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Analysis of complex discrete systems

Markovian modeling

Structured representations (e.g. SAN, GSPN, PEPAnets)

* model complex dynamics (synchronizations, functions)

* multidimensional product state space X

Aim: stationary or transient distribution (for statistical
analysis)

Constraints: deal with state space explosion problem
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Analysis of complex discrete systems

Structured Markov Chain
−Stochastic Automata Network

Markovian
Descriptor

NUMERICAL SOLUTIONDISCRETE SYSTEM

Discrete−events Table

Transition Function

−Vector−descriptor product
Iterative Methods

STATISTICAL
ANALYSIS

−Performance indexes

(STATES + TRANSITIONS)
GRAPHICAL MODEL

(ALGEBRAIC SOLUTION)

Simulation Methods

(DIRECT STATE SIMULATION)
(BACKWARD SIMULATION)
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Other Markovian modeling view

discrete-event simulation to estimate steady-state distribution
on long run trajectories

* establishing transition functions

* table of events - uniformization
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Analysis of complex discrete systems

Classical Simulation Techniques

Advantage: storage of current/initial state

Problems:

* number of iterations needed to steady-state estimation

* biased samples

. . .

control of the burn in time

dependence on initial state

Biased sample

Steady state ?Initial

state

Generated

state

Stopping rule (empirical)

States

Time

Forward simulation

e1 e2 e3 e4 ef

Complexity: related to the warm-up period
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Analysis of complex discrete systems

Backward Simulation Techniques [Propp and Wilson 1996]

Advantages: samples from the steady-state distribution

* avoid warm-up period, coupling time τ

Constraints: X trajectories in parallel in the worst case
Backward Simulation

Generated
state

Trajectories
Coupling

Perfect Simulation

Time0-1-2-3-4-5-6-7-8
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τ∗ States (s̃)
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Complexity: mainly related to the cardinality of X and τ
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Adaptation to Structured models

Model Parameters

set of uniformized events E = {e1, .., ep}

global states are tuples of local states s̃ = (s1, . . . , sK)

transition function: Φ(s̃, ei) = r̃

* each s̃ ∈ X has a set of enabled events and its firing
conditions and consequences

Constraints

Well-formed SAN models needed

* exploring the subset XR (Reachable state space)

State space explosion still a problem
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Analysis of complex discrete systems

(STATES + TRANSITIONS)
GRAPHICAL MODEL
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s̃ ∈ XR
r̃ = Φ(s̃, ep), ep ∈ ξ

Φ(s̃, e1) Φ(s̃, e2) Φ(s̃, e3) Φ(s̃, e4) Φ(s̃, e5)
{0;0} {1;0} {0;0} {0;0} {0;0} {0;0}
{0;1} {1;1} {0;1} {0;2} {0;1} {0;1}
{0;2} {1;2} {0;2} {0;2} {0;0} {0;2}
{1;0} {1;0} {0,2} {1;0} {1;0} {0;1}
{1;1} {1;1} {1;1} {1;2} {1;1} {1;1}
{1;2} {1;2} {1;2} {1;2} {1;0} {1;2}

ep ∈ ξ Rates Uniformized Rates

e1 λ1 λ1/(λ1 + λ2 + λ3 + λ4 + λ5)

e2 λ2 λ2/(λ1 + λ2 + λ3 + λ4 + λ5)

e3 λ3 λ3/(λ1 + λ2 + λ3 + λ4 + λ5)

e4 λ4 λ4/(λ1 + λ2 + λ3 + λ4 + λ5)

e5 λ5 λ5/(λ1 + λ2 + λ3 + λ4 + λ5)
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SAN Backward coupling simulation

1: for all s̃ ∈ XR do
2: ω(s̃)← s̃ { choice of the initial value of vector ω}
3: end for
4: repeat

5: e ← Generate-event( ) { generation of e according the distribution (λ1

Λ
. . .

