
Service Consolidation with End-to-End Response Time Constraints

Jonatha Anselmi, Edoardo Amaldi
Politecnico di Milano, p.zza L. da Vinci, Milan, Italy

Email: jonatha.anselmi@polimi.it

Paolo Cremonesi
Neptuny, via Durando 10, Milan, Italy

Politecnico di Milano, p.zza L. da Vinci, Milan, Italy

Abstract

In this paper, we address the service consolidation prob-
lem: given a data-center, a set of servers and a set of multi-
tiered services or applications, the problem is to allocate
services to the available servers in order to minimize the
number of servers to use while avoiding the overloading of
system resources and satisfying end-to-end response time
constraints. Exploiting queueing networks theory, we de-
scribe a number of linear and non-linear combinatorial
optimization problems related to the server consolidation
problem. Since their solution is difficult to obtain through
standard solution techniques, we propose accurate heuris-
tics which quickly compute a sub-optimal solution and let
us deal with hundreds of servers and applications. Exper-
imental results illustrate the impact of the consolidation in
data-centers and show that the heuristic solution is almost
very close to the optimum.1

1. Introduction

An important problem arising in information technol-
ogy (IT) infrastructures is the consolidation of data-centers
resources (e.g., services, applications, servers), a complex
task aimed to drop costs related to energy consumption,
hardware investments, space costs, etc. To reduce conflicts
between services, many enterprise data centers currently
host most of their IT services on dedicated servers with-
out taking into account the possibility of deploying multiple
services on a same server. Therefore, servers are not used at
their maximum capabilities and, in turn, high hardware in-
vestments are often required. However, recent technologies
such as server virtualizaton and server partitioning pro-
vide a practical way to reduce conflicts between services

1This work has been accomplished thanks to the technical and financial
support of Neptuny.

and facilitate the migration and the deployment of services
among servers. Within such technologies, a single server
can be partitioned into multiple virtual servers and each vir-
tual server is isolated from the others. Server partitioning is
typically implemented with support at hardware level. On
the other hand, server virtualization implements server par-
titioning by means of software environments called virtual
machines which can be hosted on a same physical server. At
the cost of increased CPU overheads, server virtualization
allows more flexibility if compared to server partitioning.
More recent approaches use a combination of both virtual-
ization and hardware support to combine the benefits of the
two solutions. Within these new technologies, many enter-
prises are undertaking a number of consolidation projects
aimed to combine different services on a set of servers with
the objective of minimizing data center costs without vio-
lating end-to-end response time constraints.

The first work addressing the use of optimization tech-
niques for resource management problems in computing
systems is the paper proposed by Chu [4] which exploits
integer programming formulations for file allocation. The
model he considers is related to a multi-dimensional bin
packing problem. Rolia et al. [10] tackle the server consoli-
dation problem with a dynamic approach and the optimiza-
tion problem takes into account the dynamic behavior of the
workloads, i.e. daily or weakly seasonal behavior. To solve
the problem, the paper suggests the utilization of a genetic
algorithm and a case study with 41 servers is presented. The
main drawback of this approach is its limited scalability
to large scale data–centers with hundreds or thousands of
servers and applications. Bichler et al. [2] present a simi-
lar dynamic approach tailored for virtualized systems. The
main difference of their approach is that the optimization
problem is solved exploiting multi-dimensional bin-packing
approximate algorithms [8]. This methodology does not
take into account performance aspects, e.g. constraints on
response times. Almeida et al. [1] formulate a complex



non-linear optimization problem tailored on computing sys-
tems working with admission-control mechanisms. The ap-
proach takes into account both the dynamic behavior of the
workload and the loss of revenues due to service levels vio-
lations. Hühn et al. [6] present a simple optimization prob-
lem focused on maximizing the profit (i.e., the difference
between revenues and costs).

