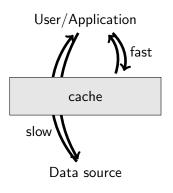
Asymptotically Exact TTL-Approximations of the Cache Replacement Algorithms LRU(m) and h-LRU

Nicolas Gast<sup>1</sup>, Benny Van Houdt<sup>2</sup>

ITC 2016

September 13-15, Würzburg, Germany

<sup>1</sup>Inria <sup>2</sup>University of Antwerp Caches are everywhere



Examples:

- Processor
- Database
- CDN

## Caching policies

- Popularity-oblivious policies
  - Cache-replacement policies<sup>3</sup> (LRU, RANDOM),
  - ► TTL-caches<sup>4</sup>.
- Popularity-aware policies / learning
  - LFU and variants<sup>5</sup>
  - Optimal policies for network of caches<sup>6</sup>

<sup>&</sup>lt;sup>3</sup>started with [King 1971, Gelenbe 1973]

<sup>&</sup>lt;sup>4</sup>e.g., Fofack e al 2013, Berger et al. 2014

<sup>&</sup>lt;sup>5</sup>Optimizing TTL Caches under Heavy-Tailed Demands (Ferragut et al. 2016)

<sup>&</sup>lt;sup>6</sup>Adaptive Caching Networks with Optimality Guarantees (Ioannidis and Yeh, 2016)

## Caching policies

- Popularity-oblivious policies
  - Cache-replacement policies<sup>3</sup> (LRU, RANDOM),
  - ► TTL-caches<sup>4</sup>.
- Popularity-aware policies / learning
  - LFU and variants<sup>5</sup>
  - Optimal policies for network of caches<sup>6</sup>

<sup>&</sup>lt;sup>3</sup>started with [King 1971, Gelenbe 1973]

<sup>&</sup>lt;sup>4</sup>e.g., Fofack e al 2013, Berger et al. 2014

<sup>&</sup>lt;sup>5</sup>Optimizing TTL Caches under Heavy-Tailed Demands (Ferragut et al. 2016)

<sup>&</sup>lt;sup>6</sup>Adaptive Caching Networks with Optimality Guarantees (Ioannidis and Yeh, 2016)

Nicolas Gast - 3 / 24

Contributions (and Outline)

1 Two cache replacement policies

2 Performance analysis via TTL approximation

3 Asymptotic exactness of the approximation

4 Comparison between LRU, LRU( $\vec{m}$ ) and h-LRU

### 5 Conclusion

### Outline

### 1 Two cache replacement policies

- 2 Performance analysis via TTL approximation
- 3 Asymptotic exactness of the approximation
- 4 Comparison between LRU, LRU( $\vec{m}$ ) and *h*-LRU
- 5 Conclusion

hit : do nothing

LRU:

miss : evict the LRU (least-recently used) item.



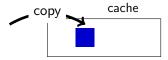
Example with this stream of requests:

(note: similar to RANDOM, FIFO)

 $\mathsf{hit} \ : \ \mathsf{do} \ \mathsf{nothing}$ 

LRU:

miss : evict the LRU (least-recently used) item.



Example with this stream of requests:

(note: similar to RANDOM, FIFO)

hit : do nothing

LRU:

miss : evict the LRU (least-recently used) item.



Example with this stream of requests:

(note: similar to RANDOM, FIFO)

 $\mathsf{hit} \ : \ \mathsf{do} \ \mathsf{nothing}$ 

LRU:

miss : evict the LRU (least-recently used) item.



Example with this stream of requests:



 $\mathsf{hit} \ : \ \mathsf{do} \ \mathsf{nothing}$ 

miss : evict the LRU (least-recently used) item.



Example with this stream of requests:



LRU:

(note: similar to RANDOM, FIFO)

hit : do nothing

LRU:

miss : evict the LRU (least-recently used) item.



Example with this stream of requests:



(note: similar to RANDOM, FIFO)

hit : do nothing

LRU:

miss : evict the LRU (least-recently used) item.



