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Burn−in period Stabilized behaviour

Steady−state sampling

state
Initial

States

0
Time

Drawbacks of forward simulation
Dependence on the initial state
Burn-in period estimation
⇒ Biased sampling

Alternatives
Regeneration (MRMC tool)
Perfect sampling (Ψ2 tool)
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2 Check samples and compute number of positive samples
(Y )

H0 : p ≥ θ + δ H1 : p < θ − δ

If Y ≥ m then accepting H0 (YES)

Else If Y < m then accepting H1 (NO)

where m is the acceptance threshold of the statistical test

3 Statistical test strength (n,m) depends on (α, β) and on δ
where n is the total sample size
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Implemented in ψ2 using envelopes
Extended sandwiching approach (envelopes) are very
efficient for this example
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1 AP ai(k) : True if Ni > k , False otherwise
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2 Define different saturation and availability measures for the
underlying models

Ex: Saturation property in the i th buffer, S<θ(ai (Nmax ), also
check availability property S≥1−θ(¬ ai (Nmax ))
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Case studies

Verified Properties (2)

1 Tandem network with 4 queues (TN)

4th buffer is full

2 Multistage delta queueing network with 8 queues (MDN)
At least one queue of the second stage of MDN is full

3 Tandem Queuing Network with coaxian server (TQN-Cox)
The overall system is full
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1 PRISM tool (Numerical)
Computes probabilities for each reachable state
Solves system of linear equations to find probabilities with
convergence precision ε

2 ψ2 with SHT tool (Statistical)
Perfect sampling (Functional)
Verification by Statistical Hypothesis Testing with (α, β, δ)
precision parameters

3 Comparison study
For fair comparison we take ε = 2.δ
(ε, δ)={(10−3/2,10−3/4), (10−4,10−4/2)} and α = β = 10−2

PRISM: memory is proportional to the number of states
ψ2 with SHT: memory is never exhausted
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Tandem Network (TN)

Model and property: λ =0.9, µi = 1, 1 ≤ i ≤ 4,
S<θ (last-full) where θ = 0.001
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Multistage Delta Network (MDN)

Model and property: 2 stages and 4 buffers/stage,
λ = 0.9, µ = 1, (τrout1, τrout2) = (0.8,0.6),
S<θ (last-stage-full) where θ = 0.001
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Tandem Qeueuing Network (TQN)

Model and property: λ = 4× Nmax , µ1 = 2, µ2 = 2, a = 0.1
and κ =4, S<θ (sys-full) where θ = 0.001
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Discussions

1 Variation of precision parameters ε (numerical) and δ
(statistical)

Numerical verification time dependence on ε is negligible
Statistical verification time dependence on δ is considerable

2 Dependence on state space size is negligible in ψ2

(functional)
3 Memory limit:

TN case: For Nmax = 99 (|X | = 108)
MDN case: For Nmax = 10 (|X | = 1.1 ∗ 108)
TQN case: For Nmax = 7500 (|X | = 2.1 ∗ 108)

4 MDN case: For 4 stages and 8 buffers/stage
Efficient results using Ψ2 while not possible using PRISM
(memory problem for Nmax=1, O((Nmax + 1)32))
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Conclusion

1 Empirical comparison of numerical and statistical solutions

PRISM vs. ψ2 with SHT
Focus on CSL steady state formulas

2 We have found that:
ψ2 with SHT scales better with the state space size (no
limiting memory problem)
ψ2 with SHT is faster than PRISM for large models (greater
than 105)
Memory problem: Limiting state space sizes using PRISM
for the considered case studies
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Event modelling of a Markov chain

Sample paths are driven by

the same source of randomness

(inovation process of events)
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Monotonicity

Monotone event

let � be a partial order on a multi-dimensional state space
X = X1 × · · · × XK (usually a lattice).

x � y ⇔ x i ≤ y i ∀i

An event e is monotone if it preserves the partial ordering
� on X

∀(x , y) ∈ X x � y ⇒ Φ(x ,e) � Φ(y ,e)

Monotonicity of systems

A Markov chain is monotone if all events are monotone
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