In this paper, we tackle the service consolidation prob-
lem as a combinatorial optimization problem. Given a
data-center specification, the objective of the problem is to
find the best mapping between application tiers and servers
which minimizes data-center costs while guaranteeing per-
formance constraints on server utilizations and data-center
response times. The estimates of such performance indices
are obtained by exploiting the theory of queueing networks
[7] because they are robust and versatile tools able to ac-
curately capture the performance behavior of service sys-
tems (see, e.g., [11] for a recent work). The use of queue-
ing networks models to tackle the consolidation problem is
a novel approach and yields simple analytical formulation.
We propose a number of combinatorial optimization prob-
lems related to the service consolidation. Since the response
time analytic expression yields a non-linear formulation of
the problem, we propose an efficient heuristic showing that
it provides an upper bound of the objective function. Ex-
perimental results show that the heuristic almost finds the
optimum. We also compare the impact of our consolida-
tion with respect to trivial deployment schemes adopted by
modern IT infrastructures. The main contribution of this
paper with respect to the state of the art is the capability to
address three previously unsolved issues: (i) multi-layered
services, (ii) constraints on end-to-end response times, and
(iii) load-balanced applications.

The structure of the paper is as follows. In Section 2,
we discuss the parameters characterizing the services and
the data center and define the associated queueing network
model. In Section 3, we incrementally introduce the consol-
idation problem and propose heuristics for its efficient so-
lution. Section 4 presents experimental results numerically
evaluating the efficiency and the accuracy of the proposed
heuristics. Finally, Section 5 draws the conclusions of our
work and outlines future research.

2 Data-center Queueing Network Model

2.1 Data-center Description

The data center is composed of M heterogeneous
servers. The cost of using server j, which comprises energy
consumption, maintainability costs, etc., and its speed-up
are respectively denoted by cj and ρj , j = 1, . . . , M . The
speed-up of a server is understood as its relative processing

capacity obtained by the execution of suitable benchmarks
with respect to a reference server.

The data center hosts R different applications (or ser-
vices) and each application is deployed on multiple tiers
(e.g. web-server tier, application-server tier, etc.). Applica-
tion r sequentially spans Tr tiers, r = 1, . . . , R, and when
an application r job (or client) joins the data center, it ini-
tially executes tier 1 on some server, then it proceeds to tier
2 and so on till the Tr-th. For application r jobs, when the
Tr-th tier is reached, the request is forwarded back to the
(Tr − 1)-th for some further processing and so on till the
first one. It is well-known that this behavior agrees with
standard multi-tiered architectures. More than one applica-
tion tier can be deployed on a given server and, for simplic-
ity of notation, we denote by

T =
∑

r
Tr (1)

the total number of application tiers.
In this paper, we assume that each tier of each applica-

tion is deployed on exactly one server. However, we will
show how our model can be extended to take into account
the deployment of application tiers on multiple servers, i.e.
the load-balancing. The deployment of a given application
on multiple tiers is usually referred to as vertical scala-
bility and it is important to provide a better performance
handling larger workloads and to solve possible conflicts
among different layers (different application tiers may use
different technologies). On the other hand, the deployment
of a given application tier on multiple servers is usually re-
ferred to as horizontal scalability and is needed to handle
large workloads. The horizontal scalability is also impor-
tant to guarantee availability issues: in fact, if a given ap-
plication tier is deployed on multiple servers, then a failure
on a single server does not prevent the availability of the
application because the workload is rearranged among the
available servers.

An other potential source of lack of system availability
is the deployment of several tiers on a same server. There-
fore, we assume that a maximum number of Pj application
tiers can be deployed on server j. This assumption is also
meant to avoid the modeling of non-negligible overheads in
service times estimates (usually referred to as virtualization
overhead) which would be introduced by the middleware
management if the number of virtual machines running on
a single server is large.

In agreement with the notation of basic queueing net-
works theory [7], we denote by Sj,r,t the mean (total) ser-
vice time (or execution time) required by a job which exe-
cutes tier t of application r on server j when the network
contains no other job.

In the following, if not otherwise specified, indices j, r
and t will implicitly range, respectively, in sets {1, . . . , M},



{1, . . . , R} and {1, . . . , Tr} indexing servers, applications
and tiers.

