Pontificia Universidade Catélica do Rio Grande do Sul
Programa de Pos-graduacéo em Ciéncia da Computacéo

THAIS CHRISTINA WEBBER DOS SANTOS

Reducing the Impact of State Space Explosion in
Stochastic Automata Networks

Porto Alegre, Brasil
2009

THAIS CHRISTINA WEBBER DOS SANTOS

Reducing the Impact of State Space Explosion in
Stochastic Automata Networks

Tese de Doutorado apresentada como requisito para
obtencado do titulo de Doutor em Ciéncia da Com-
putacdo pelo Programa de Pds-graduacdo da Facul-
dade de Informatica. Area de concentrag&o: Ciéncia
da Computacéo.

Orientador: Paulo Henrique Lemelle Fernandes
Co-orientador: Jean-Marc Vincent

Porto Alegre, Brasil
2009

Abstract

The solution of Markovian models with large state spacesiesaf the major challenges in perfor-
mance evaluation. Structured formalisms such as Stochastomata Networks (SAN) were pro-
posed to describe multiple components through the use ofraatt, whose transitions are determined
by local or syncronizing events, having constant or funloates. Due to the inherent modular rep-
resentation of SAN, it is possible through tensor (Kronechkgebra, to store the model infinitesimal
generator in memory, in a compact and efficient manner. Tineenical methods that calculate the
stationary probabilities distribution are adapted to ¢éh&tsuctured representations.

The basic operation is the vector-descriptor multiplmatiwhich is the product of a probability
vector by tensor products composed by sparse matrices. ratigkidnal Shuffle algorithm is char-
acterized by the access and shuffling positions of the veet@mn multiplied by each matrix of a
tensor product term. This approach is considered highly angrafficient, however, presents a high
processing time for the solution of real models. We propos®ee flexible and hybrid algorithm
for the vector-descriptor product called Split, putting tBhuffle approach in perspective, present-
ing significant improvements in the execution time for a deeeset of models without impairing
the computational resources. Its main idea is to divide éackorial term in two parts, aggregating
its matrices for the calculation of scalars to be tensorlytiplied by the remaining matrices. The
algorithm provides gains for the examples, mainly in preggstime, even spending more memory.

Nevertheless, increasing the state space of models, tnpsithim also becomes unsuitable to
obtain a numerical solution. To mitigate the impact of siace explosion, it is proposed the use
of simulations to estimate the stationary probability rilition as close as possible to analytical
solutions, executing long-run trajectories. We proposegipplication of perfect sampling techniques
(also called exact simulation) to produce reliable samgiesugh trajectory couplings, in reverse
simulation time. This technique is distinguished from itiadal simulation by avoiding transient
periods and the initial state to be chosen. It is discusseddasibility of these algorithms applied
to SAN, specially when monotonicity properties are detdatethe models. Partially ordered state
spaces allows the execution of an efficient version of thiertietie by reducing the number of parallel
trajectories needed for the generation of a sample.

The iterative numerical analysis and the simulation of lsé@tic models are approaches that
present advantages and limitations when applied to theigolaf structured models such as SAN.
The main contribution of this thesis focuses on the redaatidche impact of state space explosion of
markovian models described in SAN, proposing solutionsthe computational time of analytical
techniques is too long or when the memory requirements fptbbability vector exceeds current
technologies storage capacity.

Keywords: Structured Formalisms; Stochastic Automata NetworkanhBiical Solutions, Exact
Simulation.

Resumo

A solucédo de modelos markovianos com grande espaco de ss&tado dos maiores desafios da area
de avaliacdo de desempenho de sistemas. Os formalismosiesiios, como as Redes de Autb-
matos Estocasticos (SAN), foram propostos para descreaédades com multiplos componentes
através de autdématos, cujas transicdes sdo regidas pdogVecais ou sincronizantes, com taxas
de ocorréncia constantes ou funcionais. Devido a capazidadepresentacdo modular de SAN foi
possivel, através de algebra tensorial (ou de Kroneckengzenar o gerador infinitesimal do mod-
elo de forma compacta e eficiente em memaria. Os métodos maméle solucado que calculam a
distribuicdo estacionaria das probabilidades sdo adaptadstas representacdes tensoriais.

A operagédo bésica e’ a multiplicagédo vetor-descritor, qogpéoduto de um vetor de probabili-
dades por termos tensoriais compostos por matrizes noengresparsas. O principal algoritmo de
multiplicacdo chama-se Shuffle e é caracterizado pelo aeessbaralhamento de posi¢cdes do vetor
guando multiplicado pelas matrizes de cada termo. Estedo&aonsiderado extremamente eficaz
no armazenamento em memaria, entretanto apresenta um denppacessamento alto para a solugéo
de modelos reais, sendo suas otimizac¢des alvo de pesqeisasas. Propde-se um algoritmo hibrido
e mais flexivel para a multiplicacéo vetor-descritor, cha@mn@plit, que coloca o algoritmo Shuffle
em perspectiva, apresentando ganhos significativos nootelm@xecucao para diversas classes de
modelos, sem onerar 0S recursos computacionais. Sua idteégppl € dividir cada termo tensorial
em duas partes, de forma a agregar algumas de suas matnaesbpencédo de escalares a serem
tensorialmente multiplicados pelas matrizes restantessdddo algoritmo, dentro de limites geren-
cidveis de memoria, proporciona ganhos significativos emptede processamento, fato demonstrado
através de exemplos.

Entretanto, quando os modelos aumentam em escala, estiénadgimrna-se inadequado devido
a exploséo do espaco de estados. Para mitigar o impactguestema propde-se o uso de solucdes
alternativas de simulacgéo, as quais buscam estimar abdigfib estacionaria de probabilidades tdo
préximas quanto possivel das solucdes analiticas, basasanda execucdo de longas trajetorias.
Utiliza-se a técnica de simulagcédo baseada em amostragéeitgpétambém chamada de simulacéo
exata), onde os algoritmos objetivam fornecer amostra$u@is da distribuicdo estacionaria através
do casamento de trajetorias sobre o0 espaco atingivel, epotdensimulacéo reverso. Esta difere-se
da simulacéo tradicional por evitar o periodo transienteesclha aleatoria de um estado inicial.
Mostra-se a viabilidade destes algoritmos aplicados a $AN¢ipalmente quando se detectam pro-
priedades de monotonicidade nos modelos. Espacos de eg@dmlmente ordenados permitem a
execuc¢do de uma versao eficiente da técnica ao reduzir o adeerajetdrias em paralelo necessérias
para obtencao de uma amostra.

Vi

A andlise numérica iterativa e a simulacdo de modelos esioca sdo abordagens que apre-
sentam vantagens e limita¢cdes quando aplicadas a solugaodatdos estruturados como SAN. A
principal contribuicdo desta tese foca na reducgéo do impdetexplosdo do espaco de estados de
modelos markovianos descritos em SAN, propondo solucdasdguo tempo de computacao das téc-
nicas analiticas € muito longo ou quando o0s requisitos dazenamento do vetor de probabilidade
excedem a capacidade de memodria das tecnologias correntes.

Palavras-chave Formalismos estruturados; Redes de Autdmatos Estoags8olugdes Numéri-
cas; Simulacéo Exata.

