Different Monotonicity Definitions in stochastic modelling

Imène KADI Nihal PEKERGIN Jean-Marc VINCENT

ASMTA 2009

Plan

2 Models ??

- Realizable monotonicity
- B Relations between monotonicity concepts
- 6 Realizable monotonicity and Partial Orders

Conclusion

Introduction			

Introduction

Concept of monotonicity

- Lower and Upper bounding
- Coupling of trajectories (perfect Sampling) \longrightarrow Reduce the complexity.
- Different notions of monotonicity
 - Order on trajectories(Event monotonicity).
 - Order on distribution (Stochastic monotonicity).

Monotonicity concepts depends on the relation order considerd on the state space

• Partial order and total order

Introduction			

Main results

Relations between monotonicity concepts in Total and Partial **Event System** Transition Matrix Strassen Total Realizable monotonicity Stochastic Monotonicty Proof(valuetools2007) order Proof Partial Realizable monotonicity Stochastic Monotonicty order Counter Example

Markovian Discrete Event Systems(MDES)

MDES

are dynamic systems evolving asynchronously and interacting at irregular instants called *event epochs*. They are defined by:

- a state space X
- ${\scriptstyle \bullet}$ a set of events ${\cal E}$
- ullet a set of probability measures ${\cal P}$
- transition function Φ
- $\mathbb{P}(e) \in \mathcal{P}$ denotes the occurrence probability

Event

An event *e* is an application defined on \mathcal{X} , that associates to each state $x \in \mathcal{X}$ a new state $y \in \mathcal{X}$.

Markovian Discrete Event Systems(MDES)

Transition function with events

Let X_i be the state of the system at the *i*th event occurrence time. The transition function $\Phi : \mathcal{X} \times \mathcal{E} \to \mathcal{X}$,

$$X_{n+1} = \Phi(X_n, e_{n+1})$$

 Φ must to obey to the following property to generate **P**:

$$p_{ij} = \mathbb{P}(\phi(x_i, E) = x_j) = \sum_{e \mid \Phi(x_i, e) = x_j} \mathbb{P}(E = e)$$

Discrete Time Markov Chains (DTMC)

DTMC

 $\{X_0, X_1, ..., X_{n+1}, ...\}$: stochastic process observed at points $\{0, 1, ..., n+1\}$.

▶ It constitutes a DTMC if: $\forall n \in \mathbb{N} \text{ and } \forall x_i \in \mathcal{X}$:

 $\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, ..., X_0 = x_0) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n).$

The one-step transition probability p_{ij} are given in a non-negative, stochastic transition matrix **P**:

$$\mathbf{P} = \mathbf{P}^{(1)} = [p_{ij}] \begin{pmatrix} p_{00} & p_{01} & p_{02} & \dots \\ p_{10} & p_{11} & p_{12} & \dots \\ p_{20} & p_{21} & p_{22} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Discrete Time Markov Chains (DTMC)

A probability transition matrix $\mbox{\bf P},$ can be described by a transition function

Transition function in a DTMC

 $\Phi: \mathcal{X} \times \mathcal{U} \to \mathcal{X}$, is a transition function for **P** where : *U* is a random variable taking values in an arbitrary probability space \mathcal{U} , such that:

- $\forall x, y \in \mathcal{X} : \mathbb{P}(\Phi(x, U) = y) = p_{xy}$
- $X_{n+1} = \Phi(X_n, U_{n+1})$

	St-Monotonicity ●00		
ering			

Stochastic ordering

Stochastic ordering

Let ${\mathcal T}$ and ${\mathcal V}$ be two discrete random variables and Γ an increasing set defined on ${\mathcal X}$

$$\mathcal{T} \preceq_{st} \mathcal{V} \Leftrightarrow \sum_{x \in \Gamma} \mathbb{P}(\mathcal{T} = x) \leq \sum_{x \in \Gamma} \mathbb{P}(\mathcal{V} = x), \;\; orall \Gamma$$

Definition (Increasing set)

Any subset Γ of \mathcal{X} is called an increasing set if $x \preceq y$ and $x \in \Gamma$ implies $y \in \Gamma$.

