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What is a regression?

Regression analysis is the most widely used statistical tool for understanding
relationships among variables. Several possible objectives including:

1 Prediction of future observations. This includes extrapolation since we
all like connecting points by lines when we expect things to be contin-
uous

2 Assessment of the e�ect of, or relationship between, explanatory vari-
ables on the response

3 A general description of data structure (generally expressed in the form
of an equation or a model connecting the response or dependent variable
and one or more explanatory or predictor variable)

4 De�ning what you should "expect" as it allows you to de�ne and detect
what does not behave as expected

The linear relationship is the most commonly found one

• we will illustrate how it works

• it is very general and is the basis of many more advanced tools (poly-
nomial regression, ANOVA, . . . )
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Starting With a Simple Data Set

Descriptive statistics provides simple summaries about the sample and about
the observations that have been made.

How could we summarize the following data set ?

x y

1 1.00 3.00
2 2.00 1.00
3 3.00 5.00
4 5.00 2.00
5 7.00 6.00
6 9.00 4.00
7 11.00 7.00
8 13.00 9.00
9 14.00 8.00
10 15.00 5.00
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The "Eyeball" Method
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• A straight line drawn through the maximum number of points on a
scatter plot balancing about an equal number of points above and below
the line

• Some points are rather far from the line. Maybe we should instead try
to minimize some kind of distance to the line

7 / 41



Least Squares Line (1): What to minimize?
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Intuitively, a large error is much more important than a small one. We could

try to minimize F (α, β) =
∑
i

(yi − α− βxi )︸ ︷︷ ︸
ei

2, the size of all residuals:

• If they were all zero we would have a perfect line

• Trade-o� between moving closer to some points and at the same time
moving away from other points
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Least Squares Line (2): Simple Formula

F (α, β) =
n∑

i=1

(yi − α− βxi )2

F is quadratic in α and in β so if we simply di�erentiate F by α and by β,
we can obtain a closed form for the minimum:

β̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1 xiyi −

1
n

∑n
i=1 xi

∑n
j=1 yj∑n

i=1(x2i )− 1
n (
∑n

i=1 xi )
2

=
xy − x̄ ȳ

x2 − x̄2
=

Cov[x , y ]

Var[x ]
= rxy

sy
sx

α̂ = ȳ − β̂ x̄ , where:
• x̄ and ȳ are the sample mean of x and y

• rxy is the sample correlation coe�cient between x and y

• sx and sy are the sample standard deviation of x and y

Also it has a good geometric interpretation (orthogonal projection)
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Least Squares Line (3): y as a function of x or the opposite?
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OK, do we have less asymetrical options?
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Least Distances Line (a.k.a. Deming Regression)
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• Note that somehow, this makes sense only if we have a square plot, i.e.,
if x and y have the same units
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Least Rectangles Line
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• Minimize E (α, β) =
∑n

i=1

∣∣∣xi − yi−α
β

∣∣∣ · |yi − α− βxi |
• This leads to the regression line y =

sy
sx

(x − x̄) + ȳ .
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Least Squares (in Both Directions) Line
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• Minimize D(α, β) =
∑n

i=1

(
xi − yi−α

β

)2
+ (yi − α− βxi )2

• Has to be computed analytically
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Which line to choose?
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What does correspond to each line?

• Eyeball: AFAIK nothing

• Least Squares: classical linear regression y ∼ x

• Least Squares in both directions: I don't know

• Deming: equivalent to Principal Component Analysis

• Rectangles: may be used when one variable is not "explained" by the
other, but are inter-dependent

This is not just a geometric problem. You need a model of to decide which
one to use
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The Simple Linear Regression Model

We need to invest in a probability model
Y = a + bX + ε

• Y is the response variable

• X is a continuous explanatory variable

• a is the intercept

• b is the slope

• ε is some noise
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• a + bX represents the �true line�, the part of Y that depends on X
• The error term ε is independent �idosyncratic noise�, i.e., the part of Y
not associated with X

Gauss-Markov Theorem

Under a few assumptions, the least squares regression is the best linear
unbiased estimate

• E[β̂] = b and E[α̂] = a • Var(β̂) and Var(α̂) are minimal
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Multiple explanatory variables

• The same results hold true when there are several explanatory variables:

Y = a + b(1)X (1) + b(2)X (2) + b(1,2)X (1)X (2) + ε

The least squares regressions are good estimators of a, b(1), b(2), b(1,2)

• We can use an arbitrary linear combination of variables, hence

Y = a + b(1)X + b(2) 1
X + b(3)X 3 + ε

is also a linear model

• Obviously the closed-form formula are much more complicated but soft-
wares like R handle this very well
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Important Hypothesis (1)