2.2 Queueing Network Model

Since the optimization problem we tackle takes into ac-
count performance constraints, we model the data-center
with a queueing network. In fact, queueing network mod-
els are the most popular tool for evaluating the performance
of computer and communication systems and, in the mathe-
matical formulation of our problem, let us deal with simple
analytical expressions of performance indices. In particular,
we define a product-form (also known as separable) queue-
ing network model (see [7] for an introduction). Product-
form models are a robust tool able to capture the data center
performance behavior and their effectiveness is due to the
good compromise they provide between the accuracy and
the computational effort needed by the model solution.

Since the data center hosts different applications (char-
acterized by different service demands) and an arriving job
can execute only one of them, the model we build is mul-
ticlass. For convenience, a job requesting the execution of
application r is referred to as a class-r job.

Since the number of jobs populating the data center is
not a priori known, the model we build is open and we de-
note by λr the mean workload (arrival rate) of class-r jobs,
r = 1, . . . , R. To meet the product-form assumptions we
suppose that λr is the average of a poissonian arrival pro-
cess. This assumption is often adopted, e.g. [9], and in our
setting it is appropriate because data centers usually handle
high workloads and many different applications.

The stations of the queueing network model the data cen-
ter servers and, in the following, we use the term station
when we refer to the queueing network and the term server
when we refer to the data center. We assume that the sta-
tions service discipline is Processor Sharing (PS) because
this is a reasonable abstraction of modern service centers
and it is used in many works, e.g. [9].

Let also Dj,r be the mean service demand [7] of class-r
jobs at station j, i.e. the total average time required by a
class-r job to station j during the execution of all its tiers
and when the network contain no other job. Within this
standard definition, we underline that the service demands
include the processing times of jobs at servers when they
visit stations passing from the first tier to the last one and
returning back from the last tier to the first one. In other
words, the service demands model the fact that jobs make
exactly two visits at a given station and this is in agreement
with multi-tier architectures. We assume that the service
demands also include the time needed by a server to transfer
a job to an other server, given that it is non-negligible.

The notion of service demand takes into account that it
is possible to deploy more tiers of a given application on the

same server. For instance, assuming that only tiers from 1
to tr ≤ Tr of application r are deployed on server j, we
have

Dj,r =
∑tr

t=1
Sj,r,t. (2)

In order to meet the product-form assumptions, we assume
that Sj,r,t is the mean value of a random variable having
rational Laplace transform. This assumption is reasonable
because this class of random variables is wide.

Within this queueing network model of the data center,
we recall that the average utilization of station j due to
class-r jobs, i.e. the busy time proportion of server j due
to class-r jobs, is given by

Uj,r = Uj,r(λr) = λrDj,r. (3)

Formula (3) is known as utilization law [7]. Clearly, the
total average utilization of server j is given by Uj =
Uj(λ1, · · · , λR) =

∑
r Uj,r < 1. We also recall that the

average response time of class-r jobs, i.e. the time interval
between the submission of a class-r job into the data center
and its receipt, is given by

Wr = Wr(λ1, · · · , λR) =
∑

j

Dj,r

1−∑R
s=1 λsDj,s

. (4)

Since we deal with the averages of performance indices,
when referring to an index we will drop the word average.

We now show a simple example to illustrate the queueing
network model underlying the data center. Let us consider
the case of two applications, i.e. R = 2, having both three
tiers, i.e. T1 = T2 = 3 and M = 5 available servers, and
let us also suppose that the application tiers are deployed on
the servers as indicated in Table I. For instance, we have that
tier 2 of application 2 is deployed on server 3. We notice
that server 5 is not used. Since each tier of each applica-
tion is deployed on exactly one server, all service demands
are given by the sum of service times as in (2). The queue-

Tier Class 1 Class 2
1 1 2
2 1 3
3 2 4

Table 1. Deployment scheme of the example.

ing network model underlying the deployment scheme of
Table I is shown in Figure 1. We remark that the fact the
queueing network model is represented as a pipeline is due
to the fact that the service demands already model the fact
that jobs return back to visit again application tiers.

