

Perfect Simulation of Stochastic Automata Networks

P. Fernandes, J. M. Vincent*, T. Webber

PUCRS, Porto Alegre, Brazil. CAPES, CNPq, FINEP Project grant 4284/05. {paulo.fernandes,twebber}@inf.pucrs.br *Laboratoire LIG, MESCAL-INRIA, Grenoble, France. ANR SETIN Checkbound and ANR blanche SMS. Jean-Marc.Vincent@imag.fr

J.M. Vincent

Laboratoire LIG-IMAG

Page 1/19

2 Modeling SAN as discrete-event systems

Page 2/19

<ロ> <同> <同> < 回> < 回>

Analysis of complex discrete systems

Markovian modeling

- Structured representations (e.g. SAN, GSPN, PEPAnets)
- * model complex dynamics (synchronizations, functions)
- * multidimensional product state space ${\mathcal X}$
- Aim: stationary or transient distribution (for statistical analysis)
- Constraints: deal with state space explosion problem

Page 3/19

Analysis of complex discrete systems

Other Markovian modeling view

- discrete-event simulation to estimate steady-state distribution on long run trajectories
- * establishing transition functions
- * table of events uniformization

Analysis of complex discrete systems

Classical Simulation Techniques

- Advantage: storage of current/initial state
- Problems:
- * number of iterations needed to steady-state estimation
- * biased samples

• Complexity: related to the warm-up period

Laboratoire LIG-IMAG

Page 5/19

Analysis of complex discrete systems

Backward Simulation Techniques [Propp and Wilson 1996]

- Advantages: samples from the steady-state distribution
- * avoid warm-up period, coupling time au
- \bullet Constraints: ${\mathcal X}$ trajectories in parallel in the worst case

• Complexity: mainly related to the cardinality of ${\cal X}$ and au

Laboratoire LIG-IMAG

Page 6/19

< ロ > < 同 > < 回 > < 回 >

Adaptation to Structured models

Model Parameters

- set of uniformized events $E = \{e_1, .., e_p\}$
- global states are tuples of local states $\tilde{s} = (s_1, \dots, s_K)$
- transition function: $\Phi(\tilde{s}, e_i) = \tilde{r}$
- * each $\tilde{s} \in \mathcal{X}$ has a set of enabled events and its firing conditions and consequences

Constraints

- Well-formed SAN models needed
- * exploring the subset $\mathcal{X}^\mathcal{R}$ (Reachable state space)
- State space explosion still a problem

・ロト ・回ト ・ヨト ・ヨト

Analysis of complex discrete systems

GRAPHICAL MODEL (STATES + TRANSITIONS)		$\tilde{c} \in \mathcal{VR}$	$\tilde{r} = \Phi(\tilde{s}, e_p), e_p \in \xi$					
$\mathcal{A}^{(1)}$	$\mathcal{A}^{(1)}$ $\mathcal{A}^{(2)}$		$s \in \Lambda$	$\Phi(\tilde{s}, e_1)$	$\Phi(\tilde{s}, e_2)$	$\Phi(\tilde{s}, e_3)$	$\Phi(\tilde{s}, e_4)$	$\Phi(\tilde{s}, e_5)$
			{0;0}	{ 1;0 }	{0;0}	{0;0}	{0;0}	{0;0}
	e_4 e_2 e_5		{0;1}	{ 1;1 }	{0;1}	{ 0;2 }	{0;1}	{0;1}
e ₂ () _e			{0;2}	{ 1;2 }	{0;2}	{0;2}	{ 0;0 }	{0;2}
e5	·		{1;0}	{1;0}	{ 0,2 }	{1;0}	{1;0}	{ 0;1 }
$(1^{(1)})$	$(2^{(2)})$	$(1^{(2)})$	$\{1;1\}$	$\{1;1\}$	$\{1;1\}$	{ 1;2 }	$\{1;1\}$	$\{1;1\}$
0			{1;2}	{1;2}	{1;2}	{1;2}	{ 1;0 }	{1;2}
$e_p \in \xi$	Rates	Unif	ormized R	ates				
e_1	λ_1	$\lambda_1/(\lambda_1 +$	$\lambda_2 + \lambda_3 +$	$\lambda_4 + \lambda_5$	T			
e_2	λ_2	$\lambda_2/(\lambda_1+\lambda_2+\lambda_3+\lambda_4+\lambda_5)$						
e_3	λ_3	$\lambda_3/(\lambda_1 +$	$\lambda_2 + \lambda_3 +$	$\lambda_4 + \lambda_5$				
e_4	λ_4	$\lambda_4/(\lambda_1 +$]					
e_5	λ_5	$\lambda_5/(\lambda_1 +$	$\lambda_2 + \lambda_3 +$	$\lambda_4 + \lambda_5$	1			

