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Can we understand real-time electricity prices?
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Is it price manipulation or an efficient market?
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Issue 1: The electric grid is a large, complex system

It is governed by a mix of economics (efficiency) and regulation (safety).
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Issue 2: Mix of forecast (day-ahead) and real-time control
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Main message

We study a simple real-time market model that includes demand-response.

@ Real-time prices can be used for control

» Decentralized control
» Socially optimal

o However:
» There is a high price fluctuation
» Demand-response makes forecast more difficult
» Market structure provide no incentive to install large demand-response
capacity
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Outline

o Real-Time Market Model and Market Efficiency
© Numerical Computation and Distributed Optimization
© Consequences of the (In)Efficiency of the Pricing Scheme

@ Summary and Conclusion
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Outline

0 Real-Time Market Model and Market Efficiency
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We consider the simplest model that takes the dynamical
constraints into account (extension of Wang et al. 2012)

Each player has internal utility/constraints and exchange energy

Nicolas Gast — 8 / 30



Two examples of internal utility functions and constraints

@ Generator: generates G(t) units of energy at time t.

» Cost of generation: cG(t).
» Ramping constraints: (~ < G(t+1) — G(t) < (™.
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Two examples of internal utility functions and constraints

@ Generator: generates G(t) units of energy at time t.

» Cost of generation: cG(t).
» Ramping constraints: (~ < G(t+1) — G(t) < (™.

@ Flexible loads: population of N thermostatic appliances

» Internal cost: temperature deadband.
» Constraints: applicances can be switched on or off

undesirable states undesirable states

y=0
Consumption can be
anticipated/delayed
but

y=Yujax

no possible
action

A '
« possible possible
when y>0 x action

action

* Fatigue effect

*  Mini-cycle
avoidance

t T Tntornal
z = T = Xmax  state

Appliance = Markov chain
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We assume perfect competition between 2, 3 or 4 players

(supplier, demand, storage operator, flexible demand aggregator)

Player i maximizes:

oo
arg max E / Wi(t) - P(t)E;i(t) dt
E;€cinternal constraints of / 0 N——" N———r

internal utility  (spot price)x (bought/sold energy)
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We assume perfect competition between 2, 3 or 4 players

(supplier, demand, storage operator, flexible demand aggregator)

Player i maximizes:

arg max /OOO Wi(t) - P(t)E(t) dt

E;€internal constraints of /

internal utility  (spot price)x|bought/sold energy)
Players share a common probabilistic forecast model

Players cannot influence P(t).
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Definition: a competitive equilibrium is a price for which
players selfishly agree on what should be bought and sold.

(P, Ef, ..., E7) is a competitive equilibrium if:

e For any player i, Ef is a selfish best response to P:

oo

argmax E / Wi(t) — P(t)Ei(t) dt

E;€cinternal constraints of | 0 S—— SN———
internal utility ~ bought/sold energy

@ The energy balance condition: for all t:

> Ef(t)=0.

i€players
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An (hypothetical) social planner’s problem wants to
maximize the sum of the welfare.

o0
(Ef,..., Ef) is socially optimal if it maximizes E / Z Wi(t) dt |,
0 i€ players
L social utility
subject to

e For any player i, Ef satisfies the constraints of player /.
@ The energy balance condition: for all t:

> Ef(t)=0.

i€players
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The market is efficient (first welfare theorem)

Theorem

For any installed quantity of demand-response or
storage, any competitive equilibrium is socially optimal.

If players agree on what should be bought or sold, then it corresponds to a
socially optimal allocation.
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Outline

© Numerical Computation and Distributed Optimization
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Reminder: If there exists a price such that selfish decisions leads to
energy balance, then these decisions are optimal.

Price P(t)

Demand ° Supplier

Theorem

For any installed quantity of demand-response or
storage:

@ There exists such a price.

e We can compute it (convergence guarantee).
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We design a decentralized optimization algorithm based on
an iterative scheme

— lterative algorithm based on ADMM

Generator
Price P(1) 1. forecast price r(),...,P(T), E Demand
U 2. forecasts consumption E :
3. Update price Fridges
Theorem
The algorithm converges. J
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We use ADMM iterations.