We note that the proposed queueing network model of
the data-center does not explicitly take into account the no-
tion of tier which is embedded in the notion of service de-
mands.



Figure 1. The queueing network model corre-
sponding to the deployment of Table I.

3 Service Consolidation Problem

The objective of the service consolidation problem is to
exploit the available servers to obtain a data center config-
uration able to satisfy, in the average, performance con-
straints on utilizations and data-center response times while
minimizing the sum of servers costs.

The decision variable we include in our optimization
models is

xj,r,t =

⎧⎨
⎩

1 if tier t of application r is deployed
on server j,

0 otherwise.
(5)

Let us refer to configuration as a possible assignment of
variables xj,r,t satisfying the issues discussed in previous
section, i.e. a feasible deployment scheme. The goal of the
optimization problem is to find the configuration of mini-
mum cost which satisfies constraints on utilizations and re-
sponse times.

Constraints on the maximum utilization of each server
are important to

1. avoid the saturation of physical resources letting the
system handle unexpected workload peaks,

2. guarantee a low sensitivity of data-center response
time in front of small workload variations (it is well-
known, e.g. [7], that the response time curve grows to
infinity according to a hyperbole when the utilization
of a server approaches one),

3. increase the data-center reliability because if a fail-
ure occurs on a server, then the associated applications
can be moved on different servers preventing a drastic
growth of the data-center response time.

Constraints on the maximum response time are often
used in many applications for ensuring, for instance, some
quality of service (see, e.g., [3]).

In Section 3.1, we give an Integer Linear Programming
(ILP) formulation of the problem which takes into account
utilizations constraints only. Since for large data-centers the
problem is characterized by several variables, i.e. hundreds
of thousands, a heuristic is proposed for its solution. In Sec-
tion 3.2, we extend the previous formulation introducing re-
sponse times constraints. Since this new formulation makes

the problem non-linear, to solve the problem we propose an
upper bound.

3.1 Consolidation with Utilization Con-
straints

The first issue we take into account in our optimization
problem is to limit the overall utilization of each server.
In this section, we assume that each application tier is de-
ployed on exactly one server.

Let Ûj be the upper bound on the utilization of server j.
Adopting binary variables yj to take into account whether
or not server j is included in the configuration, we formulate
the following ILP problem

P1: min
∑

j
cjyj (6)

∑
j
xj,r,t = 1, ∀r, t (7)

∑
r
λr

∑
t
xj,r,tSj,r,t ≤ Ûjyj , ∀j (8)

∑
r

∑
t
xj,r,t ≤ Pj , ∀j (9)

xj,r,t ∈ {0, 1}, ∀j, r, t (10)

yj ∈ {0, 1}, ∀j. (11)

Clearly, P1 objective function minimizes the weighted sum
of servers costs. Constraints family (7) ensures that exactly
one server is dedicated to the execution of tier t of applica-
tion r and we note that such constraints ensure that

∑
j
yj ≤ T, (12)

i.e. at most T servers are used, because in the worst case
each tier of each application is deployed on a different
server.

Furthermore, a direct consequence of (7), as described
in Section 2.2, is that the service demands of the queueing
network model are given by the following relation

Dj,r =
∑

t
Sj,r,txj,r,t. (13)

Given (3), this allows us to state that the left-hand side terms
of inequalities (8) represent the overall utilization of each
server. Constraints (8), thus, limit the utilization of each
server and introduce binary variables yj which are raised to
one if and only if there exists a tier t and an application r
such that xj,r,t = 1. Such variable essentially takes into
account whether or not server j is chosen by the current
solution.

Finally, constraints family (9) limits the number of ap-
plications and tiers to deploy on j. We remark that these
latter constraints are of paramount importance to build a ro-
bust optimization model. In fact, if the number of appli-
cations deployed on server j is large, i.e. greater than Pj ,



then it very likely happens that middleware management in-
troduces significant computation overheads in the service
times estimates so that the resulting model is not accurate.