	St-Monotonicity 0●0		
ering			

Stochastic ordering

Example

- Let (\mathcal{X}, \preceq) be a partial ordered state space, $\mathcal{X} = \{a, b, c, d\}$.
- $a \leq b \leq d$, and $a \leq c \leq d$,
- Increasing sets: $\Gamma_1 = \{a, b, c, d\}$, $\Gamma_2 = \{b, c, d\}$, $\Gamma_3 = \{b, d\}$, $\Gamma_4 = \{c, d\}$, $\Gamma_5 = \{d\}$.
- V1=(0.4, 0.2, 0.1, 0.3) V2=(0.2, 0.1, 0.3, 0.4) $V1 \leq_{st} V2$

On a :

- For $\Gamma_1{=}\{a,b,c,d\}{:}~0.4{+}0.2{+}0.1{+}0.3{\leq}0.2{+}0.1{+}0.3{+}0.4$
- For $\Gamma_2 = \{b,c,d\}: 0.2 + 0.1 + 0.3 \le 0.1 + 0.3 + 0.4$
- For $\Gamma_3 = \{b,d\}: 0.2 + 0.3 \le 0.1 + 0.4$
- For $\Gamma_4{=}\{c,d\}{:}~0.1{+}0.3{\leq}0.3{+}0.4$
- For $\Gamma_5{=}\{d\}$:0.3 ≤ 0.4

ering			

Stochastic monotonicity

Stochastic monotonicity

P a transition probability matrix of a time-homogeneous Markov chain $\{X_n, n \ge 0\}$ taking values in \mathcal{X} endowed with relation order \preceq . $\{X_n, n \ge 0\}$ is st-monotone if and only if, $\forall (x, y) \mid x \preceq y$ and \forall increasing set $\Gamma \in \mathcal{X}$

$$\sum_{z\in\Gamma}p_{xz}\leq\sum_{z\in\Gamma}p_{yz}$$

Introduction			

Realizable monotonicity

Realizable monotonicity

P a stochastic matrix defined on \mathcal{X} . **P** is realizable monotone, if there exists a transition function, such that Φ preserves the order relation. $\forall u \in \mathbf{U}$:

if $x \leq y$ then $\Phi(x, u) \leq \Phi(y, u)$

Event monotonicity

The model is event monotone, if the transition function by events preserves the order ie. $\forall \ e \in \mathcal{E}$

$$\forall (x,y) \in \mathcal{X} \ x \preceq y \Longrightarrow \Phi(x,e) \preceq \Phi(y,e)$$

A system is realizable monotone means that there exists a finite set of events ${\cal E}$ for which the system is event monotone

Monotonicity and perfect sampling

Principe

- Produce exact sampling of stationary distribution (Π) of a DTMC.
- One trajectory per state.
- The algorithm stops when all trajectories meet the same state coupling The evolution of the trajectories will be confused.

If the model is event monotone

- Run only trajectories from minimal and maximal states.
- All other trajectories are always between these trajectories.
- If there is coupling at time t so all the other trajectories have also coalesced.

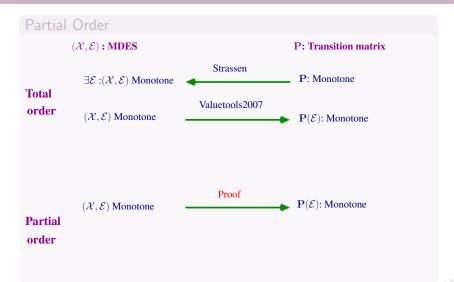
► The tool PSI 2 was developed to implement this method of simulation (JM.Vincent).

Relations between monotonicity concepts

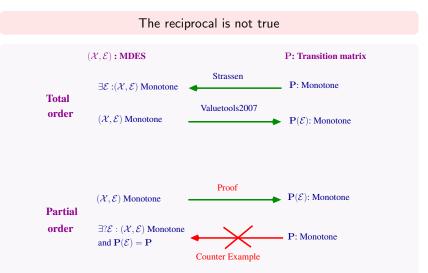


		Relations between monotonicities	

Relations between monotonicity concepts



Different Monotonicity Definitions in stochastic modelling



Counter Example

- $\mathcal{X} = \{a, b, c, d\}$, $a \leq b \leq d$ and $a \leq c \leq d$.
- $\bullet~\textbf{P}$ transition matrix in $\mathcal X$

	,	1 /0	1/0	1 /2	~	`		1/6 1/6	1/6	1/6	1/61/6
	(1/2	1/6	1/3	0		а	а		b	с
P =		$\frac{1}{3}$	1/3	0	1/3		b	а		b	d
		1/2	U 1/2	1/0 $1/3$	1/3		С	а		С	d
	1	0	1/3	1/3	1/3	/	d	b		с	d

P is not realizable monotone. We have for $u \in [3/6, 4/6] \Phi(a, u) = b$ is incomparable with $\Phi(c, u) = c$.