Example with this stream of requests:



(note: similar to RANDOM, FIFO)

 $\mathsf{hit} \ : \ \mathsf{do} \ \mathsf{nothing}$ 

LRU:

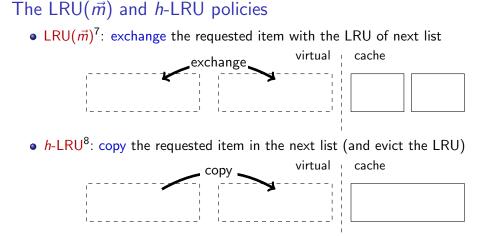
miss : evict the LRU (least-recently used) item.



Example with this stream of requests:

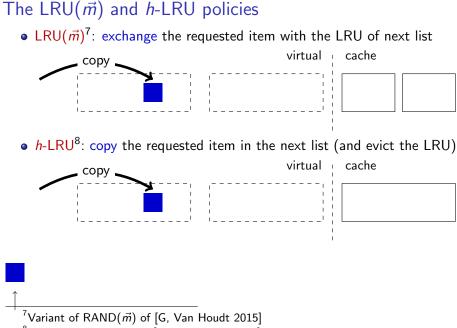


(note: similar to RANDOM, FIFO)

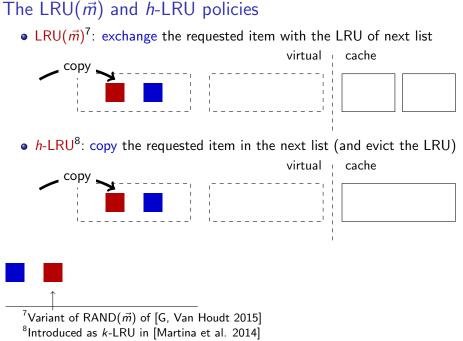


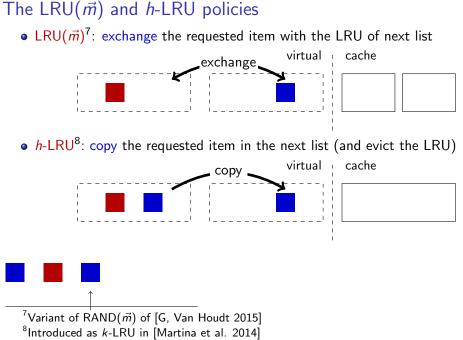
<sup>&</sup>lt;sup>7</sup>Variant of RAND( $\vec{m}$ ) of [G, Van Houdt 2015]

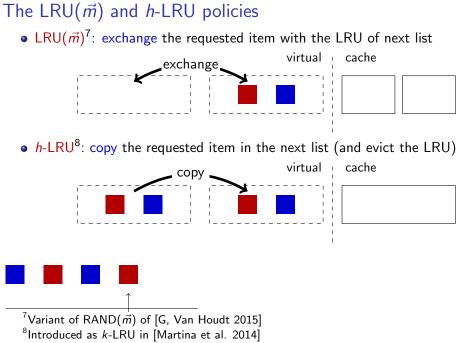
<sup>&</sup>lt;sup>8</sup>Introduced as *k*-LRU in [Martina et al. 2014]



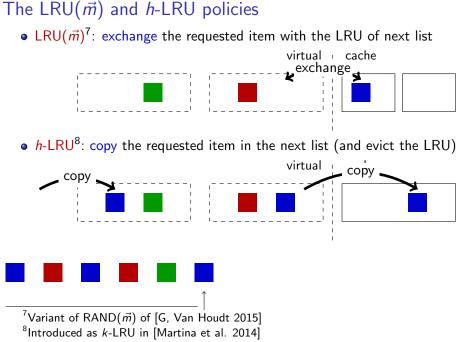
<sup>8</sup>Introduced as *k*-LRU in [Martina et al. 2014]