Additional constraints can be introduced in P1 to avoid
the deployment of particular application tiers on some
servers. For instance, this can be due to operating systems
incompatibilities, e.g. Windows software on Linux servers.
In this case, the constraint is given by simply imposing that
xj,r,t = 0 for some j, r and t.

We note that constraints (7) can introduce a limitation in
the problem because to handle large workloads it may be
possible that a horizontal scalability is needed, i.e. that an
application tier must be deployed on multiple servers. We
now show the case in which tier t of application r must be
deployed on exactly mr,t ≥ 1 servers. In this case, con-
straint (7) generalizes to

∑
j
xj,r,t = mr,t, ∀r, t (14)

and assuming that the workload is equally partitioned
among the mr,t (a priori not known) servers, the service
demand expression (13) must include the replacement

Sj,r,t ← Sj,r,t

mr,t
. (15)

It is easy to see that constraints (14) yield a configuration
with increased availability. If mr,t ≥ 2, within some r and
t, then a crash on a single server (say j) does not prevent the
proper functioning of the system and the fact that servers
utilizations are limited (by means of (8)) ensures that the
workload to j can be rearranged among the mr,t − 1 re-
maining servers without compromising the model stability.

Furthermore, consider also the case in which application
tiers require disk storage. Let dr,t ≥ 0 be the disk quote
needed by tier t of application r and let dj be the amount
of disk space available on server j. In this case, we take
into account storage requirements by introducing, in P1, the
constraints family

∑
r

∑
t

dr,txj,r,t ≤ dj , ∀j (16)

which ensures that each application tier is reserved the
proper amount of disk space.

It is easy to see that the number of binary variables
adopted by P1 is M + MT . Since large-scale data-centers
are composed of hundreds of servers and applications, i.e.
several thousands of variables xj,r,t, the exact solution of P1

requires a strong computational effort. Therefore, we now
provide a simple heuristic aimed to find a good solution in
a shorter time.

The heuristic we propose initially guesses the set of
servers which yields the configuration of minimum cost
and, with respect to this set only, checks whether or not a

feasible configuration exists. If such configuration does not
exist, then the guess is iteratively refined by adding the best
server until a feasible solution is found. Algorithm 1 is the
heuristic we propose for the efficient solution of P1.

Algorithm 1 Heuristic solution for P1

1: Solve the relaxation of P1 when xj,r,t are continuous
and yj are binary;

2: if no feasible solution exists then
3: return
4: end if
5: Y1 := {j : yj = 1};
6: Y0 := {j : yj = 0};
7: Let P

′
1 be problem P1 where

• the objection function (6) is removed;

• variables yj are fixed to 1 for all j ∈ Y1;

• variables yj and xj,r,t, for all j ∈ Y0, r and t, are
removed;

8: while a (binary) feasible solution of P
′
1 does not exist

do
9: j := argmini∈Y0

ci/ρi;
10: Y1 := Y1 ∪ {j};
11: Y0 := Y0 \ {j};
12: end while

First, we solve P1 assuming that xj,r,t are continuous
variables. We note that the optimum of this problem can be
obtained with a significantly smaller computational effort
because the number of binary variables, which mainly af-
fect the computational requirements, drops from M + MT
to M . Obviously, if a feasible solution of this problem does
not exist, then a feasible solution does not exist also for P1

and the algorithm ends. Otherwise, a lower bound on the
configuration of minimum cost is obtained. We then define
set Y1 (Y0) as the set of servers chosen (respectively, not
chosen) by the optimal configuration of the relaxed prob-
lem and problem P

′
1 which takes into account the servers

belonging to Y only. P
′
1 is thus composed of much less vari-

ables and constraints than P1. Then, we search for a feasible
solution of problem P

′
1 (Line 8). If this problem is feasible

then a solution is found and the algorithm ends. Otherwise,
we augment the space of feasible solutions by adding to Y1

a server not included in the configuration computed by the
relaxed problem in Line 1. This server is chosen as a trade-
off between servers cost and speed-up. Then, we iteratively
check the feasibility of P

′
1.

