
Volatility in Real-Time Electricity Markets: efficiency or manipulation?

Nicolas Gast (Inria)¹

G2ELab seminar, Grenoble - December 2014

¹Joint work with Jean-Yves Le Boudec (EPFL), Alexandre Proutiere (KTH) and Dan-Cristian Tomozei (EPFL)

Is it price manipulation or an efficient market?

Source: Meyn 2012.

Motivation and (quick) related work

Control by prices and distributed optimization

- PowerMatcher: multiagent control in the electricity infrastructure Kok et al. (2005)
- Real-time dynamic multilevel optimization for demand-side load management Ha et al. (2007)
- Theoretical and Practical Foundations of Large-Scale Agent-Based Micro-Storage in the Smart Grid Vytelingum et al (2011)
- Dynamic Network Energy Management via Proximal Message Passing Kraning et al (2013)

Fluctuations of prices in real-time electrical markets

• Dynamic competitive equilibria in electricity markets – Wang et al (2012)

Issue: The electric grid is a large, complex system

We study an idealistic real-time market model that includes demand-response and storage

Question 1. Is there a contradiction between observed prices and "Market efficiency"?

Question 2. Can real-time prices can be used for control?

We study an idealistic real-time market model that includes demand-response and storage

Question 1. Is there a contradiction between observed prices and "Market efficiency"?

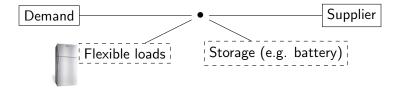
No.

Any price equilibrium leads to a socially optimal allocation.

Question 2. Can real-time prices can be used for control?

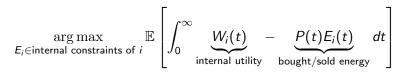
- Yes and no:
 - Provable and decentralized methods (Lagrangian decomposition)
 - There is a high price fluctuation

Outline

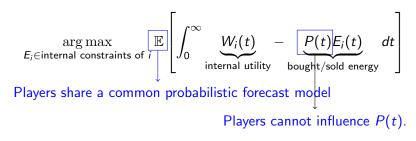

- 2 Distributed Computation
- 3 Consequences of the (In)Efficiency of the Pricing Scheme
- 4 Summary and Conclusion

Outline

- 2 Distributed Computation
- 3 Consequences of the (In)Efficiency of the Pricing Scheme
- 4 Summary and Conclusion


We consider the simplest model that takes the dynamical constraints into account (extension of Wang et al. 2012)

Each player is selfish and has internal utility/constraints. It exchanges energy.


We assume perfect competition

Users are selfish and price-takers:

We assume perfect competition

Users are selfish and price-takers:

We assume perfect competition

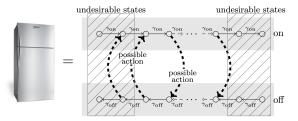
Users are selfish and price-takers:

$$\underset{E_i \in \text{internal constraints of } i}{\arg \max} \mathbb{E}\left[\int_0^\infty \underbrace{W_i(t)}_{\text{internal utility}} - \underbrace{P(t)E_i(t)}_{\text{bought/sold energy}}dt\right]$$

Definition

A competitive equilibrium is a price for which players selfishly agree on what should be bought and sold:

• For any player *i*, E_i^e is a selfish best response to *P*:


•
$$\sum_{i \in \text{players}} E_i^e(t) = 0.$$

Two examples of internal utility functions and constraints

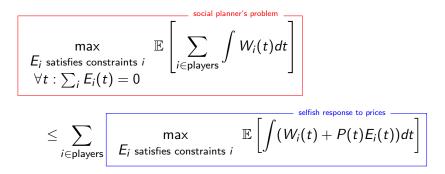
- Generator: generates G(t) units of energy at time t.
 - Cost of generation: cG(t).
 - Ramping constraints: $\zeta^{-} \leq G(t+1) G(t) \leq \zeta^{+}$.

Two examples of internal utility functions and constraints

- Generator: generates G(t) units of energy at time t.
 - Cost of generation: cG(t).
 - Ramping constraints: $\zeta^{-} \leq G(t+1) G(t) \leq \zeta^{+}$.
- Flexible loads: population of N thermostatic loads.

Consumption can be anticipated/delayed

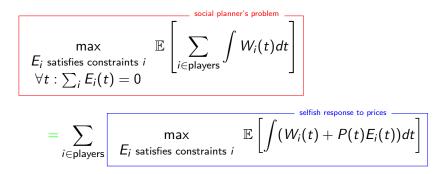
The market is efficient (first welfare theorem)


Theorem

For any installed quantity of demand-response or storage, any competitive equilibrium is socially optimal.

If players agree on what should be bought or sold, then it corresponds to a socially optimal allocation.

Proof. The first welfare theorem is a Lagrangian decomposition


For any price process P:

If the selfish responses are such that $\sum_{i} E_i(t) = 0$, the inequality is an equality.

Proof. The first welfare theorem is a Lagrangian decomposition

For any price process P:

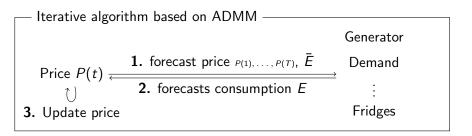
If the selfish responses are such that $\sum_{i} E_i(t) = 0$, the inequality is an equality.

Outline

2 Distributed Computation

3 Consequences of the (In)Efficiency of the Pricing Scheme

4 Summary and Conclusion


Reminder: If there exists a price such that selfish decisions leads to energy balance, then these decisions are optimal.