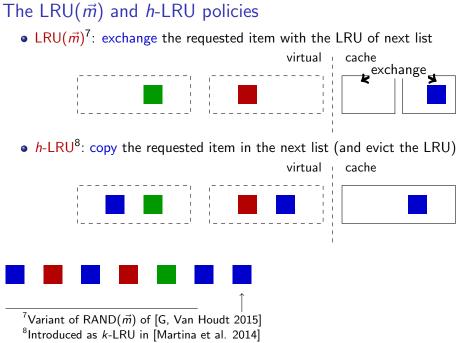






# The LRU( $\vec{m}$ ) and *h*-LRU policies • LRU $(\vec{m})^7$ : exchange the requested item with the LRU of next list virtual cache copy • *h*-LRU<sup>8</sup>: copy the requested item in the next list (and evict the LRU) virtual cache <sup>7</sup>Variant of RAND(*m*) of [G, Van Houdt 2015] <sup>8</sup>Introduced as *k*-LRU in [Martina et al. 2014]





### Outline



### 2 Performance analysis via TTL approximation

3 Asymptotic exactness of the approximation

4 Comparison between LRU, LRU( $\vec{m}$ ) and h-LRU

#### 5 Conclusion

### In this talk: Performance analysis and comparison

## Qualitatively: less popular popular items

It takes time to adapt

 ${}^{9}(\text{RAND}(\vec{m}) \text{ in [G, Van Houdt, 2015]})$  for which product form solution exist.  ${}^{10}$  heuristic for *h*-LRU [Martina et al. 2014]

Nicolas Gast - 9 / 24

### In this talk: Performance analysis and comparison

## Qualitatively: less popular popular items

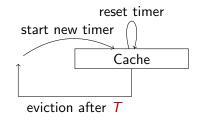
It takes time to adapt

#### Quantitatively:

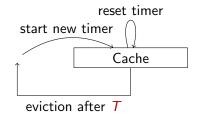
- Related work: Variants<sup>9</sup> or less accurate approximation<sup>10</sup>
- We present TTL approximations for MAP arrival (in the talk: IRM).

 ${}^{9}(\text{RAND}(\vec{m}) \text{ in } [\text{G}, \text{Van Houdt, 2015}])$  for which product form solution exist.  ${}^{10}$  heuristic for *h*-LRU [Martina et al. 2014]

### Pure LRU: the Che-approximation



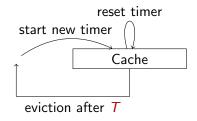
### Pure LRU: the Che-approximation



If the request of object k is a Poisson process of intensity  $\lambda_k$ : • Object k is in cache with probability  $\pi_k(T) = 1 - e^{-\lambda_k T}$ 

(TTL)

### Pure LRU: the Che-approximation



If the request of object k is a Poisson process of intensity λ<sub>k</sub>:
Object k is in cache with probability π<sub>k</sub>(T) = 1 - e<sup>-λ<sub>k</sub>T</sup>

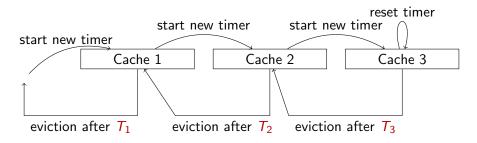
$${\mathcal T}$$
 satisfies  $\sum_k \pi_k({\mathcal T}) =$  cache size .

(Fixed point)

## The TTL-approximation for LRU(m)



## The TTL-approximation for LRU(m)



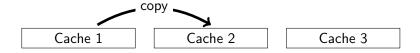
If the request of object k is a Poisson process of intensity  $\lambda_k$ :

• Object k is in cache  $\ell$  with probability  $\pi_{k,i}(T_1 \dots T_h) \propto \prod_{i=1}^{r} (e^{\lambda_k T_i} - 1)$ 

$$T_1 \dots T_h$$
 satisfy  $\sum_k \pi_{k,i}(T_1 \dots T_h) =$  size of list *i*.

Nicolas Gast - 11 / 24

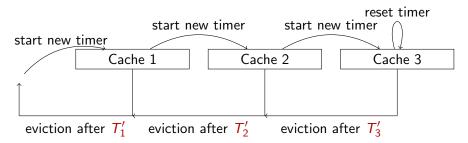
### The TTL-approximation for *h*-LRU



First idea: track the lists in which an object are. [Martina et al. 14]

• Problem: number of states  $= 2^{h}$ .