λE

Λ
)}

6: ω̃ ← ω { copying vector ω to ω̃}
7: for all s̃ ∈ XR do
8: { computing ω(s̃) at time 0 of trajectory issued from s̃ at time −τ∗}
9: ω(s̃)← ω̃(Φ(s̃, e))
10: end for
11: until All ω(s̃) are equal
12: Return ω(s̃)
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Partially Ordered State Spaces

Monotonicity property

ep ∈ E is monotone if it preserves the partial order

∀(x, y) ∈ X x ≤ y =⇒ Φ(x, e) ≤ Φ(y, e)

Monotone Backward Simulation [Propp and Wilson 1996]

Advantages: samples from the steady-state distribution

Complexity: related to τ , two trajectories (instead of X )

* If all events in the model are considered monotone

Time0-1-2-4

States (s̃)

-8

s̃sup

s̃inf

s̃ generated

τ ∗
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New solutions for huge SAN models

Monotonicity and Perfect Simulation Idea

Monotonicity property for SAN related to the analysis of
structural conditions

* component-wise state space formation

Families of SAN models

SAN models with a natural partial order (canonical)

* e.g. derived from Queueing systems models [Vincent 2005]

SAN models with a given component-wise partial order
(non-lattice)
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Partially Ordered State Spaces

Canonical component-wise ordering

Queueing Network Model
Equivalent MC
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Partially Ordered State Spaces

Non-lattice component-wise ordering

Find a partial order of X demands a high c.c.

Possible to find extremal global states in the underlying chain

* |XM| states: more than two extremal states

Complexity: related to τ , but also |XM|

Extremal states

Component-wise formation has ordered state indexes

* consider an initial state composing XM

* add to XM the states without transitions to states with
greater indexes
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Partially Ordered State Spaces

Non-lattice component-wise ordering

Resource sharing model with reservation (Dining Philosophers)
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Partially Ordered State Spaces

Non-lattice component-wise ordering

e.g. three philosophers with resources reservation, graphical
model of the underlying transition chain, extremal states
identification

101011002 200

001 010 100

000

020

012 102 201
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SAN Monotone Backward coupling simulation

1: n = 1
2: E[1]← Generate-event( ) {E stores the backward sequence of events}
3: repeat
4: n← 2n {doubling scheme}
5: for each s̃ ∈ XM do
6: ω(s̃)← s̃ {initial states at time −n}
7: end for
8: for i = n downto (n

2
+ 1) do

9: E[i]← Generate-event( )
10: end for
11: for i = n downto 1 do
12: for each s̃ ∈ XM do
13: ω(s̃)← Φ(ω(s̃), E[i])
14: end for
15: end for
16: until All ω(s̃) are equal
17: Return ω(s̃)
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SAN Perfect Simulation

Resource sharing model with reservation- K Philosophers

K X XR XM PEPS* (iteration) Perfect PEPS* (sample)
8 6,561 985 43 0.003185 sec. 0.032354 sec.
10 59,049 5,741 111 0.038100 sec. 0.111365 sec.
12 531,441 33,461 289 0.551290 sec. 0.689674 sec.
14 4,782,969 195,025 755 5.712210 sec. 2.686925 sec.
16 43,046,721 1,136,689 1,975 68.704325 sec. 15.793501 sec.
18 387,420,489 6,625,109 5,169 —- 83.287321 sec.

Numerical results

3.2 GHz Intel Xeon processor under Linux, 1 GByte RAM

times: for one iteration on PEPS and for one sample
generation on Perfect PEPS

Remarks: X contraction in |XM|

* X limitation 6 × 107 on PEPS overcame

J.M. Vincent Laboratoire LIG-IMAG Page 17/19



Context and Motivation
Modeling SAN as discrete-event systems

Perfect Simulation of SAN
Final considerations

Analysis of complex discrete systems

Using model structural information

model complexity reduction to achieve the numerical solution

increase of solution bounds overcoming memory constraints

perfect simulation and monotonicity applied to a structured
formalism as SAN

Future Works

comparative study of convergence control

deeper understanting of Φ properties

evaluation or bounds on the coupling time

strategy adaptation to other structured formalisms

J.M. Vincent Laboratoire LIG-IMAG Page 18/19



Context and Motivation
Modeling SAN as discrete-event systems

Perfect Simulation of SAN
Final considerations

Thank you for your attention!
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