Numerical toolbox to compute a refined mean-field approximation

nicolas.gast@inria.fr

Master project – 2018

Keywords – Stochastic system, mean-field approximation, caching policies.

1 Description

Stochastic models of interacting agents are used in many domains (caching systems, computer networks, social networks...). The analysis of the model of \(n \) stochastic entities interacting with each others can be particularly difficult. The mean field approximation is a very effective technique to study such a system when the number of entities \(n \) is very large. The idea of mean-field approximation is to replace a complex stochastic system by a simpler deterministic dynamical system. Our recent progress suggest that it is possible to extend these methods to study systems with a relatively small entities (\(n \approx 10 \)). The objective of the internship will be to contribute to the development of theoretical and analytical tools on this subject, for example to focus on heavy-traffic regime and heterogeneous systems.

Depending on the candidate, this project can have a more theoretical flavor or a more algorithmic one. Different applications are envisioned (e.g. evaluation of caching policies, optimal scheduling for server farms,...).

- See N. Gast Expected Values Estimated via Mean-Field Approximation are 1/N-Accurate (ACM SIGMETRICS 2017) [https://github.com/ngast/meanFieldAccuracy/blob/master/mf_rate_convergence.pdf]

2 Contact

For more information, please contact nicolas.gast@inria.fr

3 Gratification

The intern will have a grant of about 540 euros / month.

4 Location

The intern will be hosted in the POLARIS team. The POLARIS team is a joint team between Inria and LIG (Grenoble Computer Science Laboratory) and is located on Grenoble University main campus [https://batiment.imag.fr/].

1