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1

Al
A2
A3
A4
A.5
A.6
A7

Vil

Example of a SAN model with a functionalrate 13
SAN model of Figure 2.1 without functionalrates 14
Equivalent Markov chain for both SAN examples (Figute&nd 2.2) 15
Sparsanethod illustration 27
Shufflemethod illustration 29
Splitmethod illustration. 33
lllustration of a forward trajectory o 46
lllustration of a backward coupling of trajectories 48
Backward coupling in 6 iterations for the SAN exampleigufe 2.2 50
lllustration of a monotone backward coupling of trageigts 52
Extremal set construction for the QN model in SAN 56
Canonical component-wise ordering for the QN model ilNSA. 58
Another component-wise ordering for the QN modelin SAN 59
Non-lattice component-wise ordering in a modes ghilosophers 60
Non-lattice component-wise ordering in a modeb ghilosophers 61
lllustration of the coupling vector reduction coliegtsamples 66
Thesis contributionsscheme L 74
Queueing network and equivalent SANmodel 88
Classical resource sharing SANmodel 89
Dining Philosophers table configuration 89
Dining Philosophers SAN model with reservation 90
Dining Philosophers SAN model without reservation 91
First available server SAN model 91
Ad hoc wireless sensor network SAN modéhodes) 92

Vil LIST OF FIGURES

A.8 Master-slave parallel algorithm SANmodel 93

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2
5.3
5.4

SANESCHIPLOr e e e
Transition functiord(s, e,) for the model of Figure 2.2

Splitas a generalization of traditional algorithms

Resource Sharin§AN modelresults
Dining PhilosopherSAN modelresults
First Available ServeSAN modelresults,
Ad Hoc Wireless Sensor NetwdBAN modelresults
Master-Slave Parallel Algorithr8AN modelresults
Iterative numerical solutiongains

Dining Philosophersnodel (with resource reservation) - sampling results
Dining Philosophersnodel (without resource reservation) - sampling results
Expected parallel distribution gains for simulation

Numerical approaches comparison wuwu ...
Splitgeneral performance compared wahuffle
Simulation approaches comparison e
Numerical and simulation approaches comparison

18
20

32
38
39
40

40
41
43

LIST OF TABLES

Xi

List of Algorithms

2.1
3.1
3.2
3.3
3.4
4.1
4.2
4.3
4.4
4.5

Event firing verification procedureo o 22
Sparsealgorithm -t =v x @5 QW .o 28
Shufflealgorithm -7 = v x @K Q) o 30
Splitalgorithm -7 = v x @K, 00 . . oo 34
Tensor terms execution times fos@ampling 37
Forward simulation 47
SAN backward coupling simulation 0oL 49
General monotone backward coupling with a doublingsehe 53

SAN monotone backward coupling simulation. b4
Extremal set for SAN models with component-wise foromati. 55

Xii LIST OF ALGORITHMS

Xiii

Contents

List of Figures Vi
List of Tables iX
List of Algorithms Xi
1 Introduction 3
1.1 Modeling Structured Representations. oo 4
1.2 Solutions for Kronecker-based Descriptors 5
1.3 ThesisObjective 6
1.3.1 Hybrid numerical algorithms to reduce computatidimaé 8
1.3.2 Advanced simulation techniques to reduce memorgcost. 8
1.4 ThesisOrganization e e e 9
2 Stochastic Automata Networks 11
2.1 Basic Concepts and Definitions 11
2.2 Graphical Representation and Primitives 13
2.3 Structural Representations e 16
2.3.1 Kronecker-baseadkescriptor L 16
2.3.2 Event-basedescriptor. 20
3 Kronecker-based Descriptor Solution 25
3.1 Vector-Descriptor Product e e 25
3.1.1 Sparsesolution 26
3.1.2 The memory-efficie@hufflealgorithm 29
3.2 The HybridSplitAlgorithm 31
3.2.1 Theoretical contributions L L oL 35
3.2.2 Practical contributions e 36

Xiv

3.3 Conclusionsand Perspectives

4 Event-based Descriptor Solution

4.1 Forward Simulation
4.2 Backward Coupling Simulation.
421 SANperfectsampling
4.3 Monotone Backward Coupling Simulation
4.3.1 SAN monotone perfectsampling
4.3.2 Extremal global states extraction
4.4 Theoretical Contributions
4.4.1 Statistical validation
4.4.2 SAN monotone perfect samplinganalysis
4.5 Conclusionsand Perspectives

5 Conclusion

5.1 ThesisSummary

5.1.1 The hybrid vector-descriptor product

5.1.2 Theexactsimulation
5.1.3 Thesis general contribution
5.2 Open Problems and Future Works

Bibliography

A SAN Examples

A.1 Queueing Networknodel
A.2 Resource Sharingnodel oL
A.3 Dining Philosophersnodel

A.3.1 Dining Philosophersnodel (with resource reservation)

A.3.2 Dining Philosophersnodel (without resource reservation)

A.4 First Available Servemodel
A.5 Ad Hoc Wireless Sensor Netwartodel
A.6 Master-Slave Parallel Algorithmodel

B Kronecker Algebra

B.1 Kronecker (tensor) product L
B.2 Kronecker (tensor)sum oo
B.3 Classical Kronecker properties

CONTENTS

CONTENTS 1
C Notation 99
C.1 Stochastic Automata Networks 99
C.1.1 Basic Concepts and Definitions (Section2.1) 99
C.1.2 Graphical Representation and Primitives (Sectigh 2. 100
C.1.3 Structural Representation (Section 2.3.1) 100
C.1.4 Structural Representation (Section 2.3.2) 101
C.2 Kronecker-based Descriptor Solution 101
C.2.1 \Vector-Descriptor Product (Section3.1) 101
C.2.2 Sparsesolution techniques (Section3.1.1) 101
C.2.3 The memory-efficier@hufflealgorithm (Section3.2.2) 102
C.2.4 The HybridSplitAlgorithm (Section3.2) 103
C.2.5 Practical contributions &plit(Section3.2.2) 104
C.3 Event-based Descriptor Solution 104
C.3.1 Forward Simulation (Section4.1) e 104
C.3.2 Backward Coupling Simulation (Section 4.2) . 105
C.3.3 SAN perfect sampling (Section 4.2.1) . C 105
C.3.4 Monotone Backward Coupling Simulation (Sectlon £84.3. 1) 106
C.3.5 Extremal global states extraction (Section4.3.2) 106

CONTENTS

Chapter 1
Introduction

Performance evaluation of modern systems becomes a ofjialgoroblem due to the complexity
involved in describing and solving models. Several sotutiechniques are available in the litera-
ture but one of the most commonly used techniques is the imatpdeling and evaluation, which
produces accurate results. Markov chain is the analyticatmogl formalism most widely applied in
different domains such as computer, inventory and manufact systems, communication networks,
bioinformatics, and many other fields not necessarily cdatpnal.

The Markov chains formalism power is the simplicity of deston because one only needs to
characterize a system as discrete states describing theemanwhich it moves from one state to
another. So the system can be represented as a Markoviaspnoben the time spent in each state
appears exponentially distributed. A collection of stagemssociated to this Markovian process. The
system can assume only one state at any time, in other worelgyvblution of the process depends
exclusively on the current state [61].

Formally, a Markov chain model has¥finite state space set composedby |X'| states, where
its transition rates will derive an infinitesimal generatepresented by an x n square matrixQ,
wherev,.; quj; > 0 andV¥; q;q = —Z#i qi,;)- The matrix@ can be computationally stored
in a compact format since it is normally composed by few namzatements. In other words it is
numerically represented by an unstructured compomnentpy a unique huge matrix.

The solution of a Markov chain is the stationary probal@$itassociated to each state in the model
and these are often obtained by the long-run probabilityidigion calculated by an iterative solution
for the linear systemrQ = 0. The probability vectorr of dimensiom is distributed considering that
Yo, me = 1. Iterative methods [59] such &wer method,Arnoldi or the generalized minimal
residual method (usually abbreviatetlRES, compute a successive product of a probability vector
7 by a Markovian infinitesimal generat@ (a huge sparse matrix) until it reaches a stationary regime.

Markov chains are solved with a fast computational techaidiiooth matrix and vectors fit in

4 CHAPTER 1. INTRODUCTION

memory, otherwise the state space explosion will avoid xipdi@t mapping of the chain to its corre-
spondent transition matrix in memory. The systems of lireeprations of this size cannot be solved
in practice even with our current technologies. The indrepsize and complexity of systems quickly
invalidate the use of Markov chains for stochastic modetihgomplex systems.

An alternative method to the numerical analysis of modekhéssimulation based on systems
dynamics. An evolution of states is simulated using psaaaolom events to decide the trajectory
and from this, the results related toare estimated. The simulative analysis of systems gemserate
samples from the stationary distribution and it is applieabainly to large state spaces which can be
described by state transition functions based on discuetate [58].

Nevertheless, one must consider the accuracy of results @ifasing a given analysis technique,
analytic or simulative. The simulation results are stetatin nature, then very long simulation
runs are necessary to obtain results with sufficient condelefihere are new simulation techniques
concerned in producing exact samples. However, the mern@ydomplish this task is considerably
increased when applied to huge Markov chains [43].

1.1 Modeling Structured Representations

Not directly applying simulation approaches to solve hugelets, structured formalisms based
on Markov chain principles introduce the possibility of delsing more than one irreducible com-
ponent, with interactions among components and indivithed@lavior. This interactions are called
events, which are primitives associated by rates or préibabi Due to the fact that systems are
normally composed of many components, Markovian strudtioemalisms like Stochastic Petri nets
(SPN) [1], Stochastic Automata Networks (SAN) [55] and Berfance Evaluation Process Algebras
(PEPA) [44] were proposed to cope with the problem of theestpice explosion and the consequent
matrix storage problems.

