Steady State Property Verification: a Comparison Study

Diana EL RABIH ⁽¹⁾, Gael Gorgo ⁽²⁾, Nihal PEKERGIN ⁽¹⁾, Jean-Marc Vincent ⁽²⁾

(1) LACL, University of Paris Est (Paris 12)
 (2) LIG, University of Grenoble (Joseph Fourrier)
 This work is supported by Checkbound, ANR-06-SETI-002

VECOS, Paris, 2010

Outline

1 Introduction

- Probabilistic Model Checking
- Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Results and discussions

4 Conclusion and Future works

- Probabilistic Model Checking

Outline

1 Introduction

- Probabilistic Model Checking
- Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Results and discussions

4 Conclusion and Future works

Probabilistic Model Checking

Probabilistic Model Checking

- Probabilistic Model Checking

Probabilistic Model Checking

Probabilistic Models

- CTMC, DTMC, MDP, ...
- Queueing Networks, Network protocols, Distributed Systems
- 2 Dependability, availability and reachability properties with probabilistic temporal logics
 - CSL for CTMC, PCTL for DTMC
 - Steady State Operator: $S_{\geq \theta}(\phi)$

Ex: With probability at least θ , a system will be available at long run (in steady-state)

- Probabilistic Model Checking

Probabilistic Model Checking

Probabilistic Models

- CTMC, DTMC, MDP, ...
- Queueing Networks, Network protocols, Distributed Systems
- 2 Dependability, availability and reachability properties with probabilistic temporal logics
 - CSL for CTMC, PCTL for DTMC

Steady State Operator: $S_{\geq \theta}(\phi)$

Ex: With probability at least θ , a system will be available at long run (in steady-state)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

- Probabilistic Model Checking

Probabilistic Model Checking

Probabilistic Models

- CTMC, DTMC, MDP, ...
- Queueing Networks, Network protocols, Distributed Systems
- 2 Dependability, availability and reachability properties with probabilistic temporal logics
 - CSL for CTMC, PCTL for DTMC
 - Steady State Operator: $S_{\geq \theta}(\phi)$

Ex: With probability at least θ , a system will be available at long run (in steady-state)

Solution Methods

Numerical Model Checking (NMC)

Based on: Computation of distributions

- - Based on: Sampling (by simulation or by measurement)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Solution Methods

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - + Highly accurate results
 - Intractable for systems with very large state space -
- - Based on: Sampling (by simulation or by measurement)

Solution Methods

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - + Highly accurate results
 - Intractable for systems with very large state space -
- - Based on: Sampling (by simulation or by measurement)

Solution Methods

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - + Highly accurate results
 - Intractable for systems with very large state space
- 2 Statistical Model Checking (SMC)
 - Based on: Sampling (by simulation or by measurement) and Statistical Methods for verification

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution Methods

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - + Highly accurate results
 - Intractable for systems with very large state space
- 2 Statistical Model Checking (SMC)
 - Based on: Sampling (by simulation or by measurement) and Statistical Methods for verification

- + Low memory requirements
- Expensive if high accuracy is required

Solution Methods

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - + Highly accurate results
 - Intractable for systems with very large state space
- 2 Statistical Model Checking (SMC)
 - Based on: Sampling (by simulation or by measurement) and Statistical Methods for verification

- + Low memory requirements
- Expensive if high accuracy is required

Probabilistic Model Checking

- PRISM tool: Numerical (memory limit)
- MRMC tool: Statistical (simulation by regeneration method, same memory limit problem as PRISM)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

- Ymer, VESTA tools: Statistical (transient properties)
- APMC tool: Statistical (*transient properties*)

Probabilistic Model Checking

PRISM tool: Numerical (memory limit)

 MRMC tool: Statistical (simulation by regeneration method, same memory limit problem as PRISM)

- Ymer, VESTA tools: Statistical (transient properties)
- APMC tool: Statistical (*transient properties*)

Perfect Sampling

Outline

1 Introduction

- Probabilistic Model Checking
- Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Results and discussions

4 Conclusion and Future works

- Perfect Sampling

Stochastic simulation idea

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

- Drawbacks of forward simulation
 - Dependence on the initial state
 - Burn-in period estimation
 - ⇒ Biased sampling
- Alternatives
 - Regeneration (MRMC tool)
 - Perfect sampling (Ψ² tool)