Proof

- $b \leq d$ and $c \leq d$
 - Transitions from states *b*, *c*, *d* to state *d* with probability 1/3 must be associated to the same interval *u*

• $a \leq b$ and $a \leq c$:

- Transitions from *a*, *c* to *a* must be associated to the same interval, $e_u = 1/2$.
- Transitions from *a*, *b* to *a* must be associated to the same interval, $e_u = 1/3$.
- For states **b**, and **c** it remains only an interval of $u_e = 1/3$ to assign .

	1/3	1/6	1/6	1/3
а	а	а	b	с
b	а	b	b	d
С	а	а	С	d
d	b		0	d

It is not possible to build a realizable monotone transition function for this matrix.

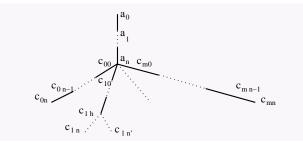
		Relations between monotonicities	

In partial orders

Define conditions on the matrix \mathbf{P} , that allows us to knew whether the corresponding system is realizable monotone.

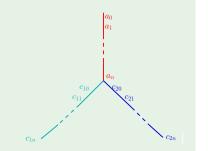
Theorem

When the state space is partially ordered in a tree, if the system is stochastic monotone, then there exists a finite set of events $e_1, e_2, ..., e_n$, for which the system is event-monotone.



Define an algorithm that construct the monotone transition function Φ

- A = {a₁ ≤ a₂ ≤ ...a_n}: States comparable with all others.
- We consider two branches:
 - $C_1 = \{c_{10} \leq c_{11} \leq ..., c_{1n}\}.$
 - $C_2 = \{c_{20} \leq c_{21} \leq ..., c_{2n}\}.$

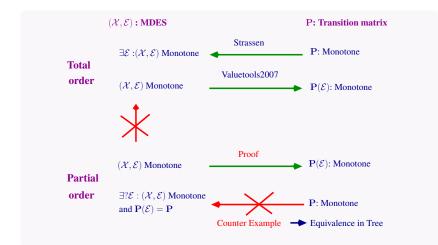


- For each branch C_i we find events which trigger transition to a state of C_i .
- Then we find events which trigger transition to a state of *A*.

	U0	U1		U2	U2	U2
Α	A	Α	C1	Á (C2
C1	A	Α	C1	Α	C2	
C2	Α	Č1		C2		

Relations between monotonicities

Realizable monotonicity in Partial Orders



Realizable monotonicity and Partial Orders

- Another way to reduce the complexicity => reduce the number of maximal and minimal states.
 - If the system is monotone according to a partial order \leq , can we find a total order \leq for which the system is monotone??.

Not possible with all partial orders.

Realizable monotonicity and Partial Orders

Counter example

- $\mathcal{X} = \{a, b, c, d\}, a \leq b \leq c \text{ and } a \leq b \leq d.$
- $\bullet~P$ transition matrix in ${\cal X}$

	1/6 1/6	1/6	1/6	1/6	1/6
а	а		b		d
b	а	а		с	d
С	b		с	d	
d	b		С		d

- ► Two possible orders:
 - \odot a \leqslant b \leqslant c \leqslant d

	1/61/6	1/6	1/6	1/6	1/6
а	а		b		d
b	а		b	с	d
С	b		с	d	d
d	b		с		d

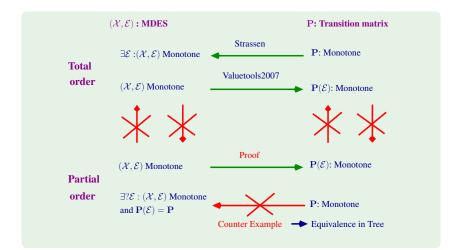
 $\odot a \leqslant b \leqslant d \leqslant c$

	1/61/6	1/6	1/6	1/6	1/6
а	а		b		d
b	а		b	d	С
d	b		d	С	С
С	b		d		С

Relations between monotonicitie

Event monotonicity in <u>≺</u> <u>Conclusion</u>

Monotonicity in partial and total order



			Conclusion

- Total Order: Stochastic monotonicity
 Realizable monotonicity

 Partial Order:
 - Realizable monotonicity ⇒ Stochastic monotonicity
- $\, \bullet \,$ Monotonicity with order $\, \preceq \, \, \Leftrightarrow \,$ Monotonicity with order $\leqslant \,$

► Perspectives

- In the partial order : Find another conditions to move from the stochastic monotonicity to the realizable monotonicity
- implements