Given the difficulty in constructing these models, the us&AN, proposed by Plateau [54], is
becoming increasingly important in the field of stochastadeilling of parallel and distributed com-
puter systems, such as communicating processes, concpiroeessors, shared memory, behavior of
communication network protocols, and many other realitisgle the scope of Markov chain appli-
cations [4, 8, 12, 20, 29, 34, 35, 53, 57]. The advantage of $#ddeling over other formalisms is
its simplicity and similarity with Markov chains in terms tife finite number of states and transitions
labeled by events.

The specific advantage the SAN approach has over generaliaeldastic Petri nets, and indeed
over any Markovian analysis that requires the generatiom tbaAnsition matrix containing rates, is
that its representation remains compact even as the nurhbetes in the underlying Markov chain

1.2. SOLUTIONS FOR KRONECKER-BASED DESCRIPTORS 5

begins to explode. The state transition matrix is not storetead, it is represented by a number of
much smaller matrices. These matrices are defined withlallaet information may be determined
without explicitly generating the global matrix. This raseh field presents many alternative model-
ing paradigms, but structured models have the common nesedahpact representation, an efficient
storage and alternative solutions for very large stateespac

1.2 Solutions for Kronecker-based Descriptors

An available alternative to a compact storage for SAN modetke implicit generation of the
infinitesimal generato@ of the underlying Markov chain, keeping the structured abtaristics into
their internal representation. This advance becomeslgessmploying tensor (Kronecker) algebra
to store the infinitesimal generator, so large systems cagdvesented by a sum a&f tensor products
of N matrices given algebraically sz.;l(@jil Qg.i)). The sparse matrices composing each tensor
product are in fact a way of taking advantage of all the stmatinformation inside original automata.
Such principle appears since the first definitions of SAN [Bbik recently it has also been used in
other stochastic formalisms [32, 45]. In all those refeemnthe terndescriptoris used to refer to a
tensor represented infinitesimal generator.

Another intrinsic aspect related to structured formalissnthe insertion of unreachable states
when computing the probability vectarso many approaches use Kronecker algefoarepresen-
tation [21, 23, 52]. Their solution have implicit tensor og@ons called vector-descriptor product
and the method is based shufflealgebra principles [26]. The complexity to treat memorfregfnt
structured models lead us to a less time-efficient solufpgpm@ach when compared to the pure sparse
multiplication, which can be easily done respecting the mmnbounds. For further information
about tensor algebra properties and their application etigfized numerical algorithms refer to
[2, 26, 37].

The current SAN solver use a Kronecker description as bageitform vector-descriptor mul-
tiplications inside the iterative methods implemented e Bhufflealgorithm is known as the most
memory-efficient numerical solution for descriptors [6, 38]. The tensor product operation is sum-
marized a9 [W(®¢]\i1 Qy))] = 0, wherer is a probability vector an®_.’ | 0\ is thej'" tensor
product in adescriptor Note that the descriptor sizZ€ can be potentially increased when synchro-
nizations become more frequent among model components algebraically represents more tensor
products inside descriptors, consequently the total namigerations become more time consuming
until convergence.

Moreover, there is still a memory limit imposed by the cutregchnology even when dealing

*The basic concepts of the classical tensor algebra ardatetai the Appendix B of this thesis.

6 CHAPTER 1. INTRODUCTION

with structured descriptors. The state space explosiohigndase can avoid the application of the
traditional numerical solution. Several approaches aopgsed to deal with massive product state
spaces, the techniques vary from hybrid solutions for satnuh and numerical analysis [15] to pure

forward simulations [10, 46, 47].

The Markovian simulation research has evolved to be appdistduations not necessarily involv-
ing any time dynamics in the chains. The problem is resttitbegenerate samples directly from the
stationary distribution. The transition kernel of a Markdhain ofn = |X| states allows to start a
trajectory from an initial state, € X chosen arbitrarily, running for a timeand outputting the state
s; € X. The forward simulation approaches execute a fixed numbgeps walking in the chain to
collect samples. The major problem of forward simulatiathe definition of an initial state and the
guantity of steps to executee., to decide how many steps are considered satisfactory id #dve
transient period of the these simulations. The uncertaihtigese parameters generates bias samples.

Approaches based dboupling from the Pastechniques [56] (also calleplerfect samplingr
exact simulatiopnemerge to guarantee samples confidence in Markovian dionga/65]. These
techniques consider all states as initial states, runmajgdtories in parallel until their coalescehce
It is proved in the literature [43, 51, 56] that the couplimgbackward steps guarantee unbiased
samples. The perfect sampling technique can be appliedie s@ny systems, mainly those with
huge state spaces and an identified monotone set of evengse d@ire recent researches conducted
towards algorithmical adaptation for monotone systemg [i®8 example, reducing a huge number
of initial states to control in parallel into selected tid@ies based on monotonicity properties.

Simulative techniques are considered alternative mettuodise solution of structured descriptors
where the computational resources are insufficient to parem analytical solution. The challenge
in this research is related to the adaptation of these dusmerulation advances to complex structures
with huge underlying state spaces.

1.3 Thesis Objective

This thesis enforces that numerical analysis and simuldtath have advantages and limitations
when applied to the solution of structured models such azhagiic automata networks. Note that
an analytical solution of models is always the best altéreathen accuracy is needed. However,
for all other models we could not even generate the stateesffac example those underlying a
huge queueing network or a SAN) we demonstrate that it isilples® design adapted exact simu-
lation algorithms. The available numerical algorithmstfoe SAN formalism are basically iterative
solvers for Kronecker representations [37] (set of tramsitnatrices operating with tensor algebra),

TThe termcoalescence this thesis is also referred asuplingof trajectories.

1.3. THESIS OBJECTIVE 7

implemented in th&®EPSsoftware tool environment [5, 49], and some first approatbesmulate
SAN focusing on the concept of uniformized events and fodvsamulation techniques [57].

The objective of this thesis is the reduction of the impastate space explosion in the solution
of huge models described as Stochastic Automata Networks.

The state space explosion is the major problem of the analytiodeling and its numerical so-
lution. This thesis focus is the numerical solution of med#gscribed as sets of stochastic automata
and the contribution is two folded: (i) provides a Kroneckesed descriptors solution which aims
to speed up the vector-descriptor product and (ii) provaeslternative solution for event-based
descriptors based on advanced simulation techniques sutieexact simulation Both approaches
take advantage of the structural configuration of modelptoroze their operations.

The Kronecker based approach helped changing the conpwitriewpoint towards efficient
solutions. However, despite the positive theoretical {ithe impact of the tensor algebra for the
study of models coming from the real world is still very lieit[16, 33]. Many researches focused on
a memory-efficient approach without perceiving that thevfalrrestrictions in this case lead us many
times to time-inefficient solutions. We conclude that isgbke to design algorithms to consider
the aggregation or splitting selected sparse parts of i(i¢sis, consequently accelerating the vector-
descriptor product. The objective is not to devise a metloostdre also the vector in an efficient
manner, but to multiply this (huge) vector in a time-effigiemanner when compared to tishuffle
approach.

Additionally, for those vectors and descriptors that canfihan memory, we propose an approx-
imated solution based gmerfect samplingwith a memory-efficient approach when monotonicity
properties can be applied. Many researches were alreadjuctad proposing new storage tech-
niques associated with specialized algorithms for strectunodels in general, not specifically for
SAN. Nevertheless, alternative solutions such as sinaratapproaches were not deeply studied in
the context of SAN. We conclude that is possible to adapt\Wwadd coupling algorithms to obtain
unbiased samples for statistical analysis. Consequéhéye is a need in SAN solution research to
devise methods that exploit monotonicity properties of el@@nd potentially other structural infor-
mation.

The research presented in this thesis points out new sotufmr the SAN formalism, which
in future works can possibly be generalized to any strudtunedel representation, in which sys-
tems are described by independent components, and eaclaoimawee interdependencies given by
synchronizing or functional transitions [54, 55].

The next section details the specific research guidelinasdomplish the objective of this thesis.

