
On the Consolidation of Data-centers with

Performance Constraints

Jonatha Anselmi, Paolo Cremonesi, and Edoardo Amaldi

Politecnico di Milano, DEI
Via Ponzio 34/5, I-20133 Milan, Italy

jonatha.anselmi@polimi.it

Abstract. We address the data-center consolidation problem: given a
working data-center, the goal of the problem is to choose which software
applications must be deployed on which servers in order to minimize
the number of servers to use while avoiding the overloading of system
resources and satisfying availability constraints. This in order to tradeoff
between quality of service issues and data-center costs. The problem is
approached through a robust model of the data-center which exploits
queueing networks theory. Then, we propose two mixed integer linear
programming formulations of the problem able to capture novel aspects
such as workload partitioning (load-balancing) and availability issues.
A simple heuristic is proposed to compute solutions in a short time.
Experimental results illustrate the impact of our approach with respect
to a real-world consolidation project.

1 Introduction

As the complexity of information technology (IT) infrastructures increases due
to mergers or acquisitions, new challenging problems arise in the design and
management of the resulting computer systems. In fact, they are often costly,
non-flexible, yielding under-utilized servers and energy wastings. To reduce con-
flicts among the offered services, many enterprise data-centers host most of their
services on dedicated servers without taking into account the possibility of de-
ploying multiple services on a single server. Therefore, many servers are not used
at their maximum capabilities and, in turn, expensive hardware investments are
often required. Nowadays companies search for IT solutions able to significantly
drop data-centers costs, e.g., energy consumption, space costs, and obtain a flex-
ible system satisfying customer demand.

In this framework, the consolidation of data-center resources is a current
solution adopted by many industries. The objective of consolidation problems
is to reduce the complexity of computer systems while guaranteeing some per-
formance and availability constraints. This is usually achieved by searching for
the best mapping between software applications and servers which minimizes
data-center costs. The main issues taken into account by a data-center consol-
idation solution are i) to reduce the complexity of the IT infrastructure, ii) to

2 Jonatha Anselmi, Paolo Cremonesi, and Edoardo Amaldi

increase system performance, iii) to obtain a flexible system, iv) to reduce data-
center costs, and v) to improve operational efficiencies of business processes. The
current challenge characterizing a consolidation is finding an optimal allocation
of services to target servers able to meet the above issues while satisfying per-
formance and availability requirements. This results in new capacity planning
problems which we address in this work. An important example of performance
index is given by the response time, i.e., the time interval between the submis-
sion of a job into a system and its receipt. Such variable is strictly related to
the servers utilizations, i.e., the proportion of time in which a server is used. In
fact, the higher the servers utilizations, the higher the resulting response time.
Therefore, constraints on the maximum utilization of each server are important
to

1. avoid the saturation of physical resources letting the system handle unex-
pected workload peaks,

2. guarantee a low sensitivity of data-center response time in front of small
workload variations (it is well-known, e.g., [6], that the response time curve
grows to infinity according to a hyperbole when the utilization of a server
approaches unity),

3. increase the data-center reliability because if a failure occurs on a server, then
the associated applications can be moved on different servers preventing a
drastic growth of data-center response time.

Constraints on the maximum response time are very often used in many applica-
tions for ensuring some quality of service (see, e.g., [4],[1]). The solution of such
problem is aimed to yield a data-center configuration able to satisfy the above
issues while minimizing costs.

1.1 Related Work

During the last decades, the resource management problem has been analyzed in
depth by many researchers in many frameworks and several works are available in
the literature. However, little appeared in the literature for the recent problem of
data-center consolidation with performance constraints even though it attracted
the attention of many IT companies.

Rolia et al. [12] analyze the consolidation problem with a dynamic approach
taking into account the workloads seasonal behavior to estimate the server de-
mands. Their consolidation problem limits the overall utilization of each server
and it assumed that each application is deployed on a single server. An inte-
ger linear program formulation and a genetic algorithm are proposed to solve
the problem and a case study with 41 servers is presented. Bichler et al. [3]
present a similar dynamic approach tailored for virtualized systems. The main
difference of their approach is that the optimization problem is solved exploit-
ing multi-dimensional bin-packing approximate algorithms [8]. In the context
of virtualized servers, an example of how to consolidate servers is also shown
in [9],[10]. Our previous work [1] tackles the data-center consolidation problem

On the Consolidation of Data-centers with Performance Constraints 3

exploiting queueing networks theory. Linear and non-linear optimization prob-
lems are provided as well as accurate and efficient heuristics. However, such
work is essentially based on the assumption that one software application must
be deployed on exactly one server. Furthermore, it is assumed that the service

demands of the queueing networks model are known.

