Predictive models for bandwidth sharing in high performance clusters

Jérôme VIENNE, Maxime MARTINASSO, Jean-Marc VINCENT, Jean-François MEHAUT

Laboratoire LIG, Mescal Team, Grenoble, France. BULL - HPC, Benchmark Team, Échirolles, France.

30 September 2008

Composition of Clusters

Sharing of the network resource

Experiences and analysis of concurrent communications

- Experimental protocol
- Experiences

2 Modelization of concurrent communications

- Existing models
- Our modelisation

3 Models Evaluation

- Synthetic Graphs
- Comparaison between simple models

4 Conclusion

Experiences and analysis of concurrent communications

- Experimental protocol
- Experiences

2 Modelization of concurrent communications

- Existing models
- Our modelisation

3 Models Evaluation

- Synthetic Graphs
- Comparaison between simple models

4 Conclusion

Study of network concurrency

- High Performance Networks (Myrinet, Gigabit Ethernet)
- Different kind of conflicts
- Analysis of performance
- \Rightarrow Observation of communication times

Experimental Method

Software Support

- Communication interface MPI : Mpich
- Synchronous communication : MPI_Send/MPI_Recv

Creation of a Benchmark

- A set of MPI tasks only sending or receiving.
- Communications : Same start time and size for identical datas
- Measurement : issue rate

Communication patterns

 \Rightarrow Comparison of times without conflict and with conflicts \Rightarrow Progressive augmentation of pattern complexity

1e-04

16 32 64 128 256 512 1Kg

4K 16K 64K 256K 1M 4M 16M 64M

Message Size (Bytes)

O/I conflict

Com 2

0.5

0.003

0.071

1

Com 1

0.5

0.003

0.071

1

Basic experiences

Basic experiences

Basic experiences

Incoming/Incoming or Outgoing/Outgoing Conflicts

Myrinet

Size	Dáf	I/I conflict			
JIZE	iter.	Com 1	Com 2		
16B [µs]	0.5	0.5	0.6		
16KB [ms]	0.003	0.004	0.003		
16MB [s]	0.071	0.138 0.138			
Ratio	1	1.94	1.94		

Predictive models for bandwidth sharing in high performance clusters 10 / 22

Basic experiences

Incoming/Incoming or Outgoing/Outgoing Conflicts

Gigabit Ethernet

Size	Dáf	I/I conflict			
Size	iter.	Com 1	Com 2		
16B [µs]	4.2	4.7	4.2		
16KB [ms]	0.033	0.033	0.037		
16MB [s]	0.194	0.290	0.291		
Ratio	1	1.5	1.5		

Evaluation

Elaborated experiences

Gigabit Ethernet +TCP : Better concurrency management

(Modelization)

Conclusion

Experiences and analysis of concurrent communications

- Experimental protocol
- Experiences

2 Modelization of concurrent communications

- Existing models
- Our modelisation

3 Models Evaluation

- Synthetic Graphs
- Comparaison between simple models

4 Conclusion

(Modelization)

Existing models of communication (without concurrency)

Parameters :

- L : Latency
- β : Bandwidth
- *m* : Message size

LogP, LogGP, pLogP

- LogP et LogGP :
 - 2o + L + (m 1) * G
 - \circ o overhead, G=1/eta
- Generalization : pLogP
 o(m), g(m)

Hockney Model (linear)

$$t(m) = m/\beta + L$$

Modelisation : goals

Complete existing models to modelise the concurrency \Rightarrow Predict communication times taking into account conflicts

Structure of the model

• Enriched linear model, penality p :

$$t(m) = p * m/\beta + L$$

• Evolution of communication patterns

Determine penalties for each network

Gigabit Ethernet

- Complex flow control : TCP
- Many constructors : heterogeneous components
- \Rightarrow Model : Quantitative approach (parameters + measures)

Myrinet

- Simple flow control
- Only one constructor : homogeneous components
- \Rightarrow Model : Descriptive approach

Modelization

Conclusion

Experiences and analysis of concurrent communications

- Experimental protocol
- Experiences

2 Modelization of concurrent communications

- Existing models
- Our modelisation

3 Models Evaluation

- Synthetic Graphs
- Comparaison between simple models

4 Conclusion

Evaluation method

Comparisons of predicted and measured values

- Synthetic Graphs : trees et complete graphs
- Application graph : benchmark Linpack (HPL)

Formulas

$$E_{rel}(c_k) = rac{T_p - T_m}{T_m} imes 100$$

 $E_{abs}(G) = rac{1}{N} \sum_{k=1}^N |E_{rel}(c_k)|$

Predictive models for bandwidth sharing in high performance clusters 17 / 22

Synthetic graphs : trees

Myrinet

Ar1					
com.	Tm	Tp	Erel		
а	0.097	0.107	10.3		
b	0.103	0.107	3.9		
с	0.092	0.107	16.3		
d	0.067	0.071	6.0		
e	0.070	0.071	1.4		
f	f 0.065		9.2		
g	0.070	0.071	1.4		
$E_{abs} = 6.9$					

Ar2					
com.	T _m	Tp	Erel		
а	0.087	0.089	2.3		
b	0.087	0.089	2.3		
с	0.070	0.071	1.4		
d	0.052	0.053	1.9		
e	0.037	0.035	-5.4		
f	0.051	0.053	3.9		
g 0.070		0.071	1.4		
$E_{abs} = 2.6$					