8 CHAPTER 1. INTRODUCTION

1.3.1 Hybrid numerical algorithms to reduce computationaltime

This section describes the first axis of this thesis whichésiinprovement of the computational
time of the vector-descriptor product, maintaining theusioh efficacy. Tensor products related to
SAN models of practical applications are quite sparse mdiatause they represent dependent be-
haviors among automata considering each event separatedge characteristics lead us to analyze
the possibility of taking advantage of matrices sparsitye@ay indicated as an advantage for nu-
merical methods [16]), combined with the natural sparsitglassical tensor product decomposed in
normal factors [37]. Considering the classical Kroneckepprties used to decompose tensor prod-
ucts, we design a flexible and hybrid approach to the veasciiptor multiplication, exploiting the
tradeoff between time and memory to propose a new algoritdledSplit

In fact, theSplitalgorithm proposes a way to balance the actual memory costtae the multi-
plications needed to complete an iteration, resulting iroeentime-efficient approach for many cases,
where the matrices composing descriptors are sparse arggtrseé Even so we are obliged to aug-
ment the memory cost storing new structures, it is reducedeictor-descriptor product complexity.
In the worst caseSplithas the same order of complexity presented by the tradlt®nafflenethod.

The new algorithm is analyzed in terms of its efficacy to soh@lels and also efficiency when
compared to the tradition&hufflemethod for Kronecker-based descriptors. Moreover, a setuof
merical optimizations are proposed to accelerate even th@e&omplex, but necessary, operation.
Although its flexibility to deal efficiently with classicaldi§necker descriptors, the product state space
is still a limit to solve huge models even with advanced song for linear equations. Note that this
hybrid solution is applied to solve descriptors using dtzdtensor algebra. Considering that models
with a generalized descriptor can be rewritten with onlystant values in the matrices, then func-
tional dependencies are not discussed in the context ahbsss. Nevertheless, results obtained with
constant rates, show that once we have a time-efficient wayailuate measures of interest, Sait
algorithm will continue to be as efficient as it already is.the conclusions, we point out some fu-
ture works in the direction of a functional hybrid solutioetiwveen sparse techniques and generalized
Kronecker descriptors.

1.3.2 Advanced simulation techniques to reduce memory cast

This section discusses the second axis of this thesis whittteiapplication of advanced simula-
tions in the context of SAN. A new algorithmic solution callgerfect samplingr exact simulation
which is based on backward coupling as @mipling from the PagiCFTP) algorithm [56] overcome

A matrix classification in sparse or ultra-sparse is giverhgyrelation of the total number of nonzero elements by
its dimension [16].

1.4. THESIS ORGANIZATION 9

the burning time problem generating unbiased samples. Qidposes the execution of trajectories
in parallel, starting from all states of the Markov chain.nRing time in backward steps, the coupling
of all trajectories in a given state guarantees that thigodam originated from the stationary regime.
Researches on perfect simulation of Markovian queueingarés [65, 66, 63, 64] shows possible
algorithmic improvements when the state space has a partiating.

The proposition of an exact simulation application to SANeio new discussions about struc-
tured models,allowing the description of an even more cemyériety of systems. Another contribu-
tion of this thesis is the study of the partial ordering ofgurot state spaces, concluding that for some
models with a component-wise ordering it is possible to rteraative solutions [38]. We propose
one adaptation of perfect sampling techniques to solve SANats, regarding their reachable state
space, also some structural analysis to devise monotos®rsrof the backward coupling method.

The simulation of SAN can take advantage of the underlyingircistructural properties and
indexes of interest, to find a way to solve with less memoryscdd/e work on the memory drawback
imposed by backward coupling techniques contracting taehable state space in a smaller subset.
In this work, we focus on the SAN adaptability to exact siniolato produce model evaluations,
e.g, performance indexes, steady-state probabilities. Téeareh of time-efficient simulations is out
of the scope of this thesis, but some considerations abgubwements of this issue are drawn on the
conclusions.

1.4 Thesis Organization

This thesis is composed of four chapters, a conclusion aeé tipppendices. Firstly we explained
the background related to the numerical solution of Mar&ovnodels focusing on SAN as modeling
formalism. The solutions proposed are presented in difterleapters and appendices. This introduc-
tion explained the major objective of this thesis as wellesresearch directions to accomplish it.

Chapter 2 focuses on SAN descriptor to allow the comprebersi developed models and nu-
merical solutions proposed in this thesis. Forward in th&text of a discrete-event description, this
chapter also extends the definition of well-defined SABL, the reachable state space is compatible
with the system evolution rules.

Chapter 3 explains how a SAN model can be structurally egplts obtain the solution combined
with Kronecker algebra to efficiently store the descripifferent SAN models are used to validate
the hybrid algorithm proposed (resource sharing and dilmcanodels, a model for wireless networks
protocol evaluation and a model for a parallel algorithm lenpentation) collecting both execution
times and memory spent also for the traditioBhlfflemethod.

Chapter 4 shows that is possible to design a perfect simulaigorithm for SAN,i.e., using

10 CHAPTER 1. INTRODUCTION

backward coupling simulation to sample states directlynfitbe stationary distribution. We briefly
review simulation concepts, and using specific SAN exampleshow what is structurally fitted to
run memory-efficient backward simulatiomsg, a canonical or component-wise structui@ueueing
systems and resource allocation models such as those bagéeé classicatlining philosophers
problem).

Chapter 5 is the conclusion and presents a brief summaryeafetsults obtained in the context
of this thesis, in comparison with the solution bounds padndut in the literature. This comparison
shows the effectiveness demonstrated in the practicdksesithe advanced numerical method pro-
posed, and the theoretical contribution of a simulatiohtégue presented as an alternative SAN so-
lution based on the coupling method. Moreover, this chaptesents final considerations about the
future works, prioritizing the solution of huge state spgace

Appendix A presents a description of the SAN examples stusighe Chapters 3 and 4. The
Appendix B is a review of classical tensor algebra propguigd the tensor product decomposition in
normal factors needed in the Chapters 2 and 3. Appendix @pigthe notation used in each chapter
of this thesis, indexed by section.

§Structure classification, asnonicalor component-wisén the context of this thesis is related to the chain stmactu
underlying a SAN model.

11

Chapter 2
Stochastic Automata Networks

The first step involved in calculating the steady-staterithigtion of discrete systems is to charac-
terize the states of the system and describe the manner ahwhnoves from one state to another
[61]. Given the difficulty in constructing these models asnaque component, the use of stochastic
automata networks (SAN) as proposed by Plateau [54] is bixgpincreasingly important for model-
ing parallel and distributed systems such as communicatingesses, concurrent processors, shared
memory, behavior of communication network protocols anaiyn@her applications non specific to
computer science. However the complexity of the modelirecess brings the need of advanced
numerical solutions.

Structured formalisms such as SAN allow modeling with mbemtone component that operate
more or less independently, requiring sometimes intevastsuch as synchronizing their actions, or
operating at specific rates (or probabilities) dependintherstate of other component. The concept
of synchronizing events and functional dependencies &n@duced with SAN as powerful primitives
to represent different realities.

2.1 Basic Concepts and Definitions

The SAN basic idea is to represent a whole system by a caleofiKX” subsystems described as
K stochastic automatd®), with k& € [1..K]. In each of these automata the transitions are labeled by
events. Each event includes probabilistic and timing imfation, and the network of automata has a
seté with all events in the model. This framework defines a modwiay to describe continuous and
discrete-time Markovian models [54, 55].

Definition. Each automatom*) has a set®) of local statess”) wherei € {1...n;}, intercon-
nected by transitions and their respective evepts £, ¢ = {ey, ..., ep} consideringP events in the

12 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

model. The constant,, is the cardinality o&®), i.e., the total number of states in automatdff.
Each event, € £ has its own rate\, and a probability associated.

Definition. The local state® (i € {1...n,}) of an automatopd® is just the state it occupies
at a timet.

Definition. A global states of a SAN model withK automata is a vector = {sV);...; s}
where each automatoa®) is in the local state®) € §(*) at a timet.

Definition. The set of all global states is callpdoduct state spacélhe product state space of
a SAN model is the Cartesian product of all s&tg.

It is natural the insertion of unreachable states insideptbéduct state space since not all com-
binations of local states are valid in the global perspectiVhe reachable state space indicates the
consistent state space related to a mode|,all the states inside this set are reachable by any other
state.

Definition. The reachable state spa&’gj (or X% is an irreducible component obtained from a
given initial global statg, € X and successive firing of eventsgn Each global staté reached by
any possible combination of events is included in this set.