Augmented Lagrangian:

L(EP):= > Wi(E)+DP(t) (Za(r))—g (E(t) - E(1)°

i€players t,i

ADMM (alternating direction method of multipliers):

EF ¢ argmaxL,(E, EX, P¥) for each player (distributed)
E
EK1 ¢ arg max Lp(EkH, E., P projection (easy)
E st. Zi E,:O
pktl .= pk_ p(z EFTY) price update
i
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ADMM converges because the problem is convex

@ Utility functions and constraints are convex
» e.g., Ramping constraints, batteries capacities, flexible appliances
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ADMM converges because the problem is convex

@ Utility functions and constraints are convex

@ We represent forecast errors by multiple trajectories

forecast error (in GW)

0 t1 8h t 2 16h 24h
time (in hours)

» Extension of Pinson et al (2009).
» Using covariance of data from the UK
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ADMM converges because

the problem is convex

@ Utility functions and constraints are convex
@ We represent forecast errors by multiple trajectories

© We approximate the behavior of the flexible appliances by a

mean-field approximation

« Susceptible
 Expose
+ Infected
= Recovered

density
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Original system

« Susceptible
4 Exposed
* Infected
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density
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Mean-field approximation

(limit as number of appliances is large)
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Outline

© Consequences of the (In)Efficiency of the Pricing Scheme
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Reminder: we know how to compute a price such that selfish decision
leads to a social optimum.

We can evaluate the effect of more flexible load / more storage.
@ |s the price smooth?

@ Impact on social welfare.
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Without demand-response or storage, the price fluctuates.
It is never equal to the marginal production cost

generation - demand
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Demand-response or perfect storage smooths the price.
Real storage does not.

Distribution has

two modes
025 \/ﬁ /

frequency
tribution
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In a perfect world, the benefit of demand-response is
similar to perfect storage

100 ¢

Storage n=0.7

, Storage n=1

= + = Fridge L, Ymax=0

= + = Fridge L, Ymax=20min

Social Welfare 50t

0 5 10 15
Installed flexible power (in GW?!)

@ No charge/discharge inefficiencies for demand-response (we can only
anticipate or delay consumption).

1The forecast errors correspond to a total wind capacity of 26GW.
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Problem of demand-response: synchronization might

lead to forecast errors

day N day N+1
100 100
actual consumption (day—ahead)\ forecast
80 80 actual
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consumption 40
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0
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Problem of demand-response: synchronization might

lead to forecast errors
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Problem of demand-response. Non-observablity is
detrimental if the penetration is large

We assume that:
@ The demand-response operator knows the state of its fridges

@ The day-ahead forecast does not.

Social Welfare

0 —&— Fridges L, Ymax=0 (d.-a. cannot observe)
20 = # = Fridges L, Ymax=20min (d-a cannot observe)
== Fridges L, Ymax=20min (d.-a. can observe)
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Installed flexible power (in GW)
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Problem of the market structure. Incentive to install
less demand-response than the social optimal.
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Outline

@ Summary and Conclusion
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Summary

1. Real-time market model (generation dynamics, flexible loads, storage)

Price P(t)
Demand ] Supplier

N
r

LFJe}i,b',e,'eaés,l LStorage (e.g. battery) |

2. A price such that selfish decisions are feasible leads to a social
optimum.

3. We know how to compute the price.

@ Trajectorial forecast, mean field and ADMM

4. Benefit of demand-response: flexibility, efficiency
Drawbacks: non-observability, under-investment
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Perspectives

o Real-time Market
» Efficient but not robust
* Efficiency disregards safety, security, investment,...

» Methodology:

* Distributed Lagrangian (ADMM) is powerful
* Use of trajectorial forecast makes it computable
* Can be used for learning

e Virtual prices and/or virtual markets:
> Interesting applications: electric cars, voltage control
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