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(From far away), the System Looks Predictable

Vélib’ Data (Paris) : availability at stations + trips info from September
2013 to December 2014
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Figure: Evolution of the average departure rate from Vélib'stations during the day
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Zoom on one station (Gare de Lyon), August 2014
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Zoom on one station (Gare de Lyon), August 2014
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Zoom on one station (Gare de Lyon), August 2014
August week 1

60 -
50 -
40 A
]
v
o 30 A
**
201 — Monday
—— Tuesday
10 4{ —— Waednesday
—— Thursday
od — Friday

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Nicolas Gast — 5 / 23



Zoom on one station (Gare de Lyon), August 2014
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These systems can be viewed as closed queuing-networks

Our model: Demand from station / to station j: Poisson process of
intensity \;ji(t) = Xi(t)p;(t).
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These systems can be viewed as closed queuing-networks

Our model: Demand from station / to station j: Poisson process of
intensity \;ji(t) = Xi(t)p;(t).

As an approximation (valid when many stations), you can zoom on one
station:
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How to Build Such a Model? (stations and \;i(t))

@ Record traces

o “Infer’ demand
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How to Build Such a Model? (stations and \;i(t))

Existing BSS (e.g., NY) No Existing BSS
N Iy /
iy
8

.g‘ﬂ.

openstreetmap

@ Record traces @ Where will station will be?
o “Infer’ demand @ Which traffic flow?
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From Spatial Data to Spatial Models
Example of New-York's BSS
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From Spatial Data to Spatial Models
Example of New-York's BSS
Real system Regular (N0|sy) P0|sson
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From Spatial Data to Spatial Models
Example of New-York's BSS
Real system

Ginibre + densities of popula-
tion, of shops, ...

Rating-Weighted

D. Reijsbergen. Probabilistic Modelling of Station Locations in
Bicycle-Sharing Systems, in Proceedings of DataMod 2016 —
From Data to Models and Back, 2016
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|dealized Scenario: The Homogeneous Model: \;i(t) = A.
[Fricker-Gast 14]
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Distribution of x;, the fraction of station with /i bikes

Theorem

There exists p, such that in steady state, as N goes to infinity:
Xj X pi.

p<1liffs< 5 -+ — where s be the average number of bikes per stations
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Consequences: optimal performance for s =~ C/2

y-axis: Prop. of problematic stations. x-axis: number of bikes/station s.
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Number of bikes per station: s

Fraction of problematic stations (=empty—+full) minimal for s=A/u + C/2
@ Prop. of problematic stations is at least 2/(C + 1) (6.5% for C = 30)
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With a small help from users, everything can be better

Each users returns her bike to most empty of two neighboring stations.

Occupancy of stations
x-axis = occupation of station.
y-axis: proportion of stations.

Recall: with no incentives, the
distribution would be uniform.

Empirically:
@ In a 2D grid, the proportion of problematic stations is about 2-¢/2,

(recall: without the help of users: 2/(C + 1)).
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Incentives in Practice: Example of Bike Angels

https://www.citibikenyc.com/bikeangels/rewards [Chung et al. 18]

1 point: Start at neutral station, bike to 1-point 0 points: Trips with Drop Off points at trip
Drop Off start will not earn points

e

2 points: Start at 2-point Pick Up station, bike 0 points: Trips with Pick Up points at trip
to neutral station end will not earn points

3 points: Start at 2-point Pick Up station, bike 0 points: Biking from empty to full stations
to 1-point Drop Off station won't earn points either
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https://www.citibikenyc.com/bikeangels/rewards

Incentives in Practice: Example of Bike

https://www.citibikenyc.com/bikeangels/rewards [Chung et al. 18]

citibike
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HowitWorks  Pricing  StationMap  Explore NYC

Monthly Leaderboard

Each month, the highest-earning Angels earn a gift card bonus
for helping the highest number of Citi Bike riders. Scores reset at
the start of each month, and there's no limit to how many points
can be earned.

Ist place wins $100, 2nd place wins $75, 3rd place wins $50, 4th
and 5th place win $25.
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Forecasting : what and why?
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Why forecasting :
@ Operator perspective (rebalancing)
@ User perspective (will | find a bike?)
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The Traditional approach is to use deterministic forecasts
Examples
- Last-Value (LVP) : availability at ¢t + h is equal to availability at t.

- Historical (HP) : average availability at this hour (based on
historical observations).

- Machine learning tools (ARIMA, Bayesian network,...)
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Our Model shows that Forecasting Cannot be Good

12

Quality of forecast=RMSE
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Figure: Comparison of the RMSEs for different predictors.

Lower bounds on error
@ 3 bikes for h = 30 min
@ 5 bikes for h = 2h.
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We can go beyond deterministic forecast

By using our queuing model:
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@ Use in practice: "what is the probability that | will find a bike?”

@ Quality can be evaluated by scoring rules
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These forecasts can also be use for static redistribution
[Raviv et al 12]
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Recap

o Bike sharing systems are probabilistic.

@ We can build simple stochastic models.

Applications:
o Understand and design

» Without regulation or incentive, performance is poor.
» System or fleet dimensioning

@ System management

» Forecasting
» Repositioning
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