A SAN model can describe a reachability functi@i® which indicates the global states effec-
tively accessible by one or more events fired compogifig

Definition. The reachability functio¥% is considered well-defined if and only if it indicates
exactly the states in the s&t?, i.e., the component’”* presents a strong connected transition graph.

The eveng, can occur in more than one automata meaning there is a synzation occurring
among componentsge., the event, is associated to more than one transition in different aatam
An evente, can also be local in one automatasm,, it occurs only inside a component in a given
local states®). Sometimes from this local stat€”, the occurrence of an event can lead to more
than one state.e., there is more than one transition labelled by the same eVertteal with this, one
additionalprobabilityis associated te, in each transition. The absence of probabilities in traorsst
is tolerated if only one transition can be fired by an evennfeogiven local state.

Events can contain constant or functional rates, in thetfonal case, the event can be dependent
of the local state of other automata to be fired as synchmgizvents do, without changing every lo-
cal automaton in the function. Note that the importance ofleliag primitives such as synchronizing
events and functional rates is the facility to model chanastics that conveys real world problems,
where components always interact in some manner beyondrtleridual behavior. Functional in-
teractions can be also represented by synchronizing ef@ni$] since it is possible to set a state

2.2. GRAPHICAL REPRESENTATION AND PRIMITIVES 13

with a self-transition,i.e., the local state can fire a transition without really chaggis local state.

Definition. A SAN model can be calledell-formedif and only if the X' component is irre-
ducible.

A well-formedmodel contains states that are reachable by any other sthtdates that fire some
transition to at least one another state, which means there absorbent neither unreachable state.
In this thesis, we assume that the reachable set is giveneomtidel designer. Despite of that, it is
relevant to numerical solutions that the reachable staeesp’ is, in the worst case, equal to the
product state spac¥ of the SAN modelj.e, X¥* C X.

The large models we are interested, in the context of thig&veoe those with a hug& and fewer
reachable global states to deal with. A great advantage fnggfact is that, knowingt'’*, one can
reduce the overhead related to the state space explosiblepr@adapting this characteristic inside
the numerical solution as an optimizing factor. The effitiganeration and storage of reachable
states are not in the context of this work, mainly becausep® avith that there are very efficient
approaches already studied [17, 52].

2.2 Graphical Representation and Primitives

A SAN model presents a simple graphical representationtaadsta great feature considering the
modeling of complex behaviors. In this section is preseatedxample with the available modeling
primitives. Figure 2.1 is a SAN model with two automat&, and five eventsl{| = 5).

€q
€2 €1

fi = [(st A®) == 02) way] + [(st AP == 29) s o]

Type | Event| Rate
loc e1 f1
syn €9 (%)

loc €3 3
loc €y QY
loc €5 Qs

Figure 2.1: Example of a SAN model with a functional rate

This example shows two types of events (local and synchiraglizvith constant rates (repre-
sented byy;) and functional rates (represented f3y. The functional ratef; returns a constant value

14 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

considering evaluations of other automaton local stategulse primitivest, i.e., the associated event
is fired with a function that depends on the local states aéradiitomata. Events that occur in differ-
ent transitions issued from the same state must presenbahality of occurrence associated to the
rate. In the example, the evest with constant ratey, is associated to the probabilities and
respectively.

The model presented on the Figure 2.1 has a functional depepdhat could also be expressed
as synchronizing events with constant rates associate@. cdhversion of a descriptor based on
generalized tensor algebra in a descriptor using clast@nabr algebra is a process already studied
[13] and is possible to achieve an equivalence of resuléeng different modeling primitives. The
descriptors containing functional rates are converteddiassical algebra representation. Figure 2.2
represents a classical description of the example in Figure

Type | Event| Rate
syn | en a1
syn | e | aa2
syn €9 (%)

loc e3 a3
loc ey (e 7)
loc [(0753

AWM
€9 < €11
€12

Figure 2.2: SAN model of Figure 2.1 without functional rates

For both representations we have an equivalent Markov alegiresenting the reachable state
spaceY” of the model, where all states, but oneii are reachable. Figure 2.3 shows all states and
transitions for the example, indicating the correspondiéarikov chain (theY'” set) in the inner box.

SAN descriptions can define thig? set through the insertion of a reachability functidi¥ by
the designer. The boolean evaluation of this function, wéygplied to every global state inside,
returns the reachable states composkéy One can also indicate a subset®f using apartial
reachabilityfunction denoted by=?*, where it is possible to indicate at least one reachable fat
the model (so the set can be derived from this state or subsgites). More details can be found
in [5, 49].

The example presents only one unreachable state, so theblity function 7# can be defined

*The impact of functional rates in comparison to the use o€kyonizing events [13] are not explored in this thesis.

2.2. GRAPHICAL REPRESENTATION AND PRIMITIVES 15

Figure 2.3: Equivalent Markov chain for both SAN examplegife 2.1 and 2.2)

to exclude the global statd {);1(*} as following:
FR=(stAW 1= 10) && (stA® 1= 1));

The functionF% can also be partially defined with only a subset of reachahles, then it can
be later calculated iteratively from these specific statssan example, the global state{;0?)} is
indicated in the partial reachability functigf**:

Fhr = (stAV) == W) && (stA® == 0?));

For huge models is really difficult to determine the fully &tion 7% in a model description.
There are researches concerned in propose very efficierdages for the determination and for the
compact storage of the reachable set [17, 52]. In the confeSAN formalism, the definition of a
partial reachability functio=** is sufficient for the current PEPS tool [5, 49] to find the stdte
X . The following section discusses the internal structueptesentation of SAN models presenting
two different approaches despite both use the concept oteas a key for enabling new numerical
solutions.

16 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

2.3 Structural Representations

Given a well-formed SAN description which is a structuredresentation of a Markov chain,
the next step is to store and solve the model analytically(mnerically) to obtain the stationary (or
transient) probability distribution. Following Kroneakgroperties (refer to Appendix B) the modular
behavior of the system can be decomposed descriptor i.e., a set of small transition matrices
containing the model rates as elements. This decomposiliows iterative solvers to perform the
vector-matrix product, considering a multidimensionatstspace.

However, for SAN models, or even for other structured foismas, there is another possible
structured representation which can be simply event-ba&edtan extract the set of events related to
a model (uniformizing their respective rates) and constucansition function to represent the firing
of events. Both approaches must deal with a SAN model (or amgtared model) as input, and
become a basis to generate the probability distributionuggud. In this section, we briefly discuss
separately both approaches of SAN descriptitfreneckerbased andventbased.

2.3.1 Kronecker-basedescriptor

The use of tensor (Kronecker) algebra [2, 26, 37] to reptdasge complex models in a structured
description undeniably reduces the needs of memory awpttimstorage of the infinitesimal genera-
tor which is a full flat matrix. The SAN formalism, for examptekes advantage of this approach to
represent the infinitesimal generator of the model as armedgeformula. In fact, instead of defining
one single, and usually huge, matrix of order equal to thelycbstate space of the model, we de-
fine a set of tensor product terms with smaller matrices ircivtiie combination through Kronecker
operations is equal to the underlying Markov chain traositnatrix.

The local behavior of eack” automaton is represented by a unique tensor suid afiatrices.
We indicate ble('“) the matrices composed of local events occurrence rateg@eets, with a cor-
respondent negative diagonal adjustment, which is a negediue correspondent to the line ordinary
sum. The synchronizing behavior is represented by tenswiugt terms of matrices containing the
rates of these synchronizing events. For each event is gedea tensor product term where one
affected matrix calle@fj;l, contains the occurrence rate, and the other matricesvied@ontain the
valuel in the respective synchronizing transition. Automata ti@tinterfere the synchronization,
present identity matricek,, of ordern,, in the tensor product term.

For each tensor product term generated by a synchronizieigt ey (positive tensor terna™ =
Qi Q(el;?), another related tensor term is needed containing thevd&gdjustment for the syn-

chronizing behavior with matric@i';), (negative tensor termmr = ®f:1 Q(’i)). Here the number of
€p
synchronizing events is given ly.

2.3. STRUCTURAL REPRESENTATIONS 17

Thedescriptoris then composed of two parts and is given by the Equation 2.1:

Q=

K K K
o+ ((X) QY+ Qi’?) (2.1)
k=1 ep€E \ k=1 k=1
Kronecker algebra properties (see Appendix B) decomposesot sum in an ordinary multipli-
cation of tensor products called normal factors [55], foareple, Q") & Q® = (QW @ I5e) x
(Iom ® Q®). Consequently, @escriptorQ can be defined as a sum of only tensor products of
matrices generically expressed @Y).