Since the optimum of the relaxed problem defined in
Line 1 is a lower bound on the solution of P1, we have that
if the condition in the loop holds at its first evaluation, then
it provides the optimum. In Section 4, we show that this



heuristic almost provides the optimum, i.e. Algorithm 1
very likely ends without performing iterations of the while
loop. In general, if n is the number of iterations perfomed
by the algorithm, then n is an upper bound on the difference
between the number of servers adopted within the optimal
solution and within the proposed heuristic. This because
the objective function value corresponding to the optimal
configuration of P1 must be greater than or equal to the one
obtained with the Line 1 relaxation of Algorithm 1.

3.2 Consolidation with Response Times
Constraints

The second issue we take into account in the consolida-
tion is to limit the end-to-end response time of each appli-
cation. Denoting by Ŵr the upper bound on the data-center
response time of application r, we formulate problem P2

which extends P1 by adding the following constraints fam-
ily ∑

j

Dj,r

1−∑R
s=1 λsDj,s

≤ Ŵr, ∀r (17)

where Dj,r is given by (13).
Such constraints have been widely adopted in many con-

texts (see, e.g., [3]) and their main difficulty relies on their
non-linearity which prevents the adoption of efficient tech-
niques. Furthermore, the large number of applications char-
acterizing real-world data centers is such that the number
of such constraints is large and this makes the problem
prohibitively expensive to solve. Hence, we initially ap-
proach its approximate solution proposing a heuristic which
bounds from above the cost of the final configuration. In
other words, this bound provides a pessimistic estimate on
the configuration of minimum cost.

The intuitive rationale behind the heuristic is the follow-
ing: if the objective function (6) tends to minimize the num-
ber of servers to adopt, then the optimal solution of P2 is
such that the utilization of each chosen server j very likely
approaches to its limit value Ûj . This means that the (op-
timal) solution of P2 is such that the denominator of sum-
mand j in the response time expression (17) becomes very
close to 1− Ûj . Hence, consider the ILP problem P

′
2 which

modifies P2 considering the linear constraints

∑
j

Dj,r

1− Ûj

≤ Ŵr , ∀r, (18)

instead of (17). Clearly, P
′
2 is an ILP problem.

We note that the optimal solution of P
′
2 is an upper bound

on the solution of P2 because each term in the response time
expression (18) is greater than or equal to the corresponding
term in (17). This implies that the space of the feasible
solutions of P

′
2 is a subset of the one of P2. This implies

that the value of objective function (6) chosen by solving P
′
2

must be greater than or equal to the one obtained by solving
P2.

The final solution can be easily obtained by applying Al-
gorithm 1 taking into account constraints (18).

4 Experimental Results

In this section, we present some numerical results in or-
der to evaluate the accuracy and the computational require-
ments of our approach. Experimental analyses have been
performed by running the Ilog Cplex optimization solver
on a 2.80GHz Intel Xeon CPU with hyperthreading tech-
nology. Algorithm 1 has been implemented in the AMPL
language [5]. In the experiments, the utilization thresholds,
the values of Pj and the arrival rates have been randomly
chosen according to a uniform distribution among ranges
[0.6, 1], [5, 15] and [0.1, 10] jobs per time unit. Server costs
are assumed to be unitary. The service times Sj,r,t have
been generated as follows. Since we want to evaluate the
impact of the consolidation on costs, we assume that a data-
center is given and that its (initial) configuration is such
that each server hosts exactly a single application tier. We
note that this trivial configuration adopting T servers is of-
ten employed by modern data-centers and, for simplicity,
we assume that tier t of application r is deployed on server
f(r, t) ≡ ∑r

s=1 Ts + t (this essentially builds a bijection
between application tiers and servers). This configuration
corresponds to the situation in which no consolidation is
performed. Within this initial data-center configuration, we
generated the service times as follows

Sf(r,t),r,t =
(1 − ε)drand48()

