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Mean Field Interaction Model 

Time is discrete 

 

N objects, N large 

Object n has state Xn(t) 

(XN
1(t), …, XN

N(t)) is Markov 

 

Objects are observable only 
through their state 

“Occupancy measure” 
MN(t) = distribution of object 
states at time t 

Example [Khouzani 2010 ]:    
MN (t) = (S(t), I(t), R(t), D(t)) 
with  
S(t)+ I(t) + R(t) + D(t) =1 

 S(t) = proportion of nodes in 
state `S’ 
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Mean Field Interaction Model 

Time is discrete 

 

N objects, N large 

Object n has state Xn(t) 

(XN
1(t), …, XN

N(t)) is Markov 

 

Objects are observable only 
through their state 

“Occupancy measure” 
MN(t) = distribution of object 
states at time t 

 

Theorem  [Gast (2011)] 
 MN(t) is Markov 

 

Called “Mean Field 
Interaction Models” in the 
Performance Evaluation 
community 
[McDonald(2007), Benaïm 
and Le Boudec(2008)] 
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Intensity I(N) 

I(N)  = expected number of transitions per object 
per time unit 

 

A mean field limit occurs when we re-scale time by 
I(N) 
i.e. we consider XN(t/I(N)) 

 

 

I(N) = O(1): mean field limit is in discrete time  
 [Le Boudec et al (2007)] 
 
I(N) = O(1/N): mean field limit is in continuous time 
[Benaïm and Le Boudec (2008)] 
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Virus Infection [Khouzani 2010] 

N nodes, homogeneous, pairwise 
meetings  

One interaction per time slot,  
I(N) = 1/N; mean field limit is an ODE  

Occupancy measure is 
M(t) = (S(t), I(t), R(t), D(t)) with  
S(t)+ I(t) + R(t) + D(t) =1 

 S(t) = proportion of nodes in state `S’ 
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The Mean Field Limit 

Under very general conditions (given later) 
the occupancy measure converges,  in law, to a 
deterministic process, m(t),  called the mean 
field limit 

 

 

 

Finite State Space => ODE 
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Sufficient Conditions for Convergence 
[Kurtz 1970], see also [Bordenav et al 2008], [Graham 2000] 

Sufficient conditon verifiable by inspection: 
 
 
 
 
 
 
 
Example: I(N) = 1/N 
Second moment of number of objects  
affected in one timeslot = o(N) 

Similar result when mean field limit is in discrete time  
[Le Boudec et al 2007] 
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MEAN FIELD INTERACTION MODEL 
WITH CENTRAL CONTROL 
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Markov Decision Process 

Central controller 

Action state A (metric, 
compact) 

Running reward depends on 
state and action 

Goal: maximize expected 
reward over horizon T 
 

Policy π selects action at 
every time slot  

Optimal policy can be 
assumed Markovian  
 (XN

1(t), …, XN
N(t)) -> action 

Controller observes only 
object states 

=> π  depends on MN(t) only 
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Example 
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θ = 0.68 

θ = 0. 8 θ = 0.65 



Optimal Control 

Optimal Control Problem 

Find a policy π  that 
achieves (or approaches) 
the supremum in  
 
 
 
 
 

 m is the initial condition of 
occupancy measure 
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Can be found by iterative 
methods 

 

State space explosion  
(for m) 

 



Can We Replace MDP By Mean 
Field Limit ? 

Assume the mean field 
model converges to fluid 
limit for every action 

E.g. mean and std dev of 
transitions per time slot is 
O(1) 
 

Can we replace MDP by 
optimal control of mean field 
limit ? 
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Controlled ODE 

Mean field limit is an ODE 

Control  =   
action function α(t) 

Example: 
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α 

α 

if t > t0 α(t) = 1  else α(t) = 0 



Optimal Control for Fluid Limit 

Optimal function α(t) Can be 
obtained with Pontryagin’s 
maximum principle or 
Hamilton Jacobi Bellman 
equation. 

16 

t0 =1  

t0 =5.6  

t0 =25 



CONVERGENCE,  
ASYMPTOTICALLY OPTIMAL POLICY 
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Convergence Theorem 

Theorem [Gast 2011] 
Under reasonable regularity and scaling assumptions: 
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Optimal value for system 
with N objects (MDP) 

Optimal value for fluid 
limit 



Convergence Theorem 

Does this give us an 
asymptotically optimal policy ? 
 

 Optimal policy of system with N 
objects may not converge 
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Theorem [Gast 2011] 
Under reasonable regularity and scaling assumptions: 

 
  

 

 

 

 

  



Asymptotically Optimal Policy 

Let         be an optimal policy 
for mean field limit 
  

Define the following control 
for the system with N objects 

At time slot k, pick same action 
as optimal fluid limit would 
take at time t = k I(N) 
 

This defines a time 
dependent  policy. 

 

Let           = value function 
when applying         to system 
with N objects  

 

Theorem [Gast 2011] 
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Value of this policy 

Optimal value for system 
with N objects (MDP) 
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Asymptotic evaluation of policies 
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Control policies exhibit discontinuities 

N servers, speed 1-p 

One central server, speed pN  
serves LQF 
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(taken from Tsitsiklis, Xu 11) 

Discontinuity arrises because of the strategy LQF.  

1 

The drift is: 



Differential inclusions as good approx. 

Discontinuous ODE:  
Here : no solution 

Replace by differential 
inclusion   
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Theorem [Gast-2011b] Under reasonnable scaling assumptions 

(but without regularity) 

• The differential inclusion has at least one solution 

• As N grows, X(t) goes to the solutions of the DI. 

• If unique attractor x*, the stationary distribution 
concentrates on x*. 

 



In (Tsitsiklis,Xu 2011), they use an ad-hoc argument to show 
that as N grows, the steady state concentrates on 
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Easily retrieved by solving the equation    0    F(x) 



Conclusions 

Optimal control on mean field 
limit is justified 

 

A practical, asymptotically 
optimal policy can be derived 

 

Use of differential inclusion to 
evaluate policies. 
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