Weak exogeneity The predictor variables X can be treated as �xed values,
rather than random variables: the X are assumed to be error-free, i.e.,
they are not contaminated with measurement errors
Although not realistic in many settings, dropping this assumption leads
to signi�cantly more di�cult errors-in-variables models

Linearity the mean of the response variable is a linear combination of the
parameters (regression coe�cients) and the predictor variables
Since predictor variables themselves can be arbitrarily transformed, this
is not that restrictive. This trick is used, for example, in polynomial
regression, but beware of over�tting

Independance of Errors if several responses Y1 and Y2 are �t, ε1 and ε2
should be independant
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Other Very Important Hypothesis

Constant variance (a.k.a. homoscedasticity)
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• Variance is independant of X
• If several responses Y1 and Y2 are �t, ε1 and ε2 should have the
same variance

• Either normalize Y or use an other estimator
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Other Classical Hypothesis (3)

Normal and iid errors This is not an assumption of the Gauss Markov The-
orem. Yet, it is quite convenient to build con�dence intervals of the
regression

Arrangement of the predictor variables X it has a major in�uence on the
precision of estimates of β (remember Anscombe's quartet).
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This is part of your design of experiments:

• If you want to test linearity, X should be uniformly distributed
• If you want the best estimation, you should use extreme values of X
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Linearity: Residuals vs. Explanatory Variable
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When there are several factors, you have to check for every dimension. . .
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Homoscedasticity: Residuals vs. Fitted values
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Normality: qqplots
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A quantile-quantile plot is a graphical method for comparing two probability
distributions by plotting their quantiles against each other
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Model Formulae in R

The structure of a model is speci�ed in the formula like this:

response variable ~ explanatory variable(s)

~ reads "is modeled as a function of " and lm(y~x) means y = a + bx + ε

On the right-hand side, one should specify how the explanatory variables
are combined. The symbols used here have a di�erent meaning than in
arithmetic expressions

• + indicates a variable inclusion (not an addition)

• - indicates a variable deletion (not a substraction)

• * indicates inclusion of variables and their interactions

• : means an interaction

Therefore

• z~x+y means z = a + b1x + b2y + ε

• z~x*y means z = α + b1x + b2y + b3xy + ε

• z~(x+y)^2 means the same

• log(y)~I(1/x)+x+I(x^2) means z = α + b1
1
x + b2x + b3x

2 + ε
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Checking the model with R

1 reg <- lm(data=df[df$type=="heteroscedastic",],y~x)
2 par(mfrow=c(2,2)); plot(reg); par(mfrow=c(1,1))
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Decomposing the Variance

How well does the least squares line explain variation in Y ?
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We have Y = Ŷ (X ) + ε (Ŷ is the "true mean"; we note Ŷ = Ŷ (X )).
Since Ŷ and ε are uncorrelated, we have

Var(Y ) = Var(Ŷ + ε) = Var(Ŷ ) + Var(ε)

1

n − 1

n∑
i=1

(Yi − Ȳ )2 =
1

n − 1

n∑
i=1

(Ŷi − Ŷ )2 +
1

n − 1

n∑
i=1

(εi − ε̄)2

Since ε̄ = 0 and Ȳ = Ŷ , we have
n∑

i=1

(Yi − Ȳ )2︸ ︷︷ ︸
Total Sum of Squares

=
n∑

i=1

(Ŷi − Ȳ )2︸ ︷︷ ︸
Regression SS

+
n∑

i=1

εi
2

︸ ︷︷ ︸
Error SS

• SSR = Variation in Y explained by the regression line
• SSE = Variation in Y that is left unexplained

SSR = SST ⇒ perfect �t
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A Goodness of Fit Measure: R2

The coe�cient of determination, denoted by R2, measures goodness of �t:

R2 = 1− SSE

SST
= 1−

∑n
i=1(yi − ŷ(xi ))2∑n

i=1(yi − ȳ)2
= 1− the error knowing x

the error without knowing x

• 0 ≤ R2 ≤ 1

• The closer R2 is to 1, the better the �t

Warning:

• A not so low R2 may mean important noise or bad model
� In biology or social sciences, an R2 of .6 can be considered as good
� In physics/engineering, an R2 of .6 would be considered as low

• As you add parameters to a model, you inevitably improve the �t
� The adjusted R2 tries to compensate this
� There is a trade-off beteween model simplicity and fit. Strive for sim-

plicity!
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Illustration with R (homoscedastic data)
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1 reg <- lm(data=df[df$type=="homoscedastic",],y~x)