λr
(19)

where drand48() is the standard C function which gen-
erates a pseudo-random number in range [0, 1] and ε = 0.01
is a small correction factor which prevents the generation of
service times which yield an average utilization of 100%
(we assume that in the original configuration the servers
are able to handle the incoming workloads). The remain-
ing service times have been generated as follows. For each
server j, we first generated its speed-up between 1 and 100
according to a uniform distribution. Then, we applied the
following scaling factor

Si,r,t = Sf(r,t),r,t

ρf(r,t)

ρi
, i 	= f(r, t) (20)

which represents a reasonable approximation for the service
times at server i. Formula (20) essentially scales the service
times of the existing configuration according to the process-
ing capacities of the data-center servers.

The accuracy of Algorithm 1 has been evaluated by
measuring the number of iterations performed in its loop.



Clearly, if this number is equal to zero, then the proposed
heuristic returns the optimal configuration. On the other
hand, we remark that a non-zero number of iterations does
not necessarily imply that the optimum is not found (see
Section 3 for further details). A direct comparison with re-
spect to the optimum of P1 has not been carried out because
of the prohibitively expensive computational effort needed
by its exact solution. In Figure 2, we illustrate the average
and the maximum number of iterations performed in the
loop of the proposed algorithm by varying the number of
applications from 20 to 140 with step 10 and keeping fixed
to 3 the number of tiers (it is known that real-world appli-
cations usually span 3 tiers). Hence, the (variable) number
of servers becomes M =

∑
r Tr = 3R. In the figure, each

point is referred to the average or the maximum value of
50 randomly generated models. We note that the solution

20 30 40 50 60 70 80 90 100 110 120 130 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.5

R

N
um

be
r 

of
 it

er
at

io
ns

 

 
Average number of iterations
Maximum number of iterations

Figure 2. Average and maximum number of
iterations performed by Algorithm 1.

identified by our heuristic is very close to the optimum: on
a total of 650 randomly generated models, no more than 1
iteration has been performed by our algorithm. This lets
us conclude that Algorithm 1 is very accurate. We also note
that the bold line curve in Figure 2 can be clearly interpreted
as an upper bound on the probability that Algorithm 1 does
not return the optimum. If R ≤ 40 such probability is less
than 0.3.

Since the proposed heuristic performs one iteration in the
worst case, the above result implies that the problem P1 re-
laxation shown in Line 1 of Algorithm 1 can be adopted to
immediately obtain (at design time) a very accurate measure
of the maximum cost reduction resulting from the consoli-
dation. We remark that the solution of such relaxation can
be obtained very quickly because of the limited number of
binary variables, i.e. T instead of T + T 2. With respect to
the performed experiments, the computation times needed

by the solver to compute the solution of this relaxation are
of the order of a minute in the worst case. The computation
times needed by the solver to find a feasible solution of the
problem in Line 8 are of the order of 10 minutes in the worst
case.

We now measure the improvement of the configuration
found by Algorithm 1 with respect to the trivial configu-
ration which simply assigns exactly one application tier to
exactly one server and vice versa. This latter configuration
is often employed in real-world data-centers. Within this
setting, we increased again the number of applications from
20 to 140 while keeping fixed to 3 the number of tiers and
keeping M equal to 3R as in previous cases. In Figure 3, we
show the maximum, the average and the minimum values of
ratio

“Number of servers identified by Algorithm 1”/M (21)

which is a measure of the cost reductions adopted by our
solution with respect to the solution which does not exploit
the consolidation. In the figure, each point is associated to
10 randomly generated models. What we see in Figure 3

20 30 40 50 60 70 80 90 100 110 120 130 140
0

0.1

0.2

0.3

0.4

0.5

0.6

R

"N
um

be
r 

of
 s

er
ve

rs
 id

en
tif

ie
d 

by
 A

lg
or

ith
m

 1
" 

/ M

Figure 3. Maximum, average and minimum
value of (21) for increasing the data-center
sizes.

is that the consolidation yields remarkable costs reductions.
In fact, the number of servers adopted in the configuration
identified after the consolidation is, in the average case,
0.3M . We also note that as the data-center size increases
(recall that in these experiments we assumed M = 3R), the
ratio (21) can be well-approximated by a constant, i.e. 0.3.
In general, this suggests that even for very large data-center,
the number of servers identified by our heuristic scales with
the data-center size within a constant.



