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Caches are everywhere

User/Application

Data source

slow

cache

fast Examples:

Processor

Database

CDN
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Caching policies

Popularity-oblivious policies
I Cache-replacement policies3 (LRU, RANDOM),
I TTL-caches4.

Popularity-aware policies / learning
I LFU and variants5

I Optimal policies for network of caches6

3started with [King 1971, Gelenbe 1973]
4e.g., Fofack e al 2013, Berger et al. 2014
5Optimizing TTL Caches under Heavy-Tailed Demands (Ferragut et al. 2016)
6Adaptive Caching Networks with Optimality Guarantees (Ioannidis and Yeh, 2016)
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The two policies generalize the LRU policy

LRU:
hit : do nothing

miss : evict the LRU (least-recently used) item.

cache

Example with this stream of requests:

(note: similar to RANDOM, FIFO)

(Assumption: Object are assumed to have the same size.)
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The LRU( ~m) and h-LRU policies

LRU( ~m)7: exchange the requested item with the LRU of next list

virtual cacheexchange

h-LRU8: copy the requested item in the next list (and evict the LRU)

virtual cachecopy

7Variant of RAND( ~m) of [G, Van Houdt 2015]
8Introduced as k-LRU in [Martina et al. 2014]
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In this talk: Performance analysis and comparison

Qualitatively:

less popular popular items

It takes time to adapt

Quantitatively:

Related work: Variants9 or less accurate approximation10

We present TTL approximations for MAP arrival (in the talk: IRM).

9(RAND( ~m) in [G, Van Houdt, 2015]) for which product form solution exist.
10heuristic for h-LRU [Martina et al. 2014]
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Pure LRU: the Che-approximation

Cache

eviction after T

start new timer
reset timer

If the request of object k is a Poisson process of intensity λk :

Object k is in cache with probability πk(T ) = 1− e−λkT
(TTL)

T satisfies
∑
k

πk(T ) = cache size . (Fixed point)

Nicolas Gast – 10 / 24



Pure LRU: the Che-approximation

Cache

eviction after T

start new timer
reset timer

If the request of object k is a Poisson process of intensity λk :

Object k is in cache with probability πk(T ) = 1− e−λkT
(TTL)

T satisfies
∑
k

πk(T ) = cache size . (Fixed point)

Nicolas Gast – 10 / 24



Pure LRU: the Che-approximation

Cache

eviction after T

start new timer
reset timer

If the request of object k is a Poisson process of intensity λk :

Object k is in cache with probability πk(T ) = 1− e−λkT
(TTL)

T satisfies
∑
k

πk(T ) = cache size . (Fixed point)

Nicolas Gast – 10 / 24



The TTL-approximation for LRU(m)

Cache 1 Cache 2 Cache 3

exchange

eviction after T1 eviction after T2 eviction after T3

start new timer
start new timer start new timer

reset timer

If the request of object k is a Poisson process of intensity λk :

Object k is in cache ` with probability πk,i (T1 . . .Th) ∝
∏̀
i=1

(eλkTi − 1)

T1 . . .Th satisfy
∑
k

πk,i (T1 . . .Th) = size of list i .
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The TTL-approximation for h-LRU

Cache 1 Cache 2 Cache 3

copy

eviction after T ′1 eviction after T ′2 eviction after T ′3

start new timer
start new timer start new timer

reset timer

First idea: track the lists in which an object are. [Martina et al. 14]

Problem: number of states = 2h.

Solution: change model (track the greatest ID of the list in which the item
appears by assuming that T1 ≤ T2 ≤ . . .Th)

The TTL model can be solved exactly (see paper).

Once T1 . . .Tk have been computed, Tk+1 satisfies a fixed point equation.
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Is the approximation accurate?

Example (10-LRU, with a cache size n/10 and a Zipf popularity)

Simulation (Our approximation) [Martina et al. 14])

n = 1000 0.51506 0.51552 (+0.088%) 0.50796 (-1.380%)

n = 10000 0.56124 0.56130 (+0.012%) 0.55447 (-1.206%)

Numerically, TTL approximation have proven to be very accurate
[Dan and Towsley 1990, Martina at al. 14, Che, 2002]

Theoretical guarantees exist for LRU [Fricker et al. 12]

We prove that our approximation is asymptotically exact.
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Asymptotic exactness of the approximation
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Figure: Popularities of objects change every 2000 steps.

We develop an ODE approximation

We show that it is accurate

This ODE has the same fixed point as the TTL approximation
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Convergence result and idea of the proof

Idea of the proof.

We study the empirical distribution of the request dates.

We use stochastic approximation to prove the convergence to an
infinite dimensional deterministic ODE.
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Qualitative remarks

less popular popular items

In general, adding more lists:

Improves the steady-state performancea,

Decreases the response time.

aThis is not true in full generality, even for IRM. The same counter-example
as in [G., Van Houdt 2015] works.
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Quantitative remark 1: On synthetic traces: LRU(m,m)
and 2-LRU perform similarly

LRU(m,m):

exchange

2-LRU:

copy
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Quantitative remark 1: LRU is insensitive to correlations
between requests time
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Quantitative remark 1: We verified on a web trace11 that
having virtual list seems to improve performance.
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Conclusion

Characterize list-based cache replacement policies

We provide TTL approximation
I New or improved approximations
I Exact for large cache

Theoretical interests:
I Prove equivalence between TTL and cache replacement policies
I Show that these approximation work for MAP

Practical applications:
I Comparison of LRU(m) and h-LRU.
I Our results can be used to tune such algorithms.
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Questions or comments?

http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

Supported by EU project quanƟcol. . ............................... http://www.quanticol.eu
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Hyperexponential

0 1

qz/(1 + z)

q/(1 + z)

z − qz/(1 + z) 1/z − q/(1 + z)

Fire rate:

Proba(0)=z/(1 + z). Fire rate = z .

Proba(1)=1/(1 + z). Fire rate = 1/z .

Coefficient of variation:
z

1 + z

2

z2
+

1

1 + z
2z2 − 1.
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