## The TTL-approximation for *h*-LRU



Solution: change model (track the greatest ID of the list in which the item appears by assuming that  $T_1 \leq T_2 \leq \ldots T_h$ )

The TTL model can be solved exactly (see paper).

Once  $T_1 \ldots T_k$  have been computed,  $T_{k+1}$  satisfies a fixed point equation.

### Outline

- Two cache replacement policies
- 2 Performance analysis via TTL approximation
- 3 Asymptotic exactness of the approximation
- 4 Comparison between LRU, LRU( $\vec{m}$ ) and h-LRU
  - 5 Conclusion

## Is the approximation accurate?

| Example (10-LRU, with a cache size $n/10$ and a Zipf popularity) |            |                     |                      |  |  |
|------------------------------------------------------------------|------------|---------------------|----------------------|--|--|
|                                                                  | Simulation | (Our approximation) | [Martina et al. 14]) |  |  |
| n = 1000                                                         | 0.51506    | 0.51552 (+0.088%)   | 0.50796 (-1.380%)    |  |  |
| n = 10000                                                        | 0.56124    | 0.56130 (+0.012%)   | 0.55447 (-1.206%)    |  |  |

### Is the approximation accurate?

| Example (10-LRU, with a cache size $n/10$ and a Zipf popularity) |            |                     |                      |  |  |
|------------------------------------------------------------------|------------|---------------------|----------------------|--|--|
|                                                                  | Simulation | (Our approximation) | [Martina et al. 14]) |  |  |
| n = 1000                                                         | 0.51506    | 0.51552 (+0.088%)   | 0.50796 (-1.380%)    |  |  |
| n = 10000                                                        | 0.56124    | 0.56130 (+0.012%)   | 0.55447 (-1.206%)    |  |  |

- Numerically, TTL approximation have proven to be very accurate [Dan and Towsley 1990, Martina at al. 14, Che, 2002]
- Theoretical guarantees exist for LRU [Fricker et al. 12]

We prove that our approximation is asymptotically exact.

### Asymptotic exactness of the approximation

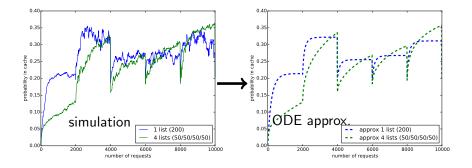


Figure: Popularities of objects change every 2000 steps.

- We develop an ODE approximation
- We show that it is accurate
- This ODE has the same fixed point as the TTL approximation

### Asymptotic exactness of the approximation

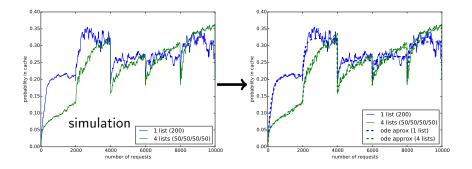


Figure: Popularities of objects change every 2000 steps.

- We develop an ODE approximation
- We show that it is accurate
- This ODE has the same fixed point as the TTL approximation

### Convergence result and idea of the proof

**Theorem 1.** Let  $H_{\ell}(t)$  be the sum of the popularity of the items of list  $\ell$  and  $h_{\ell}(t)$  be the corresponding ODE approximation (Equation (18) for h-LRU and Equation (22) for LRU(m)). Then: for any time T, there exists a constant C such that

$$\mathbf{E}\left[\sup_{t\leq T/\sqrt{\max_k p_k}} |H_\ell(t) - h_\ell(t)|\right] \leq C\sqrt{\max_k p_k},$$

where C does not depend on the probabilities  $p_1 \dots p_n$ , the cache size m or the number of items n.

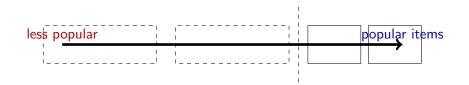
#### Idea of the proof.

- We study the empirical distribution of the request dates.
- We use stochastic approximation to prove the convergence to an infinite dimensional deterministic ODE.