Theorem

For any installed quantity of demand-response or storage:

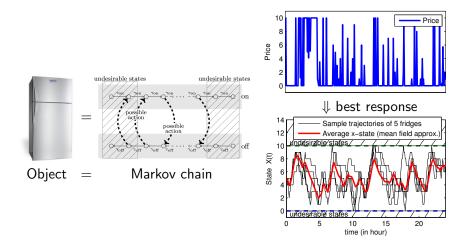
- There exists such a price.
- We can compute it (convergence guarantee).

We design a decentralized optimization algorithm based on an iterative scheme

We use ADMM iterations.

Augmented Lagrangian:

$$L_{\rho}(E,P) := \sum_{i \in \text{players}} W_i(E_i) + \sum_t P(t) \left(\sum_i E_i(t)\right) - \frac{\rho}{2} \sum_{t,i} \left(E_i(t) - \overline{E}_i(t)\right)^2$$


ADMM (alternating direction method of multipliers):

$$E^{k+1} \in \underset{E}{\operatorname{arg\,max}} L_{\rho}(E, \overline{E}^{k}, P^{k}) \quad \text{for each player (distributed)}$$

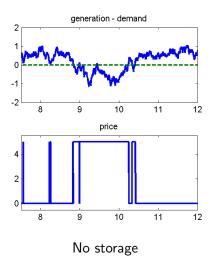
$$\overline{E}^{k+1} \in \underset{E}{\operatorname{arg\,max}} L_{\rho}(E^{k+1}, \overline{E}, P^{k}) \quad \text{projection (easy)}$$

$$P^{k+1} := P^{k} - \rho(\sum_{i} E_{i}^{k+1}) \quad \text{price update}$$

The algorithm is distributed: each flexible appliance computes its best-response to price

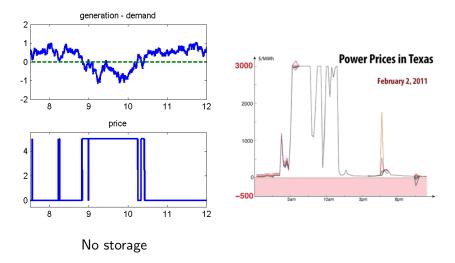
Outline

1 Market Model and Efficiency


- 2 Distributed Computation
- 3 Consequences of the (In)Efficiency of the Pricing Scheme
- 4 Summary and Conclusion

Reminder: we know how to compute a price such that selfish decision leads to a social optimum.

We can evaluate the effect of more flexible load / more storage.


- Is the price smooth?
- Impact on social welfare.

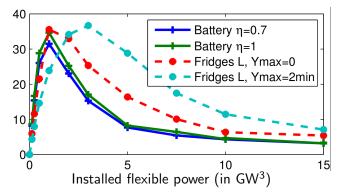
Without storage or DR, prices are never equal to the marginal production cost (Wang et al. 2012)

• Reason is ramping constraint of generation.

Without storage or DR, prices are never equal to the marginal production cost (Wang et al. 2012)

Reason is ramping constraint of generation.

With perfect information, demand-response is better than storage


Delaying or anticipating consumption has no charge/discharge inefficiency.

²The forecast errors correspond to a total wind capacity of 26GW.

Problem of the market structure: perfect storage or DR lead to a price concentration

Incentive to install less demand-response than the social optimal.

Welfare for storage owner / demandresponse operator

³The forecast errors correspond to a total wind capacity of 26GW.

Outline

1 Market Model and Efficiency

2 Distributed Computation

3 Consequences of the (In)Efficiency of the Pricing Scheme

4 Summary and Conclusion

Summary

1. Real-time market model (generation dynamics, flexible loads, storage) A price such that selfish decisions are feasible leads to a social optimum.

- 2. We know how to compute the price.
 - Trajectorial forecast, mean field and ADMM
- **3.** Benefit of demand-response: flexibility, efficiency Drawbacks: non-observability, under-investment

Perspectives

- Distributed optimization in smart-grid
 - Methodology:
 - * Distributed Lagrangian (ADMM) is powerful
 - ★ Use of trajectorial forecast makes it computable
 - In distribution networks.
- Optimization in Systems with many small agents.
 - Virtual prices and/or virtual markets:

Nicolas Gast — http://mescal.imag.fr/membres/nicolas.gast/ Model and Forecast

- Dynamic competitive equilibria in electricity markets, G. Wang, M. Negrete-Pincetic, A. Kowli, E. Shafieepoorfard, S. Meyn and U. Shanbhag, *Control and Optimization Methods for Electric Smart Grids*, 35–62 2012,
- From probabilistic forecasts to statistical scenarios of short-term wind power production. P. Pinson, H. Madsen, H. A. Nielsen, G. Papaefthymiou, and B. Klockl. Wind energy, 12(1):51-62, 2009

Storage and Demand-response

- Impact of storage on the efficiency and prices in real-time electricity markets. N Gast, JY Le Boudec, A Proutière, DC Tomozei, e-Energy 2013
- Impact of Demand-Response on the Efficiency and Prices in Real-Time Electricity Markets. N Gast, JY Le Boudec, DC Tomozei. e-Energy 2014

ADMM

• Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Foundations and Trends in Machine Learning, 3(1):1-122, 2011.

Supported by the EU project **QUANTICO** http://www.quanticol.eu