Perfect Sampling

Backward Simulation Schemes

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Perfect Sampling

Perfect Sampling

Synthesis

Advantages

- Unbiased sampling of the steady-state
- Very efficient under monotonicity
- Very efficient for rare probability estimation (reward sampling)
- Drawbacks
 - To study the monotonicity of a system can be complex
 - If it is monotone, that has to be proven
 - If not, we may involve "non-monotone techniques" (Ex: extended sandwiching approach, called envelopes)
- A perfect sampler ψ^2 proposed in MESCAL Project
 - Samples rewards of the stationary distribution of large Markov chains

Perfect Sampling

Advantages

- Unbiased sampling of the steady-state
- Very efficient under monotonicity
- Very efficient for rare probability estimation (reward sampling)
- Drawbacks
 - To study the monotonicity of a system can be complex
 - If it is monotone, that has to be proven
 - If not, we may involve "non-monotone techniques" (Ex: extended sandwiching approach, called envelopes)
- A perfect sampler ψ^2 proposed in MESCAL Project
 - Samples rewards of the stationary distribution of large Markov chains

Perfect Sampling

Synthesis

Advantages

- Unbiased sampling of the steady-state
- Very efficient under monotonicity
- Very efficient for rare probability estimation (reward sampling)
- Drawbacks
 - To study the monotonicity of a system can be complex
 - If it is monotone, that has to be proven
 - If not, we may involve "non-monotone techniques" (Ex: extended sandwiching approach, called envelopes)
- A perfect sampler ψ^2 proposed in MESCAL Project
 - Samples rewards of the stationary distribution of large Markov chains

-SMC Decision Method

Outline

1 Introduction

- Probabilistic Model Checking
- Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Results and discussions

4 Conclusion and Future works

-SMC Decision Method

Statistical Hypothesis Testing (SHT)

- Estimate the probability p that φ of a given formula S_{<θ}(φ) is satisfied on sample paths
- Formula verification: Test H : $p \ge \theta$ against K : $p < \theta$
- For specified indifference region δ and error bounds (α,β)

-SMC Decision Method

Statistical Hypothesis Testing (SHT)

- Estimate the probability p that φ of a given formula S_{<θ}(φ) is satisfied on sample paths
- Formula verification: Test H : $p \ge \theta$ against K : $p < \theta$
- For specified indifference region δ and error bounds (α,β)

-SMC Decision Method

Decision Method

- Inspired from the Single Sampling Plan (SHT method used by Younes et al.)
- Check samples and compute number of positive samples
 (Y)

$$H_0: p \ge \theta + \delta \qquad H_1: p < \theta - \delta$$

If $Y \ge m$ then accepting H_0 (YES)

• Else If Y < m then accepting H_1 (NO)

where m is the acceptance threshold of the statistical test

3 Statistical test strength (n, m) depends on (α, β) and on δ where *n* is the total sample size

-SMC Decision Method

Decision Method

- Inspired from the Single Sampling Plan (SHT method used by Younes et al.)
- Check samples and compute number of positive samples
 (Y)

$$H_0: \boldsymbol{p} \ge \boldsymbol{\theta} + \boldsymbol{\delta} \qquad H_1: \boldsymbol{p} < \boldsymbol{\theta} - \boldsymbol{\delta}$$

If $Y \ge m$ then accepting H_0 (YES)

• Else If Y < m then accepting H_1 (NO)

where *m* is the acceptance threshold of the statistical test

3 Statistical test strength (n, m) depends on (α, β) and on δ where *n* is the total sample size

・

-SMC Decision Method

Decision Method

- Inspired from the Single Sampling Plan (SHT method used by Younes et al.)
- Check samples and compute number of positive samples
 (Y)

$$H_0: \boldsymbol{p} \ge \boldsymbol{\theta} + \boldsymbol{\delta} \qquad H_1: \boldsymbol{p} < \boldsymbol{\theta} - \boldsymbol{\delta}$$

- If $Y \ge m$ then accepting H_0 (YES)
- Else If Y < m then accepting H_1 (NO)