Gigabit Ethernet

Ar1					
com.	Tm	Tp	Erel		
а	0.223	0.214	-4.0		
b	0.170	0.214	25.9		
с	0.226	0.214	-4.0		
d	0.147	0.143	-2.7		
e	0.146	0.143	-2.0		
f	0.147	0.143	-2.7		
g	0.146	0.143	-2.0		
$E_{abs} = 6.0$					

Ar2					
com.	T _m	Τ _p	E _{rel}		
а	0.166	0.147	-11.4		
b	0.164	0.147	-10.4		
с	0.147	0.143	-2.7		
d	0.140	0.137	-2.1		
e	0.131	0.100	-23.7		
f	0.131	0.137	4.6		
g	0.145	0.143	-1.4		
$E_{abs} = 8.0$					

Synthetic graphs : complete graphs

Myrinet

d

e

f

g

h

0.164

0.043

0.086

0.087

0.108

0.108

0.059

Gigabit Ethernet

Evaluation

Kn1					
com.	Tm	T _p	Erel		
а	0.257	0.252	-1.9		
b	0.256	0.252	-1.6		
с	0.270	0.252	-6.7		
d	0.311	0.302	-2.9		
e	0.181	0.189	4.4		
f	0.207	0.206	-0.5		
g	0.274	0.276	0.7		
h	0.182	0.206	13.2		
i	0.258	0.276	7.0		
j	0.287	0.276 -3.8			
$E_{abs} = 4.3$					
	Kı	n2			
com.	Tm	Tp	Erel		
а	0.270	0.285	5.5		
b	0.284	0.304	7.0		
b c	0.284 0.284	0.304 0.304	7.0 7.0		
b c d	0.284 0.284 0.270	0.304 0.304 0.285	7.0 7.0 5.5		
b c d e	0.284 0.284 0.270 0.184	0.304 0.304 0.285 0.137	7.0 7.0 5.5 -25.5		
b c d e f	0.284 0.284 0.270 0.184 0.167	0.304 0.304 0.285 0.137 0.137	7.0 7.0 5.5 -25.5 -17.9		
b c d f g	0.284 0.284 0.270 0.184 0.167 0.194	0.304 0.304 0.285 0.137 0.137 0.206	7.0 7.0 5.5 -25.5 -17.9 6.2		
b c d f g h	0.284 0.284 0.270 0.184 0.167 0.194 0.198	0.304 0.304 0.285 0.137 0.137 0.206 0.206	7.0 7.0 5.5 -25.5 -17.9 6.2 4.4		
b c d f g h i	0.284 0.284 0.270 0.184 0.167 0.194 0.198 0.215	0.304 0.285 0.137 0.137 0.206 0.206 0.206	7.0 7.0 5.5 -25.5 -17.9 6.2 4.4 -4.2		
b c d f g h i j	0.284 0.284 0.270 0.184 0.167 0.194 0.198 0.215 0.188	0.304 0.285 0.137 0.206 0.206 0.206 0.206	7.0 7.0 5.5 -25.5 -17.9 6.2 4.4 -4.2 9.6		

IXII1				
com.	com. T _m		E _{rel}	
а	0.171	0.191	11.7	
b	0.171	0.191	11.7	
с	0.171	0.191	11.7	
d	0.171	0.191	11.7	
e	0.149	0.144	-3.3	
f	0.149	0.144	-3.3	
g	0.149	0.144	-3.3	
ĥ	0.123	0.117	-4.9	
i	0.123	0.117	-4.9	
j	0.083	0.099	19.3	
$E_{abs} = 8.6$				
	Kr	12		
com.	Tm	Tp	E _{rel}	
а	0.164	0.177	7.9	
b	0.164	0.177	7.9	
с	0.164	0.177	7.9	

0.177

0.053

0.085

0.085

0.101

0.101

0.073

 $E_{abs} = 9.5$

7.9

23.2

-1.2

-2.3

-6.5

-6.5

23.7

Comparison with simple models

Simple models

- p = 1, Hockney model without concurrency
- $p = \Delta_s$, proportionnal sharing between communications with the same origin
- $p = \Delta_e$, proportionnal sharing between communications with the same destination

Comparison

	E _{abs} on Myrinet [%]			E _{abs} c	on <i>Gigat</i>	oit Ether	rnet [%]	
Models	Ar1	Ar2	Kn1	Kn2	Ar1	Ar2	Kn1	Kn2
p = 1	54.2	40.7	74.8	62.8	42.3	33.7	60	55.7
$p = \Delta_s$	54.2	15.7	30.8	21.8	42.3	26.2	37.9	28.7
$p = \Delta_e$	6.9	30.7	33.4	31.3	37.3	31	36.4	27.4
Our models	6.9	2.6	8.6	9.5	6	8	4.3	9.3

Problem

- Bandwith sharing between concurrent communications
- High Performance Network : Myrinet et Gigabit Ethernet

Experimentations

- Study of communication patterns
- Concept of conflict and penalty

Modelization

- Model to get penalties :
 - Descriptive approach : Myrinet
 - Quantitative approach : Gigabit Ethernet
- Estimation of communication times
 - Dynamic evolution of patterns
 - Dicrete event simulation

Futur Work

- Study of contention on Infiniband network
- Estimation of computation time