SAN Backward coupling simulation

1: for all $\tilde{s} \in \mathcal{X}^{\mathcal{R}}$ do 2: $\omega(\tilde{s}) \leftarrow \tilde{s}$ { choice of the initial value of vector ω } 3: end for 4: repeat $e \leftarrow \text{Generate-event}() \{ \text{generation of } e \text{ according the distribution } (\frac{\lambda_1}{\Lambda} \dots \frac{\lambda_{\mathcal{E}}}{\Lambda}) \}$ 5: 6: $\tilde{\omega} \leftarrow \omega$ { copying vector ω to $\tilde{\omega}$ } 7: for all $\tilde{s} \in \mathcal{X}^{\mathcal{R}}$ do 8: { computing $\omega(\tilde{s})$ at time 0 of trajectory issued from \tilde{s} at time $-\tau^*$ } 9: $\omega(\tilde{s}) \leftarrow \tilde{\omega}(\Phi(\tilde{s}, e))$ 10: end for 11: until All $\omega(\tilde{s})$ are equal 12: Return $\omega(\tilde{s})$

イロン イヨン イヨン イヨン

Partially Ordered State Spaces

Monotonicity property

• $e_p \in \mathcal{E}$ is monotone if it preserves the partial order

 $\forall (x,y) \in \mathcal{X} \quad x \leq y \implies \Phi(x,e) \leq \Phi(y,e)$

Monotone Backward Simulation [Propp and Wilson 1996]

- Advantages: samples from the steady-state distribution
- Complexity: related to au, two trajectories (instead of \mathcal{X})
- * If all events in the model are considered monotone

New solutions for huge SAN models

Monotonicity and Perfect Simulation Idea

- Monotonicity property for SAN related to the analysis of structural conditions
- * component-wise state space formation

Families of SAN models

- SAN models with a natural partial order (canonical)
- * e.g. derived from Queueing systems models [Vincent 2005]
- SAN models with a given component-wise partial order (non-lattice)

de Gren

Partially Ordered State Spaces

Canonical component-wise ordering

Partially Ordered State Spaces

Non-lattice component-wise ordering

- Find a partial order of ${\mathcal X}$ demands a high c.c.
- Possible to find extremal global states in the underlying chain
- * $|\mathcal{X}^{\mathcal{M}}|$ states: more than two extremal states
- Complexity: related to τ , but also $|\mathcal{X}^{\mathcal{M}}|$

Extremal states

- Component-wise formation has ordered state indexes
- * consider an initial state composing $\mathcal{X}^\mathcal{M}$
- * add to $\mathcal{X}^\mathcal{M}$ the states without transitions to states with greater indexes

Page 13/19

Partially Ordered State Spaces

Non-lattice component-wise ordering

• Resource sharing model with reservation (Dining Philosophers)

-∢ ⊒ →

Partially Ordered State Spaces

Non-lattice component-wise ordering

 e.g. three philosophers with resources reservation, graphical model of the underlying transition chain, extremal states identification

SAN Monotone Backward coupling simulation

1: n = 12: $E[1] \leftarrow$ Generate-event() {*E* stores the backward sequence of events} 3: repeat 4: $n \leftarrow 2n$ {doubling scheme} for each $\tilde{s} \in \mathcal{X}^{\mathcal{M}}$ do 5: 6: $\omega(\tilde{s}) \leftarrow \tilde{s}$ {initial states at time -n} 7: end for 8: for i = n downto $\left(\frac{n}{2} + 1\right)$ do 9: $E[i] \leftarrow \text{Generate-event}()$ 10: end for 11: for i = n downto 1 do 12: for each $\tilde{s} \in \mathcal{X}^{\mathcal{M}}$ do 13: $\omega(\tilde{s}) \leftarrow \Phi(\omega(\tilde{s}), E[i])$ 14: end for 15: end for 16: until All $\omega(\tilde{s})$ are equal 17: Return $\omega(\tilde{s})$

・ロト ・回ト ・ヨト ・ヨト

SAN Perfect Simulation

R	Resource s	haring	model	with	reservation-	K	Philosophers	
		0						

K	X	$\mathcal{X}^{\mathcal{R}}$	$\mathcal{X}^{\mathcal{M}}$	PEPS* (iteration)	Perfect PEPS* (sample)
8	6,561	985	43	0.003185 sec.	0.032354 sec.
10	59,049	5,741	111	0.038100 sec.	0.111365 sec.
12	531,441	33,461	289	0.551290 sec.	0.689674 sec.
14	4,782,969	195,025	755	5.712210 sec.	2.686925 sec.
16	43,046,721	1,136,689	1,975	68.704325 sec.	15.793501 sec.
18	387,420,489	6,625,109	5,169	-	83.287321 sec.

Numerical results

- 3.2 GHz Intel Xeon processor under Linux, 1 GByte RAM
- times: for one iteration on *PEPS* and for one sample generation on *Perfect PEPS*
- Remarks: \mathcal{X} contraction in $|\mathcal{X}^{\mathcal{M}}|$
- * ${\cal X}$ limitation $6 imes 10^7$ on *PEPS* overcame

Analysis of complex discrete systems

Using model structural information

- model complexity reduction to achieve the numerical solution
- increase of solution bounds overcoming memory constraints
- perfect simulation and monotonicity applied to a structured formalism as SAN

Future Works

- comparative study of convergence control
- deeper understanting of Φ properties
- evaluation or bounds on the coupling time
- strategy adaptation to other structured formalisms

Page 18/19

< ロ > < 同 > < 回 > < 回 >

Thank you for your attention!

æ

. . .

Laboratoire LIG-IMAG