• where *m* is the acceptance threshold of the statistical test

3 Statistical test strength (n, m) depends on (α, β) and on δ where *n* is the total sample size

-SMC Decision Method

Decision Method

- Inspired from the Single Sampling Plan (SHT method used by Younes et al.)
- Check samples and compute number of positive samples
 (Y)

$$H_0: \boldsymbol{p} \ge \theta + \delta \qquad H_1: \boldsymbol{p} < \theta - \delta$$

- If $Y \ge m$ then accepting H_0 (YES)
- Else If Y < m then accepting H_1 (NO)

• where *m* is the acceptance threshold of the statistical test

3 Statistical test strength (n, m) depends on (α, β) and on δ where *n* is the total sample size

Steady State Property Verification: a Comparison Study

SMC using Perfect Sampling

SMC of CSL Steady State Formula

Outline

1 Introduction

- Probabilistic Model Checking
- Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Results and discussions

4 Conclusion and Future works

SMC of CSL Steady State Formula

Verification of CSL Steady State Formula

SMC of $\psi {=} \mathcal{S}_{\geq \theta}(\varphi)$ by using functional and/or monotone perfect simulation

- Check if the obtained steady-state samples (x) satisfies φ or not
- By associating reward r_φ(x) to each state x for the given property φ:

$$r_{\varphi}(x) = 1, \text{ if } x \models \varphi$$
 (1)
 $r_{\varphi}(x) = 0, \text{ otherwise } x \not\models \varphi$

SMC of CSL Steady State Formula

Verification of CSL Steady State Formula

SMC of $\psi {=} \mathcal{S}_{\geq \theta}(\varphi)$ by using functional and/or monotone perfect simulation

- Check if the obtained steady-state samples (x) satisfies φ or not
- By associating reward r_φ(x) to each state x for the given property φ:

$$r_{\varphi}(x) = 1$$
, if $x \models \varphi$ (1)
 $r_{\varphi}(x) = 0$, otherwise $x \not\models \varphi$

-SMC of CSL Steady State Formula

Verification of CSL Steady State Formula

SMC of $\psi {=} \mathcal{S}_{\geq \theta}(\varphi)$ by using functional and/or monotone perfect simulation

- Check if the obtained steady-state samples (x) satisfies φ or not
- By associating reward r_φ(x) to each state x for the given property φ:

$$r_{\varphi}(x) = 1$$
, if $x \models \varphi$ (1)
 $r_{\varphi}(x) = 0$, otherwise $x \not\models \varphi$

Steady State Property Verification: a Comparison Study

Experimental Comparison Study

Case studies

Outline

1 Introduction

- Probabilistic Model Checking
- Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula

- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Results and discussions

4 Conclusion and Future works

Case studies

Models

1 Tandem network with 4 queues (TN) ■ Monotone model (ψ² benchmark)

Multistage delta queueing network with 8 queues (MDN)
 Monotone model (\u03c6² benchmark)

Case studies

Models

- Tandem network with 4 queues (TN)
 Monotone model (ψ² benchmark)
- Multistage delta queueing network with 8 queues (MDN)
 Monotone model (\u03c6² benchmark)

Case studies

Tandem Queuing Network with coaxian server (TQN-Cox)

- Non monotone model (PRISM benchmark)
- Implemented in ψ^2 using envelopes
- Extended sandwiching approach (envelopes) are very efficient for this example

Case studies

Verified Properties (1)

1 AP $a_i(k)$: True if $N_i > k$, False otherwise

- N_i : number of customers in the *i*th queue
- $0 \le k \le N_{max}$ and N_{max} : maximum queue size
- 2 Define different saturation and availability measures for the underlying models
 - Ex: Saturation property in the *i*th buffer, $S_{<\theta}(a_i(N_{max}))$, also check availability property $S_{\geq 1-\theta}(\neg a_i(N_{max}))$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Case studies

Verified Properties (1)

- **1** AP $a_i(k)$: True if $N_i > k$, False otherwise
 - N_i : number of customers in the *i*th queue
 - $0 \le k \le N_{max}$ and N_{max} : maximum queue size
- 2 Define different saturation and availability measures for the underlying models
 - Ex: Saturation property in the *i*th buffer, $S_{<\theta}(a_i(N_{max}))$, also check availability property $S_{\geq 1-\theta}(\neg a_i(N_{max}))$

Case studies

Verified Properties (2)