## Outline

- Two cache replacement policies
- 2 Performance analysis via TTL approximation
- 3 Asymptotic exactness of the approximation
- 4 Comparison between LRU, LRU( $\vec{m}$ ) and h-LRU
  - 5 Conclusion

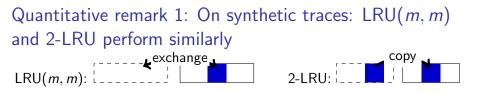
## Qualitative remarks

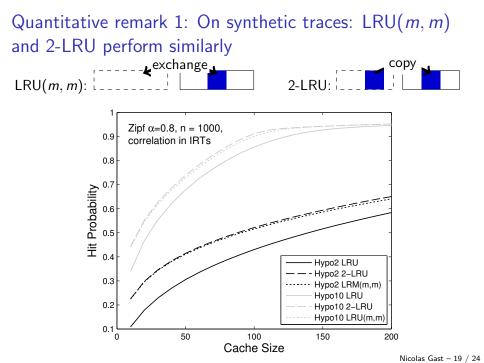


### In general, adding more lists:

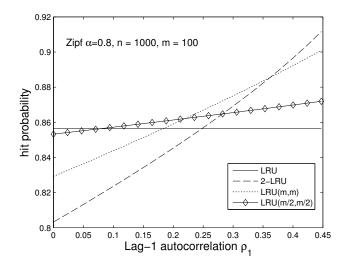
- Improves the steady-state performance<sup>a</sup>,
- Decreases the response time.

 $^{a}$ This is not true in full generality, even for IRM. The same counter-example as in [G., Van Houdt 2015] works.

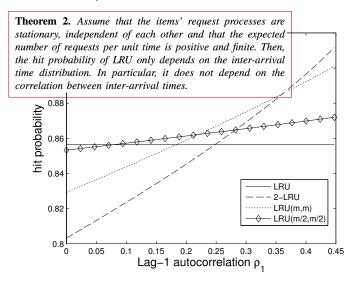




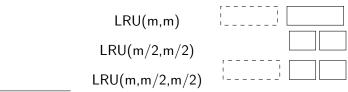
# Quantitative remark 1: LRU is insensitive to correlations between requests time



# Quantitative remark 1: LRU is insensitive to correlations between requests time



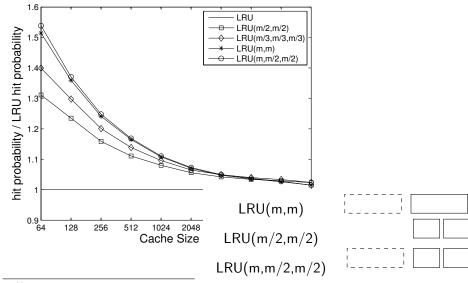
Quantitative remark 1: We verified on a web trace<sup>11</sup> that having virtual list seems to improve performance.



<sup>11</sup>[Bianchi et al. 2013]

Nicolas Gast - 21 / 24

Quantitative remark 1: We verified on a web trace<sup>11</sup> that having virtual list seems to improve performance.



<sup>11</sup>[Bianchi et al. 2013]

Nicolas Gast - 21 / 24

## Outline

- Two cache replacement policies
- 2 Performance analysis via TTL approximation
- 3 Asymptotic exactness of the approximation
- 4 Comparison between LRU, LRU( $\vec{m}$ ) and h-LRU



## Conclusion

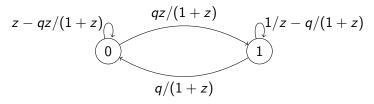
- Characterize list-based cache replacement policies
- We provide TTL approximation
  - New or improved approximations
  - Exact for large cache
- Theoretical interests:
  - Prove equivalence between TTL and cache replacement policies
  - Show that these approximation work for MAP
- Practical applications:
  - Comparison of LRU(m) and h-LRU.
  - Our results can be used to tune such algorithms.

#### http://mescal.imag.fr/membres/nicolas.gast

nicolas.gast@inria.fr

Supported by EU project quanticol http://www.quanticol.eu

## Hyperexponential



Fire rate:

- Proba(0)=z/(1 + z). Fire rate = z.
- Proba(1)=1/(1 + z). Fire rate = 1/z.

Coefficient of variation:  $\frac{z}{1+z}\frac{2}{z^2} + \frac{1}{1+z}2z^2 - 1.$