Definition. Each matrixggk) has its dimension given by the the cardinalityd? (n;) of each au-
tomaton4®) in the model. Their elements are the rates (or probabiitissociated to each transition
in A*) depending on the tensor product been analyzed.

Definition. A SAN model with K automata and’ synchronizing events has descriptorQ as
an algebraic formula composed by a sum/of 2F tensor products with matricesggk) each.

Algebraically,Q = > * ®,°, QY

Table 2.1 details the descript@ showing the tensor sum operation in the local part decongpose
into a ordinary sum of{ normal factorsi.e., a sum of tensor products where all matrices but one are
identity matrices. Therefore, only the non-identity mags (in the local part the matric@%k)) need
to be stored. The synchronizing part of tthescriptoris represented with positive tensor terats
and negative tensor terms.

For the SAN example in Figure 2.2, tdescriptoris a set of K + 2 F tensor products and follows
the general descriptor formula (consideriig= 2 automata and’ = 3 synchronizing events):

k
Q=@ QY= (@) ® L) + U © Q) +
Qe ® Q) + (Q)- ® Q) +
Q) ® QW) + (@) e Q) +
Q) ® Q) + (@) ® Q)

Note that the automataA™ has no local events so the local part of the formula has inffaet1
normal factors to decomposeg., there is no factle(l) ® 1952) in the decomposition 0@51) 57 Q}z),
we havejusfggl) ® Ql@) to analyze. For each synchronizing event we proceed wittléhemposition
in positivee™ (and negative) tensor products, summariziadg’ terms. Following are presented the

matrices composing each tensor term for the SAN examplegur&i2.2.

CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

Qg(l) Q@ Igw ® -+ ® Igwx-n ® Igm
IQ(1> ® 1(2) ® - & IQ(K—l) ® IQ(K)

K :
Iow © Ipw ® - @ Q¥ ® Iy
Ioy ®@ Igeny ® -+ ® Igw-y @ §K)
QY e Q¥ e - ® QI e QY

et :
QY o Q2 o - & QYUY o QW
“FE E “E E

2F
QY e QY & o ® QY g QW
1 1 1 1
o

QY o Q2 @ ® QU o QW
E E E E

Table 2.1: SANdescriptor

Local behavior of automatad® represented as a tensor product:

10 —Q5 0 (071
(2) _
IQZ(I) X Ql — < 0 1) ® 0 —Q3 Qa3

Behavior of synchronizing event; with constant ratev;;:

- Positive tensor terme(;)

0 «
o wat -0) e

o O =
o O O
o O O

2.3. STRUCTURAL REPRESENTATIONS 19

- Negative tensor terme{; 7)

0 1 00
—Q
Qn-®95-={ , @000
11 11 0 0
000
Behavior of synchronizing event, with constant ratey;:
- Positive tensor terme(, ™)
0 000
«
A=,) 000
0 0
001
- Negative tensor terme(, ™)
0 000
—Q
o el =) e |0
00 1

Behavior of synchronizing event with constant ratew, (associated probabilities ands):

- Positive tensor termeg™)

0 0 0 T T
Qiil®9§§1:<)@ 00 0

(120

- Negative tensor terme{ ™)

0 0 (7T1+7T2) 0 0
Qil@@ilz<) ® 0 00
00

Many approaches are studied to store and manipulate a Kkenexpresentation [21, 23, 52]. The
descriptor can be stored as a set of sparse matrices using@acbformat, for example, Harwell-
Boeing format (HBF) [61] where only the nonzero elementsthed indexes are explicitly indicated.

20 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

The tensor operations are implicit in the vector-descriptoduct and the current SAN solver uses
this description inside iterative methods. More informaaton this subject is presented and discussed
on Chapter 3.

2.3.2 Event-basedlescriptor

This section proposes another discrete-event represenfd] for SAN models, where the sét
of events can be defined with an associated transition fumdtibetween global states. Considering
the product state space of a model, and the fact that SAN have an underlying Markogistem,
we consider the model composed by a set of global statéesl a finite collectiof = {e;,...,ep}
of P events (local and synchronizing events are all in the set

Definition. The global transition function defined (s, e,) = 7 (p € [1..P]) is the set of rules
that associate to each global state X a new global state denoted by= X%, through the firing of
the transition labeled by eveaf € €.

Definition. An evente, is said to be enabled in the global state X', if and only if &(5,¢,) = 7,
wheres # 7, andr € X. Analogously, an event is said to be disabled in staté and only if
(s, e,) =7, ands = 7.

In each global staté some events are enablad., they change the global stateénto another
stater. However, not all events may occur from a given global statehose cases, the transition
function assigns the permanence in the same global statde Z&2 shows the transition function
application for the SAN in Figure 2.2, considering all glbbtatess € X and all eventg, € ¢.

In this table, the resulting global states= ®(3, ¢,,) are represented, where those corresponding to
possible transitions are marked in bold faice, those corresponding to enabled evénts

e xR f:(b(g?ep)?epef
D(5,e11) | D(3,e12) | D(S,eq) | P(S,e3) | P(35,eq) | P(S,€5)
{0;0} {1,0} {0;0} {00} {00} {00} {0;2}
{0;1} {0;1} {0;1} {0;1} {0;2} | {0;1} {0;1}
{0;2} {0;2} {1,2} {0;2} {0;2} {00} | {0;2}
{1;0} {0;1} {0,2} {1,0} {1,0} {1,0} {1,2}
{1;2} {1,2} {1;2} {1,2} {10} | {1;2} | {1.2}

Table 2.2: Transition functiof (s, e,) for the model of Figure 2.2

fIt is important to observe that the transition functibnis a theoretical definition that is not necessarily used in
current SAN solvers implementation, since the Kroneckscdptor present another structural perspective for theiso
algorithms.

2.3. STRUCTURAL REPRESENTATIONS 21

The SAN model construction as a Markov process has the rbée€b event, seen as intensities
«,, of Poisson processes (rates), and they are supposed todpemakent. If an event, can lead to
more than one state, it is needed to decompose the ey@nhew events as new Poisson processes
with their respective rates. In the case of an evgnwith a functional rate, it is decomposed in as
many events as possible evaluatioredf the function. For each function evaluation we have a new
Poisson process, and consequently a new eyeassociated.

The SAN description has now a table of events and their chertatics as basis. The idea of
events uniformization is to introduce the independencergnavents applied successively. The uni-
formized process is driven by the Poisson process Withor&ezzfz1 «, and generates at each time
an event, € ¢ according to the distributiof, . . ., <2).

o

Definition. The dynamic of the system is defined by one initial globaksiate X’ and a sequence
of eventse = {e,},cn. The sequence of stat€s, },,c, is a stochastic recursive sequence typically
given by:s,, 1 = ®(5,,¢,+1) for p > 0 and is called drajectory.

The global process execution [9, 60] described is relatedaainderlying uniformized Markov
chain. Its transitions are given ldyapplications over’. However, itis common to have global states
that are not reachable by any other global state througaiti@n.

SAN models havéXY #| reachable states, so the others are considered unreaghatidéstates in
the model. Establishing the global stdfe 0} as the initial global stat&,, we can have the reachable
state spacet’y! (or X'*') successively applying the defined transition functionsr &ur example,
X%® C X and the model isvell-formedexcluding the unreachable stdte 1}. A simple procedure
to find reachable states is to apply the notion of stochastiersive transition function mainly when
the reachability function is not explicit in the SAN formadstriptions.

Considerations about events firing inSAN

One intrinsic characteristic of structured formalismstsas SAN is the multidimensional state
space required. The global state of a system is establish#klrombination of local states of every
component in the model. Considering a finite reachable spateeY * containing global states com-
posed of automata local states, for each eveft the global transition functiof (s, e;) application
is given by an event; internally operating over each local stat€’ in 5§ = {sV); .. .; s(%)}, changing
or not the global state.

There are two ways that an automaton can change its local stath a synchronizing event
(certainly affecting other automata) and with a local ev&ath ways can be modeled with functional

ISAN descriptions can define tt! set through the insertion of a reachability functi&f (or a partial7**). The
boolean evaluation of this function, when applied to evéopgl state insideX, returns the reachable states¥r¥. More
details can be found in [5, 49] and some explanations on @e2tP.