1.2 Our Contribution

In the present work, we again tackle the data-center consolidation through an
optimization problem extending our previous work [1]. The proposed formulation
now takes into account the capability to handle the workload partitioning (or
load-balancing) of applications, i.e., the fact that one application can be deployed
on many servers. This is clearly related to availability issues. The estimates of
performance indices are again obtained by exploiting queueing networks (QN)
theory (see, e.g., [6]) because it provides versatile and robust models for predict-
ing performance. However, this is achieved through a new, innovative approach.
In fact, the standard theory underlying QN models assumes that a number of
input parameters, e.g., arrival rates and service demands, must be known in
advance to obtain performance estimates. Unfortunately, in practice these pa-
rameters can be very difficult to obtain for a variety of reasons (see, e.g., [7]).
Therefore, we adopt a new, robust methodology to estimate performance which
is only based on the observable variables which are usually easy to measure. As
a matter of fact, in real-world scenarios a working infrastructure exists before
starting a performance evaluation and a measurement phase can be carried out.
In the context of IT systems, common experience reveals that server utilizations
and speed-ups possess such requirements. Our analysis assumes the knowledge of
only these two latter parameters, i.e., standard input parameters such as arrival
rates and service times are not part of our approach. We then propose a number
of linear optimization models related to the data-center consolidation. Given
that the computational effort needed by standard exact solution algorithm is
expensive, an heuristic is shown to efficiently solve the optimization problems
in an approximate manner. The computational effort and the accuracy of such
heuristic is evaluated with respect to a real-world consolidation project with 38
servers and 311 web applications. We then present several minor extensions of
practical interest to the above issues, e.g., the case in which applications require
storage.

This work is organized as follows. In Section 2, we discuss the parameters
characterizing the data center and define the associated QN model. In Section 3,
we present our main formulation of the consolidation problem proposing a heuris-
tic for its efficient solution. Section 4 is devoted to experimental results on a
real-world consolidation project. Finally, Section 5 draws the conclusions of our
work and outlines further research.

4 Jonatha Anselmi, Paolo Cremonesi, and Edoardo Amaldi

2 Data-center Queueing Network Model

2.1 Data-center Description

The data center is composed of M heterogeneous servers. The cost of using
server j, which comprises energy consumption, maintainability costs, etc., is
denoted by cj , j = 1, . . . , M .

The speed-up of server j is denoted by ρj and it is understood as its relative
processing capacity obtained by the execution of suitable benchmarks with re-
spect to a reference server (say server 1), i.e., the ratio between the processing
speeds of server j and 1.

The data center hosts R different applications (or services) and each appli-
cation is deployed on multiple tiers (e.g., web-server tier, application-server tier,
etc.). Application r sequentially spans Lr tiers, r = 1, . . . , R, and when an appli-
cation r job (or client) joins the data center, it initially executes tier 1 on some
server, then it proceeds to tier 2 and so on till the Lr-th. For application r jobs,
when the Lr-th tier is reached, the request is forwarded back to the (Lr − 1)-th
for some further processing and so on till the first one. It is well-known that this
behavior agrees with standard multi-tiered architectures. We denote by

L =

R
∑

r=1

Lr (1)

the total number of application tiers. More than one application tier can be
deployed on a given server and each tier of each application can be deployed on
multiple servers.

The deployment of a given application on multiple tiers is usually referred
to as vertical scalability and it is important to provide a better performance
handling larger workloads and to solve possible conflicts among different layers
(different application tiers may use different technologies). On the other hand,
the deployment of a given application tier on multiple servers is usually referred
to as horizontal scalability and lets us deal with load-balancing issues. The hori-
zontal scalability is also important to guarantee availability constraints: in fact,
if a given application tier is deployed on multiple servers, then a failure on a
single server does not prevent the availability of the application because the
workload can be rearranged among the available servers.

