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@ Context and Motivation
© Modeling SAN as discrete-event systems

© Perfect Simulation of SAN

© Final considerations




Markovian modeling
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Structured representations (e.g. SAN, GSPN, PEPAnets)

model complex dynamics (synchronizations, functions)

multidimensional product state space X

Aim: stationary or transient distribution (for statistical

analysis)

Constraints: deal with state space explosion problem
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Other Markovian modeling view
o discrete-event simulation to estimate steady-state distribution

on long run trajectories

* establishing transition functions
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Classical Simulation Techniques

o Advantage: storage of current/initial state
@ Problems:
* number of iterations needed to steady-state estimation

* biased samples

Stytes Forward simulation
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Stopping rule (empirical)

o Complexity: related to the warm-up period
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Backward Simulation Techniques [Propp and Wilson 1996]

o Advantages: samples from the steady-state distribution
* avoid warm-up period, coupling time 7

o Constraints: X trajectories in parallel in the worst case
Backward Simulation
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Perfect Simulation

o Complexity: mainly related to the cardinality of X and 7
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Model Parameters

o set of uniformized events E = {e,..,ep}

o global states are tuples of local states § = (s1,...,Sk)

@ transition function: ®(5,¢;) =7

* each § € X has a set of enabled events and its firing
conditions and consequences

o Well-formed SAN models needed
* exploring the subset X (Reachable state space)

State space explosion still a problem
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: for all 5 € xR do
w(8) < § { choice of the initial value of vector w}
end for
repeat
e «— Generate-event( ) { generation of e according the distribution )\Tl .. )‘Tg)}
@ «— w { copying vector w to &}
for all 5 € A do
{ computing w(3) at time O of trajectory issued from § at time —7*}
w(§) — &(P(8,e))
end for
 until All w(8) are equal
: Return w(3)
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Monotonicity property

@ e, € &£ is monotone if it preserves the partial order

V(z,y) € X <y = &(z,e) < P(y,e)

| A\

Monotone Backward Simulation [Propp and Wilson 1996]

o Advantages: samples from the steady-state distribution
o Complexity: related to 7, two trajectories (instead of X))

* If all events in the model are considered monotone

States (3)




Monotonicity and Perfect Simulation Idea

@ Monotonicity property for SAN related to the analysis of
structural conditions

* component-wise state space formation

v

Families of SAN models

@ SAN models with a natural partial order (canonical)

* e.g. derived from Queueing systems models [Vincent 2005]

@ SAN models with a given component-wise partial order
(non-lattice)




Canonical component-wise ordering

Queueing Network Model
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Non-lattice component-wise ordering

o Find a partial order of X demands a high c.c.

o Possible to find extremal global states in the underlying chain
* |AM| states: more than two extremal states

o Complexity: related to 7, but also | XM

Extremal states

o Component-wise formation has ordered state indexes

* consider an initial state composing XM

* add to XM the states without transitions to states with
greater indexes




Non-lattice component-wise ordering

@ Resource sharing model with reservation (Dining Philosophers)
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Non-lattice component-wise ordering

@ e.g. three philosophers with resources reservation, graphical
model of the underlying transition chain, extremal states
identification
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n=1

E[1] < Generate-event( ) {E stores the backward sequence of events}

repeat
n « 2n {doubling scheme}
for each 5 € XM do
w(§) < § {initial states at time —n}
end for
for i = n downto (5 + 1) do
E[i] — Generate-event( )
end for

for i = n downto 1 do
for each 5 € XM do
w(5) — D(w(3), B[i])
end for
end for
until All w(3) are equal
Return w(3)




Resource sharing model with reservation- K Philosophers

K X xR XM | PEPS* (iteration) | Perfect PEPS* (sample)
8 6,561 985 43| 0.003185 sec. 0.032354 sec.
10 59,049 5,741 111 |  0.038100 sec. 0.111365 sec.
12 531,441 33,461 289 0.551290 sec. 0.689674 sec.
14 4,782,969 | 195,025 | 755 | 5.712210 sec. 2.686925 sec.
16 | 43,046,721 | 1,136,689 | 1,975 | 68.704325 sec. 15.793501 sec.
18 | 387,420,489 | 6,625,109 | 5,169 — 83.287321 sec.
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Numerical results

@ 3.2 GHz Intel Xeon processor under Linux, 1 GByte RAM

o times: for one iteration on PEPS and for one sample
generation on Perfect PEPS

@ Remarks: X’ contraction in |AM|
* X limitation 6 x 107 on PEPS overcame




Using model structural information

@ model complexity reduction to achieve the numerical solution

@ increase of solution bounds overcoming memory constraints

@ perfect simulation and monotonicity applied to a structured
formalism as SAN

v

@ comparative study of convergence control

o deeper understanting of ® properties
@ evaluation or bounds on the coupling time

o strategy adaptation to other structured formalisms




Thank you for your attention!




