Can real-time prices can be used for control?
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We study an idealistic real-time market model that
includes demand-response and storage

Question 1. Is there a contradiction between observed prices and
“Market efficiency” ?

@ No.
Any price equilibrium leads to a socially optimal allocation.

Question 2. Can real-time prices can be used for control?

@ Yes and no:

Provable and decentralized methods (Lagrangian decomposition)
There is a high price fluctuation
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Outline

o Market Model and Efficiency
© Distributed Computation
© Consequences of the (In)Efficiency of the Pricing Scheme

@ Summary and Conclusion
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Outline

0 Market Model and Efficiency
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We consider the simplest model that takes the dynamical
constraints into account (extension of Wang et al. 2012)

Demand ° Supplier
,,,,,,,, T T

’;Flexible loads | 3 Storage (e.g. battery) 3

Each player is selfish and has internal utility/constraints. It exchanges
energy.
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We assume perfect competition
Users are selfish and price-takers:

o

arg max E / Wi(t) — P(t)Ei(t) dt

E;cinternal constraints of | 0 S—— N———
internal utility  bought/sold energy
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We assume perfect competition
Users are selfish and price-takers:

o
arg max / Wi(t) — | P(t)E(t) dt
E;cinternal constraints of / 0 S——

internal utility  bought/sold energy

Players share a common probabilistic forecast mogel

Players cannot influence P(t).
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We assume perfect competition
Users are selfish and price-takers:

o

arg max E / Wi(t) — P(t)Ei(t) dt

E;cinternal constraints of | 0 S—— N———
internal utility  bought/sold energy

Definition
A competitive equilibrium is a price for which players
selfishly agree on what should be bought and sold:

@ For any player i, Ef is a selfish best response to P:

o Y Ef(t)=0.

i€players
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Two examples of internal utility functions and constraints

o Generator: generates G(t) units of energy at time t.

» Cost of generation: cG(t).
» Ramping constraints: (- < G(t+1) — G(t) < (V.
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Two examples of internal utility functions and constraints

o Generator: generates G(t) units of energy at time t.
» Cost of generation: cG(t).
» Ramping constraints: (~ < G(t+1) — G(t) < (.

@ Flexible loads: population of N thermostatic loads.
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» Consumption can be anticipated/delayed
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The market is efficient (first welfare theorem)

Theorem

For any installed quantity of demand-response or
storage, any competitive equilibrium is socially optimal.

If players agree on what should be bought or sold, then it corresponds to a
socially optimal allocation.
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Proof. The first welfare theorem is a Lagrangian
decomposition

For any price process P:

social planner’s problem

max E g Wi;(t)dt
E; satisfies constraints i icplayers

Vt:>  Ei(t)=0

selfish response to prices

> max E U(W,-(r) + P(t)Ei(t))dt

icplayers E; satisfies constraints i

If the selfish responses are such that Z Ei(t) = 0, the inequality is an

1

equality.
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Proof. The first welfare theorem is a Lagrangian
decomposition

For any price process P:

social planner’s problem

max E g Wi;(t)dt
E; satisfies constraints i icplayers

Vt:>  Ei(t)=0

selfish response to prices

-y max B | [0+ OB

icplayers E; satisfies constraints i

If the selfish responses are such that Z Ei(t) =0, the inequality is an

1

equality.
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Outline

© Distributed Computation
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Reminder: If there exists a price such that selfish decisions leads to
energy balance, then these decisions are optimal.

Theorem

For any installed quantity of demand-response or
storage:

@ There exists such a price.

o We can compute it (convergence guarantee).
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We design a decentralized optimization algorithm based on
an iterative scheme

— lterative algorithm based on ADMM

Generator
Price P(1) 1. forecast price r(),...,P(T), E Demand
U 2. forecasts consumption E :
3. Update price Fridges
Theorem
The algorithm converges. J
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We use ADMM iterations.

Augmented Lagrangian:

L(EP):= > Wi(E)+) P(t) (Za(r))—g (E(t) - E(1)°

i€players t,i

ADMM (alternating direction method of multipliers):

EF ¢ argmaxL,(E, EX, P¥) for each player (distributed)
E
EK1 ¢ arg max Lp(EkH, E., P projection (easy)
E st. Zi E,:O
pktl .= pk_ p(z EFTY) price update
i
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The algorithm is distributed: each flexible appliance
computes its best-response to price

Object

undesirable states
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Outline

© Consequences of the (In)Efficiency of the Pricing Scheme
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Reminder: we know how to compute a price such that selfish decision
leads to a social optimum.

We can evaluate the effect of more flexible load / more storage.
@ |s the price smooth?

@ Impact on social welfare.
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Without storage or DR, prices are never equal to the

marginal production cost (Wang et al. 2012)

generation - demand

price
4
2
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No storage

@ Reason is ramping constraint of generation.
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Without storage or DR, prices are never equal to the
marginal production cost (Wang et al. 2012)
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@ Reason is ramping constraint of generation.
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With perfect information, demand-response is better than
storage

100 ¢

Storage n=0.7

, Storage n=1

= + = Fridge L, Ymax=0

= + = Fridge L, Ymax=20min

Social Welfare 50t

0 5 10 15
Installed flexible power (in GW?)

@ Delaying or anticipating consumption has no charge/discharge
inefficiency.

2The forecast errors correspond to a total wind capacity of 26GW.
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Problem of the market structure: perfect storage or DR
lead to a price concentration

Incentive to install less demand-response than the social optimal.

40 T
f .. —#— Battery n=0.7
30} v & |—+Batteryn=1 ]
» A J-®- Fridges L, Ymax=0
Welfare for storage N ~ ® — Fridges L, Ymax=2min|

owner / demand- 20|
response operator

Installed flexible power (in GW3)

3The forecast errors correspond to a total wind capacity of 26GW.
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@ Summary and Conclusion
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Summary

1. Real-time market model (generation dynamics, flexible loads, storage)
A price such that selfish decisions are feasible leads to a social optimum.

2. We know how to compute the price.

@ Trajectorial forecast, mean field and ADMM

3. Benefit of demand-response: flexibility, efficiency
Drawbacks: non-observability, under-investment
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Perspectives

@ Distributed optimization in smart-grid
» Methodology:

* Distributed Lagrangian (ADMM) is powerful
* Use of trajectorial forecast makes it computable

» In distribution networks.

@ Optimization in Systems with many small agents.
» Virtual prices and/or virtual markets:
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Nicolas Gast — http://mescal.imag.fr/membres/nicolas.gast/
Model and Forecast

@ Dynamic competitive equilibria in electricity markets, G. Wang, M.
Negrete-Pincetic, A. Kowli, E. Shafieepoorfard, S. Meyn and U. Shanbhag, Control
and Optimization Methods for Electric Smart Grids, 35-62 2012,

@ From probabilistic forecasts to statistical scenarios of short-term wind power
production. P. Pinson, H. Madsen, H. A. Nielsen, G. Papaefthymiou, and B.
Klockl. Wind energy, 12(1):51-62, 2009

Storage and Demand-response

@ Impact of storage on the efficiency and prices in real-time electricity markets. N
Gast, JY Le Boudec, A Proutiere, DC Tomozei, e-Energy 2013

@ Impact of Demand-Response on the Efficiency and Prices in Real-Time Electricity
Markets. N Gast, JY Le Boudec, DC Tomozei. e-Energy 2014

ADMM

@ Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Foundations and Trends in Machine Learning, 3(1):1-122, 2011.
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