2 summary(reg)

1 Call:

2 lm(formula = y ~ x, data = df[df$type == "homoscedastic", ])

3

4 Residuals:

5 Min 1Q Median 3Q Max

6 -4.1248 -1.3059 -0.0366 1.0588 3.9965

7

8 Coefficients:

9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 4.56481 0.33165 13.76 <2e-16 ***

11 x 0.50645 0.01154 43.89 <2e-16 ***

12 ---

13 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

14

15 Residual standard error: 1.816 on 48 degrees of freedom

16 Multiple R-squared: 0.9757, Adjusted R-squared: 0.9752

17 F-statistic: 1926 on 1 and 48 DF, p-value: < 2.2e-16

• Std. Error = σ/
√
n and can be used are used to compute C.I on the

regression estimates

• t-value and Pr(>|t|): t-test whether µ 6= 0
� Easy to read significance codes
� Assumes normality

• F-statistic: test the null hypothesis that all of the model coe�cients
are 0

32 / 41



Illustration with R (homoscedastic data)

1 reg <- lm(data=df[df$type=="homoscedastic",],y~x)

2 summary(reg)

1 Call:

2 lm(formula = y ~ x, data = df[df$type == "homoscedastic", ])

3

4 Residuals:

5 Min 1Q Median 3Q Max

6 -4.1248 -1.3059 -0.0366 1.0588 3.9965

7

8 Coefficients:

9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 4.56481 0.33165 13.76 <2e-16 ***

11 x 0.50645 0.01154 43.89 <2e-16 ***

12 ---

13 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

14

15 Residual standard error: 1.816 on 48 degrees of freedom

16 Multiple R-squared: 0.9757, Adjusted R-squared: 0.9752

17 F-statistic: 1926 on 1 and 48 DF, p-value: < 2.2e-16

• Std. Error = σ/
√
n and can be used are used to compute C.I on the

regression estimates

• t-value and Pr(>|t|): t-test whether µ 6= 0
� Easy to read significance codes
� Assumes normality

• F-statistic: test the null hypothesis that all of the model coe�cients
are 0

32 / 41



Illustration with R (homoscedastic data)

1 reg <- lm(data=df[df$type=="homoscedastic",],y~x)

2 summary(reg)

1 Call:

2 lm(formula = y ~ x, data = df[df$type == "homoscedastic", ])

3

4 Residuals:

5 Min 1Q Median 3Q Max

6 -4.1248 -1.3059 -0.0366 1.0588 3.9965

7

8 Coefficients:

9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 4.56481 0.33165 13.76 <2e-16 ***

11 x 0.50645 0.01154 43.89 <2e-16 ***

12 ---

13 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

14

15 Residual standard error: 1.816 on 48 degrees of freedom

16 Multiple R-squared: 0.9757, Adjusted R-squared: 0.9752

17 F-statistic: 1926 on 1 and 48 DF, p-value: < 2.2e-16

• Std. Error = σ/
√
n and can be used are used to compute C.I on the

regression estimates

• t-value and Pr(>|t|): t-test whether µ 6= 0
� Easy to read significance codes
� Assumes normality

• F-statistic: test the null hypothesis that all of the model coe�cients
are 0

32 / 41



Illustration with R (homoscedastic data)

1 reg <- lm(data=df[df$type=="homoscedastic",],y~x)

2 summary(reg)

1 Call:

2 lm(formula = y ~ x, data = df[df$type == "homoscedastic", ])

3

4 Residuals:

5 Min 1Q Median 3Q Max

6 -4.1248 -1.3059 -0.0366 1.0588 3.9965

7

8 Coefficients:

9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 4.56481 0.33165 13.76 <2e-16 ***

11 x 0.50645 0.01154 43.89 <2e-16 ***

12 ---

13 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

14

15 Residual standard error: 1.816 on 48 degrees of freedom

16 Multiple R-squared: 0.9757, Adjusted R-squared: 0.9752

17 F-statistic: 1926 on 1 and 48 DF, p-value: < 2.2e-16

• Std. Error = σ/
√
n and can be used are used to compute C.I on the

regression estimates

• t-value and Pr(>|t|): t-test whether µ 6= 0
� Easy to read significance codes
� Assumes normality

• F-statistic: test the null hypothesis that all of the model coe�cients
are 0

32 / 41



Illustration with R (heteroscedastic data)
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1 reg <- lm(data=df[df$type=="heteroscedastic",],y~x)

2 summary(reg)

1 Call:

2 lm(formula = y ~ x, data = df[df$type == "heteroscedastic", ])