To reduce management costs and to increase the data-center availability, we
assume that each application tier must be deployed on a number of servers rang-
ing between two fixed values. Therefore, we denote by mr,l and nr,l, respectively,
the maximum and the minimum number of servers in which tier l of application r
must be deployed.

Another source of lack of data-center availability is the deployment of several
tiers on a same server. Therefore, we assume that a maximum number of vj

application tiers can be deployed on server j. This assumption is also meant
to avoid the modeling of non-negligible overheads in service times estimates
(usually referred to as virtualization overhead) which would be introduced by

On the Consolidation of Data-centers with Performance Constraints 5

the middleware management if the number of virtual machines running on a
single server is large.

In agreement with the notation of basic queueing networks theory [6], we de-
note by Dj,r,l the mean service demand (time units) required by a job executing
tier l of application r on server j when the network contains no other job.

If not specified, indices j, r and l will implicitly range, respectively, in sets
{1, . . . , M}, {1, . . . , R} and {1, . . . , Lr} indexing servers, applications and tiers.

2.2 QN Model

QN models are a popular tool for evaluating the performance of computer sys-
tems and, in the mathematical formulation of the data-center consolidation prob-
lem, they let us deal with simple analytical expressions of performance indices.
The class of queueing network models we consider goes beyond the popular class
of product-form (or separable) queueing networks [2],[6],[11]. In fact, we consider
those queueing networks satisfying the utilization law, e.g., [6] (it is well-known
that this is a much larger class). This is simply due to the fact that the perfor-
mance indices we consider are server utilizations only. Therefore, this lets our
approach rely on wide assumptions and be widely applicable and robust.

Since the data center hosts different applications (characterized by different
service demands) and an arriving job can execute only one of them, the model
we build is multiclass. For convenience, a job requesting the execution of appli-
cation r is referred to as a class-r job. Since the number of jobs populating the
data center is not constant, the model we build is open and we denote by λr

the mean workload (arrival rate) of class-r jobs, r = 1, . . . , R. Jobs circulate in
the network visiting a number of stations and eventually leave the network. The
stations of the QN model the data center servers and, in the following, we use
the term station when we refer to the QN and the term server when we refer to
the data-center.

Let Dj,r be the mean service demand [6] of class-r jobs at station j, i.e., the
total average time required by a class-r job to station j during the execution of
all its tiers and when the network contains no other job. Within this standard
definition, we underline that the service demands include the processing times
of jobs at servers when they visit stations passing from the first tier to the last
one and returning back from the last tier to the first one. This notion of service
demand also takes into account that it is possible to deploy more tiers of a given
application on the same server. For instance, assuming that only tiers from 1 to
lr ≤ Lr of application r are deployed on server j, we have

Dj,r =

lr
∑

l=1

Dj,r,l. (2)

The time interval needed by a server to transfer a job to an other server is
assumed to be negligible.

Within this queueing network model of the data center, we recall that the
average utilization of station j due to class-r jobs, i.e., the busy time proportion

6 Jonatha Anselmi, Paolo Cremonesi, and Edoardo Amaldi

of server j due to class-r jobs, is given by

Uj,r = Uj,r(λr) = λrDj,r. (3)

Formula (3) is known as the utilization law [6]. Clearly, the total average uti-
lization of server j is given by

Uj = Uj(λ1, · · · , λR) =

R
∑

r=1

Uj,r < 1. (4)

Since we deal with the averages of utilizations, when referring to an index we
will drop the word average.

We now show a simple example to illustrate the queueing network model
underlying the data center. Let us consider the case of two applications, i.e.,
R = 2, having both three tiers, i.e., L1 = L2 = 3 and M = 5 available servers,
and let us also suppose that the application tiers are deployed on the servers as
indicated in Table I. For instance, we have that tier 2 of application 2 is deployed
on server 3. We notice that server 5 is not used. Since each tier of each application
is deployed on exactly one server, all service demands are given by the sum of
service times as in (2). The QN model underlying the deployment scheme of

Tier Class 1 Class 2

1 1 2
2 1 3
3 2 4

Table 1. Deployment scheme of the example.