5 Conclusions

In this paper, we tackled the service consolidation prob-
lem aimed to find the best data-center configuration which
minimizes costs while avoiding the overloading of servers
and satisfying end-to-end response time constraints. A
queueing network model of the data-center has been pro-
posed to deal with performance indices and a combina-
torial optimization model able to handle multi-tier appli-
cations, constraints on end-to-end response times and the
load-balancing of applications has been formulated. Since
the solution of the optimization problem through standard
ILP techniques is prohibitively expensive with respect to
significantly large data-centers, we approached its solu-
tion proposing efficient heuristics. Experimental results re-
vealed that our approach yields configurations of the data-
center yielding costs which are very close to the optimum.
With respect to the trivial configuration which maps an ap-
plication tier to exactly one server and vice versa, we nu-
merically showed that the proposed approach yields con-
figurations which approximately adopt the thirty percent of
the available servers and it seems that this scaling holds in
general even for larger data-centers.

We leave as future work the experimental analysis of
the proposed approach when response time are consid-
ered. Within this setting, we showed that the proposed ap-
proach provides an upper bound on the final configuration.
We also leave as future research the more difficult case in
which the workload can partitioned among an arbitrary (not
known) number of servers. This further feature would han-
dle larger workloads and availability issues. This further
feature would let the data center scale horizontally and it is
also strictly related to availability issues. From a mathemat-
ical point of view, this can be accomplished by introducing
the following constraints

∑
j
xj,r,t ≥ mr,t, ∀r, t, (22)

instead of constraints (7), where mr,t denotes the minimum
number of servers in which tier t of application r must be
deployed. Within this setting, we notice that the service de-
mands expression (13) is more difficult because it becomes
non-linear.

Acknowledgements

The authors thank Stefano Gualandi for his comments
and his support on Cplex issues.

References

[1] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and
M. Trubian. Resource management in the autonomic

service-oriented architecture. In ICAC 2006 Proceedings
(3rd International Conference on Autonomic Computing),
84-92, Dublin June 2006.

[2] M. Bichler, T. Setzer, and B. Speitkamp. Capacity planning
for virtualized servers. In In Proceedings of the Workshop
on Information Technologies and Systems, Milwaukee, Wis-
consin, USA, December 9 - 10, 2006.

[3] V. Cardellini, E. Casalicchio, V. Grassi, and R. Mirandola.
A framework for optimal service selection in broker-based
architectures with multiple qos classes. In SCW ’06: Pro-
ceedings of the IEEE Services Computing Workshops, pages
105–112, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[4] W. W. Chu. Optimal file allocation in a multiple computer
system. IEEE Trans. Comput., 18(10):885–889, 1969.

[5] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Mod-
eling Language for Mathematical Programming. Duxbury
Press, November 2002.

[6] O. Hühn and C. Breitbarth. Performance modelling for sla-
compliant but cost-effective it-service provisioning. In Pro-
ceedings of Workshop on Information Technologies and Sys-
tems (WITS 2007) at the International Conference on Infor-
mation Systems (ICIS 2007), Montreal, Canada, 2007.

[7] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.
Sevcik. Quantitative system performance: computer sys-
tem analysis using queueing network models. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1984.

[8] S. Martello, D. Pisinger, and P. Toth. New trends in exact
algorithms for the 0-1 knapsack problem. 1997.

[9] D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida. Per-
formance by Design: Computer Capacity Planning By Ex-
ample. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2004.

[10] J. Rolia, A. Andrzejak, and M. F. Arlitt. Automating enter-
prise application placement in resource utilities. In DSOM,
pages 118–129, 2003.

[11] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. Analytic modeling of multitier internet appli-
cations. ACM Trans. Web, 1(1):2, 2007.