- 1 Tandem network with 4 queues (TN)
 - 4th buffer is full
- 2 Multistage delta queueing network with 8 queues (MDN)
 - At least one queue of the second stage of MDN is full
- 3 Tandem Queuing Network with coaxian server (TQN-Cox)

The overall system is full

Steady State Property Verification: a Comparison Study

Experimental Comparison Study

Compared Tools

Outline

1 Introduction

- Probabilistic Model Checking
- Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Results and discussions

4 Conclusion and Future works

Compared Tools

PRISM tool (Numerical)

- Computes probabilities for each reachable state
- Solves system of linear equations to find probabilities with convergence precision ϵ
- 2 ψ^2 with SHT tool (Statistical)
 - Perfect sampling (Functional)
 - Verification by Statistical Hypothesis Testing with (α, β, δ) precision parameters
- 3 Comparison study
 - For fair comparison we take $\epsilon = 2.\delta$
 - $(\epsilon, \delta) = \{(10^{-3}/2, 10^{-3}/4), (10^{-4}, 10^{-4}/2)\} \text{ and } \alpha = \beta = 10^{-2}$
 - PRISM: memory is proportional to the number of states
 - ψ^2 with SHT: memory is never exhausted

Compared Tools

PRISM tool (Numerical)

- Computes probabilities for each reachable state
- Solves system of linear equations to find probabilities with convergence precision ϵ
- 2 ψ^2 with SHT tool (Statistical)
 - Perfect sampling (Functional)
 - Verification by Statistical Hypothesis Testing with (α, β, δ) precision parameters

3 Comparison study

- For fair comparison we take $\epsilon = 2.\delta$
- $(\epsilon, \delta) = \{(10^{-3}/2, 10^{-3}/4), (10^{-4}, 10^{-4}/2)\} \text{ and } \alpha = \beta = 10^{-2}$
- PRISM: memory is proportional to the number of states
- ψ^2 with SHT: memory is never exhausted

- Compared Tools

PRISM tool (Numerical)

- Computes probabilities for each reachable state
- Solves system of linear equations to find probabilities with convergence precision ϵ
- 2 ψ^2 with SHT tool (Statistical)
 - Perfect sampling (Functional)
 - Verification by Statistical Hypothesis Testing with (α, β, δ) precision parameters
- 3 Comparison study
 - For fair comparison we take $\epsilon = 2.\delta$
 - $(\epsilon, \delta) = \{ (10^{-3}/2, 10^{-3}/4), (10^{-4}, 10^{-4}/2) \} \text{ and } \alpha = \beta = 10^{-2}$
 - PRISM: memory is proportional to the number of states
 - ψ² with SHT: memory is never exhausted

- Results and discussions

Outline

1 Introduction

- Probabilistic Model Checking
- Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Results and discussions

4 Conclusion and Future works

Results and discussions

Tandem Network (TN)

Model and property: $\lambda = 0.9$, $\mu_i = 1$, $1 \le i \le 4$, $S_{<\theta}$ (*last-full*) where $\theta = 0.001$

Results and discussions

Multistage Delta Network (MDN)

Model and property: 2 stages and 4 buffers/stage,

$$\lambda = 0.9, \mu = 1, (\tau_{rout1}, \tau_{rout2}) = (0.8, 0.6),$$

 $S_{<\theta}$ (*last-stage-full*) where $\theta = 0.001$

Results and discussions

Tandem Qeueuing Network (TQN)

Model and property: $\lambda = 4 \times N_{max}$, $\mu_1 = 2$, $\mu_2 = 2$, a = 0.1and $\kappa = 4$, $S_{<\theta}$ (sys-full) where $\theta = 0.001$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Results and discussions

Discussions

- 1 Variation of precision parameters ϵ (numerical) and δ (statistical)
 - Numerical verification time dependence on ϵ is negligible
 - Statistical verification time dependence on δ is considerable
- 2 Dependence on state space size is negligible in ψ^2 (functional)
- 3 Memory limit:
 - TN case: For $N_{max} = 99 (|X| = 10^8)$
 - MDN case: For $N_{max} = 10$ ($|X| = 1.1 * 10^8$)
 - TQN case: For $N_{max} = 7500 (|X| = 2.1 * 10^8)$
- 4 MDN case: For 4 stages and 8 buffers/stage
 - Efficient results using Ψ^2 while not possible using PRISM (memory problem for $N_{max}=1$, $O((N_{max}+1)^{32}))$