Table I is such that the stations service demands are given by Table II. Within

Station Class 1 Class 2

1 D1,1,1 + D1,1,2 0
2 D2,1,3 D2,2,1

3 0 D3,2,2

4 0 D4,2,3

5 0 0

Table 2. Service demands of the deployment scheme in Table I.

this example, each application tier is deployed on a single server and server 5 is
not used. We also note that the QN model of the data-center does not explicitly
take into account the notion of tier which is embedded in the notion of service
demands.

On the Consolidation of Data-centers with Performance Constraints 7

Within the definition of speed-up given in Section 2.1, the following relation
must hold

Di,r,l

ρi

=
Dj,r,l

ρj

(5)

for all i, j, r, l, which implies

Di,r

ρi

=
Dj,r

ρj

. (6)

3 Formulation and Algorithm

The objective of the data-center consolidation problem is to exploit the avail-
able servers in order to obtain a configuration able to satisfy, in the average,
performance constraints on utilizations and data-center response times while
minimizing the sum of servers costs.

The decision variables we include in our optimization models are

xj,r,l =







1 if tier l of application r is deployed
on server j,

0 otherwise,
(7)

yj =

{

1 if server j is used
0 otherwise,

(8)

and
zj,r,l ≥ 0 (9)

denoting the proportion of application r and tier l workload assigned to server j.
Let a configuration be a possible assignment of variables xj,r,l satisfying the

issues discussed in Section 2.1, i.e., a feasible deployment scheme. A configuration
can be interpreted as a function f mapping tier l of application r to a subset of
M, i.e., a subset of the set of stations. The goal of the optimization problem is
to find the configuration of minimum cost which satisfies constraints on server
utilizations and constraints on data-center structural properties such as the fact
that each application tier must be deployed on at least nr,l and at most mr,l

servers. We refer to this latter property as workload partitioning and it is an
innovative aspect of our formulation. The deployment of an application tier on
multiple servers is known to increase its availability.

We assume that the data-center has an initial configuration f and that the
per-class utilizations of such configuration are known. This reflects a common
real-world scenario because in practice a data-center consolidation is performed
on a working infrastructure and, within this framework, server utilizations are
usually easy to measure and robust. Therefore, we assume the knowledge of
per-class utilizations Uf(r,l),r,l for all r and l. Considering (3) and (5), we have

Uj,r,l =
ρj

ρf(r,l)
Uf(r,l),r,l, ∀j, r, l (10)

8 Jonatha Anselmi, Paolo Cremonesi, and Edoardo Amaldi

which expresses, in a robust manner, the per-class utilization of tier l of appli-
cation r if it would be deployed on server j as a function of measured data and
known parameters.

3.1 Formulation of the Consolidation Problem

Let Ûj denote the value of the maximum utilization that server j is allowed to
have. We formulate the consolidation problem through the following ILP problem

P : min
M
∑

j=1

cjyj (11)

subject to:
M
∑

j=1

zj,r,l = 1, ∀r, l (12)

R
∑

r=1

Lr
∑

l=1

Uf(r,l),r,l
ρj

ρf(r,l)
zj,r,l ≤ Ûjyj , ∀j (13)

zj,r,l ≥
xj,r,l

mr,l

, ∀j, r, l (14)

zj,r,l ≤
xj,r,l

nr,l

, ∀j, r, l (15)

R
∑

r=1

Lr
∑

l=1

xj,r,l ≤ vj , ∀j (16)

zj,r,l ≥ 0, ∀j, r, l (17)

xj,r,l ∈ {0, 1}, ∀j, r, l (18)

yj ∈ {0, 1}, ∀j (19)

Clearly, the objective function (11) minimizes the weighted sum of server
costs.

Constraints (12) ensure that variable zj,r,l represents proportions of the work-
load of tier l of application r to forward to server j.

Constraints (13) limit the overall utilization of j by means of relation (10).
Constraints (14) and (15) model, respectively, the fact that the workload of

tier l of application r must be allocated on at most mr,l and at least nr,l servers.
These constraints ensure the avoidance of very unbalanced workloads which may
yield situations where most of the workload of an application tier is assigned
to a particular server (this is ensured by (14)), and the avoidance of splitting
the workload among a very large number of servers which may result in main-
tainability cost and inefficiencies (this is ensured by (15)). Both constraints (14)
and (15) imply that xj,r,l = 1 if and only if zj,r,l > 0. This can be easily seen if
we rewrite (14) and (15) as follows

xj,r,l

mr,l

≤ zj,r,l ≤
xj,r,l

nr,l

, ∀j, r, l (20)

On the Consolidation of Data-centers with Performance Constraints 9

where we see that if xj,r,l = 0 (respectively xj,r,l = 1) then zj,r,l is forced to be
zero (strictly positive).