22 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

dependencies based on different automata. An event activaiust verify all involved automata,
indicating that an event, € ¢ is enabled (or disabled) considering each local stétes 5% of each
automatonA® in the network.

Definition. The functionw(e,) = {A®},cy returns a set of automata directly affected by the
evente, € &.

Definition. The local transition function(s*), ¢,) returns a new local state resulting of the event
e, firing over a local state). The new local state returned can be the safheif ¢, does not affect
it.

Considering a local staté*) of automatonA®), which belongs taw(e,). The¢ function appli-
cation results in the staié®) means that the event is enabled for the local stéteIf the ¢ function
application results in the staté"), consequently the eveny is disabled for this local state.

Analogously, as mentioned in Section 2.3.2, given a glotades = {sV): ...; s(5)}, the global
transition function can be viewed generically®s, e,) = 7 if ¢, is enabled fog, or (5, ¢,) = §if
e, Is disabled fors.

Algorithm 2.1 Event firing verification procedure

1: A, — w(e,) { A, is the list of automatad® involved ine,}
2: {looking at each local state in}
3: forall s € 5= {sW;...;s%)} do

4: {automatonA™ involved in event,, }

5 if A® € A, then

6: r®) — (s e,)

7: { the evente, was not activated in the local staté’ }
8: if r#) = s then

9: { the global states did not change}

10: return®(s,e,) = §

11: end if

12 endif

13: end for

14: { the event was activated in all concerned automata, retexh giobal state }
15: return®(s,e,) =7

Algorithm 2.1 shows the firing verification procedure, wheaeh local state ifrelated to an au-
tomaton included ino(e,) is analyzed to fire an eveng. Considering the example in the Figure 2.2,
following we show some local transitions firings througlgenerating different global states.

Firing evente, from the global statg = {1(V); 0®)}:

2.3. STRUCTURAL REPRESENTATIONS 23

w(es) = {AD, AP}
10 e AW — ¢(10) ¢y)
0@ € A® — $(0?) ey)
New state: 7 = {01); 2(2)}

1)
2(2)

Firing evente, from the global staté = {1(V); 22}
w(eq) = {A®}

22 € A® _ $(2), ¢,) = 0@
New state: 7 = {1(1); 0}

Firing evente; from the global staté = {0(); 02}
w(es) = {AP}

0(2) - A(Q) — ¢<0(2)’ 63) — 0(2)
New state: 7 = {0(); 0@}

Focusing on the structural aspects of SAN models, we lookeagtobal states and the effect
of events over them. Note that, for event firing purposess ot explicitly considered the event
type,i.e. all events present a synchronizing behavior even for teesahere it involves just one
automaton. This means that the global state still changlependently of the events types defined in
SAN descriptions.

This chapter summarized the SAN formalism background reeéalethe understanding of the
solutions proposed in this thesis. Different SAN modelsdpsions are used as case studies for both
numerical and theoretical results and they are presentie iAppendix A.

24

CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

25

Chapter 3
Kronecker-based Descriptor Solution

The implementation of stationary and transient solverstmeal with a compact format through
algorithms well-fitted to a multidimensional Kronecker regentation of the infinitesimal generator
Q. This chapter discusses vector-descriptor product proesdor solution purposes. In practice,
the structured (Kronecker) representatiortb€an be obtained using different modeling formalisms
beyond SAN, for example, stochastic Petri nets (SPN) [1]vanea less procedural approach but
very modular description such as stochastic process aJd&#PA) [44, 45]. The tensor principle
[2, 26] recently has also been used in other stochastic iems [32, 45]. Thus, any structured
formalism with a tensor representatiang, SPN or PEPA, could employ the numerical algorithms
of this chapter without any loss of generality.

The background needed to understand the numerical cotibmboef this thesis to SAN, involves
concepts of classical tensor algebra (Appendix B) and 8pewtions of the SAN descriptor as an
algebraic formula (Sections 2.1 and 2.3.1).

3.1 Vector-Descriptor Product

Assuming that the underlying Markov chain is irreduciblel andoes not contain unreachable
states, for many applications it can be large and composethaf/ nonzero elements. Due to this,
the compact representation is a valid alternative, englairen larger systems to be described and
solved. In order to efficiently analyze Markovian modelsdzhen Kronecker products, three algo-
rithms for vector-descriptor product are proposed [6, 7§ aBd implemented as the core for iterative
solution techniques in different modeling formalisms. 3édéormalisms are integrated in different
software packages such as SMART (Stochastic Model Chedkiradyzer for Reliability and Tim-
ing) [22], PEPS (Performance Evaluation of Parallel Sysdefs, 49] and the PEPA Workbench
[41]. Concerning the descriptor structure, there are swlidpproaches proposed, varying from hy-

26 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

brid solutions for simulation and numerical analysis [Ibatgorithms adapted to alternative storage
structures [16, 52].

Despite the algorithmic differences, the approaches casub@marized in finding an efficient
way to multiply a (usually huge) vector by a non-trivial stture (adescripto) inside an iterative
method,e.g, Powermethod [59, 61]. The aim is to obtain the stationary distidour related to the
model. Old stochastic Petri net solutions [1] translatentioglel representation into a singular sparse
matrix. Obviously, this sparse approach is difficult to beptoyed for really large modelg(gmore
than 500 thousand states), since it usually requires tmagsaf a too large sparse matrexgmore
than 4 million nonzero elements). This is only possible witim-trivial solutions such as disk-based
approaches [27Dn-the-flygeneration techniques [28] or even parallel implementat[d, 31, 62].

The usual SAN solution is thghufflealgorithm [26, 37] and it deals with permutations of matsice
and tensor products. However, in an algebraic view, thisrdlgn can be applied to the analysis of
any Markov chain based on Kronecker products, independéotin the modeling formalism. The
vector-descriptor multiplication, in this case, corresg®to the product of a probability vectoy as
big as the model product state space, by a descr{ptora Kronecker representation. Therefore, by
a simple distributive property, vector-descriptor pracalgorithms can be viewed in a simpler format
as a sum of’ + 2F products of the a vectar by a tensor product term composed Rymatrices
(Equation 3.1):

K+2F K
> <U x [@ Q;@D (3.1)
j=1 k=1
The research related to the numerical solutions of stradthuge Markov models aims to speedup
the basic operation x [@le Q§k)] . In this section, classical algorithms used to compute thkim
plication of a vector by Markovian descriptors are presgygbowing their advantages and limitations
when tensor structures are used.

3.1.1 Sparsesolution

The sparse solution is the most intuitive method to solverthpping of the Kronecker structure
into a matrix containing only nonzero elements multipligdebprobability vector. The numerical
algorithm is called in this thesis tHgparsealgorithm. It aims to consider a tensor product tefm
explicitly as a single sparse matrix, multiplying it by a gust state space sized probability vector.
This means that an evaluation of the algebraic expressanis ® a matrix of size equal to the product
state space.

Considering a tensor produ@t of & matricesQ*), each one of dimension,, and with nz,
nonzero elements, th8parsealgorithm generates element by element of one large m&lrix

3.1. VECTOR-DESCRIPTOR PRODUCT 27

om o® QK-2) Q-1 Q)

(I BHAPH] o) -

\ Tensor Product term — K matrices |

SPARSE method

v Sparse matrix2 generated

=

——

ﬁ:ﬁ

——

ﬁ:ﬁ

Figure 3.1:Sparsanethod illustration

@K oM with order]_[f:1 nk. Then, the corresponding elements of veetgwith dimension given
by Hszl ng) are multiplied by the sparse matr@@, storing the results in the probability vector
Figure 3.1 shows an illustration of tf&parsemethod where the nonzero elements in the magix
are represented generically by the small black circlesemthtrices.