3

4 Residuals:

5 Min 1Q Median 3Q Max

6 -25.063 -3.472 0.663 3.707 19.327

7

8 Coefficients:

9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 4.98800 1.41061 3.536 0.000911 ***

11 x 0.56002 0.04908 11.411 2.83e-15 ***

12 ---

13 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

14

15 Residual standard error: 7.722 on 48 degrees of freedom

16 Multiple R-squared: 0.7306, Adjusted R-squared: 0.725

17 F-statistic: 130.2 on 1 and 48 DF, p-value: 2.83e-15
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Illustration with R (quadratic data)
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1 reg <- lm(data=df[df$type=="quadratic",],y~x)

2 summary(reg)

1 Call:

2 lm(formula = y ~ x, data = df[df$type == "quadratic", ])

3

4 Residuals:

5 Min 1Q Median 3Q Max

6 -11.759 -5.847 -2.227 3.746 17.346

7

8 Coefficients:

9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 7.05330 1.41238 4.994 8.23e-06 ***

11 x 0.65517 0.04914 13.333 < 2e-16 ***

12 ---

13 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

14

15 Residual standard error: 7.732 on 48 degrees of freedom

16 Multiple R-squared: 0.7874, Adjusted R-squared: 0.783

17 F-statistic: 177.8 on 1 and 48 DF, p-value: < 2.2e-16
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Illustration with R (quadratic data, polynomial regression)
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1 df$x2=df$x^2

2 reg_quad <- lm(data=df[df$type=="quadratic",],y~x+x2)

3 summary(reg_quad)

1 Call:

2 lm(formula = y ~ x + x2, data = df[df$type == "quadratic", ])

3

4 Residuals:

5 Min 1Q Median 3Q Max

6 -4.7834 -0.8638 -0.0480 1.1312 3.9913

7

8 Coefficients:

9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 5.3065389 0.3348067 15.850 <2e-16 ***

11 x 0.0036098 0.0252807 0.143 0.887

12 x2 0.0164635 0.0005694 28.913 <2e-16 ***

13 ---

14 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

15

16 Residual standard error: 1.803 on 47 degrees of freedom

17 Multiple R-squared: 0.9887, Adjusted R-squared: 0.9882

18 F-statistic: 2053 on 2 and 47 DF, p-value: < 2.2e-16
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Making Predictions

1 xv <- seq(-20,60,.5)
2 yv <- predict(reg_quad,list(x=xv,x2=xv^2))
3 ggplot(data=df[df$type=="quadratic",]) + theme_bw() +
4 geom_hline(yintercept=0) + geom_vline(xintercept=0) +
5 geom_point(aes(x=x,y=y),color="blue") +
6 geom_line(data=data.frame(x=xv,y=yv),aes(x=x,y=y),color="red",size=1)
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Con�dence interval

Remember that

β̂ =

∑n
i=1 xiyi −

1
n

∑n
i=1 xi

∑n
j=1 yj∑n

i=1(x2i )− 1
n (
∑n

i=1 xi )
2

α̂ = ȳ − β̂ x̄
β̂ and α̂ are sums of the εi 's and it is thus possible to compute con�dence
intervals assuming:

• the linear model holds true

• either the errors in the regression are normally distributed

• or the number of observations is su�ciently large so that the actual
distribution of the estimators can be approximated using the central
limit theorem
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Illustration with R

The Anscombe quartet

1 head(a,10)

1 idx set x y

2 1 1 1 10 8.04

3 2 1 2 10 9.14

4 3 1 3 10 7.46

5 4 1 4 8 6.58

6 5 2 1 8 6.95

7 6 2 2 8 8.14

8 7 2 3 8 6.77

9 8 2 4 8 5.76

10 9 3 1 13 7.58

11 10 3 2 13 8.74

Con�dence intervals with ggplot

1 ggplot(data=a,aes(x=x,y=y)) + theme_bw() +

2 facet_wrap(~set,nrow=1) + geom_point(color="blue") +

3 geom_smooth(method='lm',color="red")
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Conclusion

1 You need a model to perform your regression

2 You need to check whether the underlying hypothesis of this model are
reasonable or not

This model will allow you to:

1 Assess and quantify the e�ect of parameters on the response
� Parameters are estimated as a whole, using all the measurements

2 Extrapolate within the range of parameters you tried

3 Detect outstanding points (those with a high residual and/or with a
high lever)

This model will guide on how to design your experiments:

• e.g., the linear model assumes some uniformity of interest over the
parameter space range

• if your system is heteroscedastic, you will have to perform more mea-
surements for parameters that lead to higher variance
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