Finally, constraints (16) limit the number of application tiers to deploy on j.

3.2 Heuristic Solution

The number of binary variables adopted by P is M + ML. Since large-scale
data-centers are composed of hundreds of servers and applications, i.e., several
thousands of variables xj,r,l, the exact solution of P through standard techniques
(e.g., branch and cut) requires a strong computational effort. Therefore, we now
provide a simple heuristic aiming to find a good solution in a shorter time.

The heuristic we propose initially guesses the set of servers which yields the
configuration of minimum cost and, with respect to this set only, checks whether
or not a feasible configuration exists. If such configuration does not exist, then
the guess is iteratively refined by adding the best server until a feasible solution
is found.

Algorithm 1 is the heuristic we propose for the efficient solution of P .

We initially solve P assuming that variables xj,r,l are continuous. Therefore,
the number of binary variables drops from M +ML to M . The optimum of this
problem requires a significantly smaller computational effort and the optimal
configuration found must be a lower bound on the configuration of minimum
cost. We note that a feasible solution of this problem always exists because we
assumed that the data-center initially has a working configuration. Then, we
define set Y as the set of servers chosen by the optimal configuration of the
relaxed problem and P ′ which takes into account the servers belonging to Y
only. P ′ is thus composed of much fewer variables and constraints than P . We
then search for a feasible solution of problem P ′ (Line 4). If this problem is
feasible then a solution is found and the algorithm ends. Otherwise, through
problem P ′′ we augment the space of feasible solutions by adding to Y a server
not included in the configuration computed by the relaxed problem in Line 1.
Then, we iteratively check for the feasibility of P ′ until a feasible configuration
exists. We remark that such configuration eventually exists because we initially
assume a working configuration.

Given that the optimum of the relaxed problem defined in Line 1 is a lower
bound on the solution of P , if the condition in the loop holds at its first eval-
uation, then Algorithm 1 provides the optimum. In general, if n is the number
of iterations performed by the algorithm, then n is an upper bound on the dif-
ference between the number of servers identified by the optimal solution of P
and by the proposed heuristic. This holds because we add a server to Y at each
iteration and because the objective function value corresponding to the optimal
configuration of P cannot be less than the one obtained in the relaxation of
Line 1.

10 Jonatha Anselmi, Paolo Cremonesi, and Edoardo Amaldi

Algorithm 1 Heuristic solution for P

1: Solve the relaxation of P when xj,r,l are continuous between 0 and 1, and yj are
binary;

2: Y := {j ∈ {1, . . . , M} : yj = 1};
3: Ỹ := Y ;
4: for k = 1, . . . , M − |Y | do

5: Let P ′ be problem P where

–the objective function (11) is removed,

–variables yj are fixed to 1 for all j ∈ Ỹ , and

–variables yj and xj,r,l, for all r, l, j /∈ Ỹ are
removed;

6: Solve P ′;
7: if a feasible solution of P ′ exists then

8: break;
9: end if

10: Let P ′′ be problem P where variables

–yj are fixed to 1 for all j ∈ Y , and
–xj,r,l are binary if j ∈ Y , otherwise
continuous between 0 and 1,

and the following constraint is included

M
X

j=1

yj ≤ |Y | + k; (21)

11: Solve P ′′;
12: Ỹ := {j ∈ {1, . . . , M} : yj = 1};
13: end for

14: return variables xj,r,l;

On the Consolidation of Data-centers with Performance Constraints 11

3.3 Minor Extensions

We now propose minor extensions of practical interest related to the formulation
above.

1. Consider the case in which tiers l1, . . . , lK of application r1 must be deployed
on single but different servers, which implies nr1,l1 = mr1,l1 = nr1,l2 = . . . =
mr1,lK = 1. This need can be due to operating systems incompatibilities,
e.g., Windows software on Linux servers. In this case, the constraint is given
by

K
∑

k=1

zj,r1,lk ≤ 1, ∀j. (22)

We note that (22) is expressed in terms of continuous variables zj,r1,lk (in-
stead of xj,r1,lk). It is known that this yields a more efficient formulation.
Analogously, we can avoid the deployment of particular application tiers on
some servers by simply imposing zj,r,l = 0 for some j, r and l.