- Results and discussions

Discussions

- 1 Variation of precision parameters ϵ (numerical) and δ (statistical)
 - Numerical verification time dependence on ϵ is negligible
 - Statistical verification time dependence on δ is considerable
- 2 Dependence on state space size is negligible in ψ^2 (functional)
- 3 Memory limit:
 - TN case: For $N_{max} = 99 (|X| = 10^8)$
 - MDN case: For $N_{max} = 10$ ($|X| = 1.1 * 10^8$)
 - TQN case: For $N_{max} = 7500 (|X| = 2.1 * 10^8)$
- 4 MDN case: For 4 stages and 8 buffers/stage
 - Efficient results using Ψ^2 while not possible using PRISM (memory problem for $N_{max}=1$, $O((N_{max}+1)^{32}))$

- Results and discussions

Discussions

- 1 Variation of precision parameters ϵ (numerical) and δ (statistical)
 - Numerical verification time dependence on ϵ is negligible
 - Statistical verification time dependence on δ is considerable
- 2 Dependence on state space size is negligible in ψ^2 (functional)
- 3 Memory limit:
 - TN case: For $N_{max} = 99 (|X| = 10^8)$
 - MDN case: For $N_{max} = 10$ ($|X| = 1.1 * 10^8$)
 - TQN case: For $N_{max} = 7500 \ (|X| = 2.1 * 10^8)$
- 4 MDN case: For 4 stages and 8 buffers/stage
 - Efficient results using Ψ² while not possible using PRISM (memory problem for N_{max}=1, O((N_{max} + 1)³²))

Conclusion

- **PRISM vs.** ψ^2 with SHT
- Focus on CSL steady state formulas
- 2 We have found that:
 - ψ^2 with SHT scales better with the state space size (no limiting memory problem)
 - ψ^2 with SHT is faster than PRISM for large models (greater than 10⁵)
 - Memory problem: Limiting state space sizes using PRISM for the considered case studies

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Conclusion

- PRISM vs. \u03c8² with SHT
- Focus on CSL steady state formulas
- 2 We have found that:
 - ψ^2 with SHT scales better with the state space size (no limiting memory problem)
 - ψ^2 with SHT is faster than PRISM for large models (greater
 - Memory problem: Limiting state space sizes using PRISM

Conclusion

- PRISM vs. \u03c8² with SHT
- Focus on CSL steady state formulas
- 2 We have found that:
 - ψ^2 with SHT scales better with the state space size (no limiting memory problem)
 - ψ^2 with SHT is faster than PRISM for large models (greater
 - Memory problem: Limiting state space sizes using PRISM

Conclusion

- PRISM vs. \u03c8² with SHT
- Focus on CSL steady state formulas
- 2 We have found that:
 - ψ^2 with SHT scales better with the state space size (no limiting memory problem)
 - ψ^2 with SHT is faster than PRISM for large models (greater than 10⁵)
 - Memory problem: Limiting state space sizes using PRISM

Conclusion

- PRISM vs. \u03c8² with SHT
- Focus on CSL steady state formulas
- 2 We have found that:
 - ψ^2 with SHT scales better with the state space size (no limiting memory problem)
 - ψ^2 with SHT is faster than PRISM for large models (greater than 10⁵)
 - Memory problem: Limiting state space sizes using PRISM for the considered case studies

Future works

Compare ψ² with SHT tool with the MRMC tool
 SMC of CSL time unbounded until formulas

Compare ψ² with SHT tool with the MRMC tool
 SMC of CSL time unbounded until formulas

Event modelling of a Markov chain

Monotonicity

Monotone event

■ let \leq be a partial order on a multi-dimensional state space $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_K$ (usually a lattice).

$$x \preceq y \Leftrightarrow x^i \leq y^i \quad \forall i$$

An event *e* is monotone if it preserves the partial ordering \leq on \mathcal{X}

$$\forall (x,y) \in \mathcal{X} \ x \leq y \Rightarrow \Phi(x,e) \leq \Phi(y,e)$$

Monotonicity of systems

A Markov chain is monotone if all events are monotone