2. Consider the opposite case where tiers l1, . . . , lK of application r1 must be
deployed on the same (single) server, which implies nr1,l1 = mr1,l1 = nr1,l2 =
. . . = mr1,lK = 1. In this case, we add the constraints

zj,r1,l1 = zj,r1,l2 , ∀j
zj,r1,l2 = zj,r1,l3 , ∀j

. . .
zj,r1,lK−1

= zj,r1,lK , ∀j.

(23)

3. In many practical cases, some applications must be deployed only on a given
subset of servers. This situation can arise for security issues where some
critical applications must be deployed in virtual private networks. Let S
denote the subset of set {1, . . . , M} containing the indices of the data-center
servers which are able to execute the tiers of application r1. In this case, the
constraints are given by

xj,r1,l = 0, ∀j /∈ S, t, (24)

which reduce the size of the problem because many binary variables become
constants.

4 Experimental Results

In this section, we present experimental results in order to evaluate the accuracy
and the computational requirements of our approach. Experimental analyses
have been performed by running the Ilog Cplex v10.0.0 optimization solver on
a 2.80GHz Intel Xeon CPU with hyperthreading technology. Algorithm 1 has
been implemented in the AMPL language [5].

We apply Algorithm 1 to a real consolidation project within the data-center
of one of the largest European telecommunication companies. The portion of

12 Jonatha Anselmi, Paolo Cremonesi, and Edoardo Amaldi

the data-center involved in the consolidation project consists of 311 single-tier
applications running on 311 dedicated servers. The applications were originally
consolidated with a manual mapping between the applications and 38 brand-new
systems. For each system, the mapping required to keep overall utilization below
a 70% threshold. Figure 1 shows the CPU utilizations for the manually consol-
idated servers. The applications were consolidated using VMWare ESX Server

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ut
ili

za
tio

n

Fig. 1. Utilizations of the initial configuration.

3.5. The systems used for the consolidation were HP ProLiant BL680c G5 blade
servers and ProLiant DL58x servers. Most of the servers have 8 CPUs, but the
blade systems have up to 80 processors (see Figure 2). The total computational
power of the selected systems exceeds 1.6 THz.

We applied Algorithm 1 to the above data-center configuration in order to
find a better consolidation strategy. Before running the algorithm, systems and
applications have been monitored for a one-month period in order to measure,
for each application, the average CPU utilization. Moreover, for each server, con-
figuration information have been collected, describing processing power (MHz)
and number of CPUs. Such metrics have been used to derive the relative speed-
ups between systems. Algorithm 1 has been applied by varying the utilization
thresholds in the range between 0.3 and 0.7, with step 0.1. In Figure 3.a, we

On the Consolidation of Data-centers with Performance Constraints 13

0%

20%

40%

60%

80%

2 4 8 16 24 32 40 80

number of CPUs

%
 o

f
s

y
s

te
m

s

Fig. 2. Distribution of the number of CPUs of the servers.

show the number of servers identified by our approach. When the target maxi-

0.3 0.4 0.5 0.6 0.7
6

8

10

12

14

16

Server utilizations thresholds

S
e

rv
e

r
id

e
n

ti
fi
e

d
 b

y
 A

lg
o

ri
th

m
 1

(a)

30 40 50 60 70 80 90 100
8

10

12

14

16

18

20

22

v

S
e
rv

e
r

id
e
n
ti
fi
e
d
 b

y
 A

lg
o
ri
th

m
 1

(b)

Fig. 3. Number of servers identified by the proposed heuristic by varying the utilization
thresholds (on the left). Number of servers identified by the proposed heuristic assuming
nr,t = 2 and mr,t = 4 and varying v (on the right).

mum server utilization of 0.7 is considered, we show that it is possible to obtain
a configuration which adopts only 6 servers. With respect to the 38 servers cho-
sen by the initial configuration, this has a drastic impact on data-center costs.
We notice that the number of servers identified by our approach decreases as
the maximum server utilization increases. This is obviously due to the fact that
more applications can be deployed on a single server as its maximum utilization
increases. In all cases, the number of iterations performed in the loop of the

14 Jonatha Anselmi, Paolo Cremonesi, and Edoardo Amaldi

algorithm was zero. This implies that an optimal configuration has been always
found. With our heuristic, all experiments terminated within 3 seconds. This
because the relaxation in Line 1 of Algorithm 1 identifies a very small set of
servers which significantly yields to reduce the total number of binary variables
xj,r,l.

We now consider the case where each application must be deployed on at
least 2 and at most 4 servers. Assuming 0.7 as maximum utilization thresholds,
we vary the maximum number of applications to deploy on a given server from
30 to 100 with step 10 and show the number of servers identified by Algorithm 1
(see Figure 3.b). Even in this case, the number of iterations performed in the
loop of the algorithm was zero. In the figure, we see the price we have to pay
for load-balancing applications among multiple servers. In fact, in this case the
optimal configuration is composed of 9 servers.

5 Conclusions

In this paper, we addressed the problem of finding an optimal data-center con-
figuration able to satisfy performance and availability constraints. Recently, this
problem received a lot of attention by industries. We built a queueing network
model of the data-center and imposed constraints on server utilizations, a critical
parameter strictly related to data-center stability. Then, we tackled the problem
as an optimization problem and proposed new mixed integer linear program-
ming formulations able to take into account innovative aspects. These include
the possibility of deploying a given software applications on a number of servers
between two given thresholds in a controlled, load-balanced manner. Given that
the computational effort needed by standard exact solution algorithm is expen-
sive, an heuristic is proposed to efficiently solve the optimization problem in an
approximate manner. The approach is robust because servers utilizations are de-
rived without taking into account the standard input parameters characterizing
queueing models, e.g., arrival rates and service demands. In fact, the expressions
of server utilizations have been obtained within the observable variables which,
in data-centers, are usually easy to measure and robust. Experimental results
on a real consolidation project revealed that the heuristic is able to compute
optimal configuration in very short time. We leave as future work the extension
of our formulation which takes into account resources profiles, i.e., the possibility
of having different workload demands at different time intervals.

References

1. J. Anselmi, E. Amaldi, and P. Cremonesi. Service consolidation with end-to-end
response time constraints. In Software Engineering and Advanced Applications,
2008. SEAA ’08. 34th Euromicro Conference 3-5 Sept. 2008 Page(s):345 - 352.

2. F. Baskett, K. Chandy, R. Muntz, and F. Palacios. Open, closed, and mixed
networks of queues with different classes of customers. J.ACM, 22(2):248–260,
1975.

On the Consolidation of Data-centers with Performance Constraints 15

3. M. Bichler, T. Setzer, and B. Speitkamp. Capacity planning for virtualized servers.
In In Proceedings of the Workshop on Information Technologies and Systems, Mil-
waukee, Wisconsin, USA, 2006.

4. V. Cardellini, E. Casalicchio, V. Grassi, and R. Mirandola. A framework for op-
timal service selection in broker-based architectures with multiple qos classes. In
SCW ’06: Proceedings of the IEEE Services Computing Workshops, pages 105–112,
Washington, DC, USA, 2006. IEEE Computer Society.

5. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press, November 2002.

6. E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative system
performance: computer system analysis using queueing network models. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1984.

7. Z. Liu, L. Wynter, C. H. Xia, and F. Zhang. Parameter inference of queueing
models for it systems using end-to-end measurements. Perform. Eval., 63(1):36–
60, 2006.

8. S. Martello, D. Pisinger, and P. Toth. New trends in exact algorithms for the 0-1
knapsack problem. 1997.

9. D. A. Menasce. Virtualization: Concepts, applications, and performance modeling.
the volgenau school of information technology and engineering, 2005.

10. D. A. Menasce, V. A. F. Almeida, and L. W. Dowdy. Performance by Design:
Computer Capacity Planning by Example: Computer Capacity Planning. Prentice
Hall International.

11. D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida. Performance by Design:
Computer Capacity Planning By Example. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2004.

12. J. Rolia, A. Andrzejak, and M. F. Arlitt. Automating enterprise application place-
ment in resource utilities. In DSOM, pages 118–129, 2003.