This approach has storage disadvantages but the timeeafficis less intuitive, because the full
matrix storage is not necessary if one can generate eaclemopntQ as fast as it is needed in
the multiplication. According to the classical tensor proddefinition (refer to Appendix B) this
operation require&” — 1 additional multiplications to generate a nonzero element

Defining ;.. k) as the set of all possible combinations of nonzero elemérleanatrices from
QW to Q)| the cardinality off;), i.e., the number of nonzero elements @ is given by:
Hle nz. Additionally, theSparsemethod needs the information of the dimension of the stateesp
corresponding to all matrices after th& matrix of the tensor product, calledright, (numerically
defined bnyikJrl n;). We also have the analogous conceptdft, which is numerically equal to

28 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

Algorithm 3.1 Sparsealgorithm -7 = v x @&, Q%)

1. T=0
2: forall iy,... ik, j1,...,jk €0(1...K) do
33 a=1
4: base;, = basey,; =0
5. forall k=1,2,...,Kdo

) (k
6 a=axXqg g,
7 base;, = base;, + ((ix — 1) X nrighty)
8: base ;s = baseyys + ((jr — 1) X nrighty)
9: end for
10: 7[baseyy] = w[basey] + v[base;,| X a
11: end for

Hf;f n;. TheSparsemethod is presented in the Algorithm 3.1.
The Sparsecomputational cost considering the number of floating poiattiplications is given
by (Equation 3.2):

K
K x ank (3.2)
k=1

However, in this algorithm, all nonzero elements@fare generated during the algorithm ex-
ecution. Such elements generation represéfts- 1) x Hlenzk multiplications that could be
avoided by generating one (usually huge) sparse matrixote 1;I11esef[f:1 nz, nonzero elements. It
would eliminate the line8 and6 from theSparsealgorithm and reduce the number of floating point
multiplications to just (Equation 3.3):

[[n= (3:3)
k=1

This option allows the&Sparsealgorithm to be very time-efficient compared to specialiaégb-
rithms for the treatment of Kronecker products, but potdlytivery memory demanding due to the
storage of a, potentially huge, sparse ma@ixAnother interesting approach to the sparse algorithm
is to keep the nonzero elements generation inside the #iggribut factorizing previous calcula-
tions [16]. Note that all combinations of elements, of eacirm of the tensor product, have multi-
plications in commoni.e., the nonzero elements can be generated considering pattiplication
results. Such solution can reduce the complexity in termsuafiber of multiplications applying an
algorithm to exploit levels of factoring, reusing previatgculations.

In the context of this work, the sparse approach to be coreideill be the time-efficient ver-
sion,i.e., the variant with the previous generation and storage ofeanelements of). Such variant
demands a smaller number of floating point multiplicatidéguation 3.3) than the traditional spe-
cialized algorithm for tensor products, but it stores a spanatrix witthK:1 nz, honzero elements.

3.1. VECTOR-DESCRIPTOR PRODUCT 29

3.1.2 The memory-efficientShuffle algorithm

A structured view of infinitesimal generators represente&imnecker algebra leads us to a spe-
cialized algorithm which deals with building blocks of nena elements, performing shuffling op-
erations in the probability vectar. The immediate effect of using tensor properties to optntie
numerical solution is the reduction of the memory spent,imgthis bottleneck from the infinitesimal
generator to the probability vector.

) @ (K~2) (K-1) (K)
Q Q Q Q Q

-(BF BR-FR BB ER-

| Tensor Product term — K matrices |

SHUFFLE method
v oW Lright

I ® 0P @ Lyignt
®

ST irin .

VK2]n,lcft [Q<K71) &]n,riyht

Figure 3.2:Shufflemethod illustration

The basic principle of th&hufflealgorithm is the application of the decomposition of a tenso
product?7 in the ordinary product of normal factors property [37] (&tjan 3.4):

T=0W0®g.. 9o&E-1Dgo¥ =

OV @I,y ® ... @ Ly, @L) X [, ®OV®...® Ly, ® I (3.4)

X

(I, @1,,®.. @ 0E VeI,) X (In®IL,®... .01, &Q¥)

30 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

Hence, theShufflealgorithm consists in multiplying successively a veatdsy each tensor term
decomposed in normal factors. More preciselyis multiplied by the first normal facto@"
I,..ight,, then the resulting vector is multiplied by the next dng s, ® oW Iright,, and so on,
until the last multiplication byl ;. ., ® Q).

Internally to each normal factor, the multiplications aomd using small auxiliary vectors called
Zin and zy,, in the Algorithm 3.2. These small vectors store the values tf multiply by thek!”
matrix of the normal factor, and then store the result in trebability vectorr (Figure 3.2). The
vectors dimensions are given by the ma@¥’ dimension in each normal factor multiplied.

Algorithm 3.2 Shufflealgorithm -7 = v x @ Q®)
1: forall k=1,2,..., K do
2: base =0
3. forallm=0,1,2,..., nleft, — 1do
4 forall j =0,1,2,..., nright, — 1 do
5: ndex = base + j
6: forall [=0,1,2,...,ny — 1 do
7
8
9

zin|l] = vlindex]
index = index + nrighty,

; end for
10: multiply Zow = 2in x Q¥
11 ndex = base + j
12: forall [=0,1,2,...,n, — 1 do
13: vl[index] = zoul]
14: index = index + nrighty,
15: end for
16: end for
17: base = base + (nright, X ny)
18: end for
19: end for
200 T=v

Generalizing the multiplication of a vectorby the k! normal factor, it consists ishufflingthe
elements ob in order to assembleleft;, x nright, vectors of sizey,, multiplying them by matrix
Q). Thus, assuming that matri@® is stored as a sparse matrix, the number of operations needed
to multiply a vector by thé&! normal factor is:nleft, x nright; x nz,, wherenz, corresponds to
the number of nonzero elements of #& matrix Q%) of the tensor product term.

Considering the number of multiplications of all normalttas in a tensor product term, the
Shufflecomputational cost to perform the basic operation (mudigtion of a vector byl') is given
by [37] (Equation 3.5):

3.2. THE HYBRID SPLIT ALGORITHM 31

K K K
Nz

Z nleft, X nrighty X nz, = an X — (3.5)

k=1 k=1 1 |k
Another feature of th&hufflealgorithm is the product optimization for functional elem®i.e.,
the use of generalized tensor algebra properties and msteordering [37]. All those optimizations
are very important to reduce the overhead of evaluatingtiomal elements, but such considerations
are out of the scope of this thesis. Our focus is the vectscig@or considering the tensor terms are
described with classical tensor algebra (more detailstatsqoroperties are found in the Appendix B).

3.2 The Hybrid Split Algorithm

SAN models of practical applications are often sparse. B\ge the tensor sum in a descriptor is
intrinsically very sparse due to the normal factors strieetifhe dependent behaviors represented by
tensor products let this part of the descriptor also quiéess These characteristics lead us to propose
a hybrid approach calleSplitalgorithm [24] that takes advantage of matrices sparsitylmoed with
the advantages of the classical tensor product decomposgitnormal factors.

The additive decomposition property, applied to any tepsoduct term7, states that a term can
be decomposed into an ordinary sum of matrices (composea®giogle nonzero element). Noe
that it is also the principle of sparse techniques.

ASSUMING (i, ... ix_1,j1,...jx) the matrix of dimensiorﬂfi1 n; composed by only one nonzero
element which is in positiowy, . .., ik, j1, ..., jx and itis equal tq_[f:1 qﬁf?jk, the additive decom-

position property is given by (Equation 3.6):

T=0Wg®Pg.. oo«DggW =

S S S S (i) © - ®d00)
(k) (k)
(4,3) ij "

The Split method proposes a combined solution using an additive psof@ a given set of

matrices inside a tensor product teffm performing the shuffling operations for the other matrices
Hence, each tensor product of matrices can be partitiorresp{ited) in two different groups: the
first one with the most sparse matrices; and the second ohdlvweitmatrices with a larger number of
nonzero elements. This is possible when permutatiohmatrices are allowed.

(3.6)

whereg,. . is a matrix of ordem, in which the element in rowand columnyj is ¢

A Sparselike approach could be applied to the first group/oimatrices generating new factors
calledAdditive Unitary Normal FactorAUNFs). An AUNF presents a scalar valueassociated and

*Itis out of the scope of this thesis to analyze permutatiotsthe effect of them for th8plitalgorithm.

32 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

| Splito | Tensor Product Terd = ®X QW) |
7
0 oM & 00 g ... @ Q¥ g QE-2 g QK- g Q&)
Shuffle
7
1 oM ® Q¥ ® ... ® QEY g QKD g QD g QU
Sparse Shuffle
7
2 o g 00 g ... @ QK g QK2 g QE-D & Q&)
Sparse Shuffle
7
K-2 Q(l) ® Q(Q) ® ... ® Q(K—3) ® Q(K—Q) ® Q(K—l) ® Q(K)
Sparse Shuffle
7
K-1 ol ® Q¥ © ... © QK g QKA g QKN g Q®
Sparse Shuffle
7
K QM ® Q¥ © ... ® Q¥ o QKA g QKN g QW
Sparse

Table 3.1:Splitas a generalization of traditional algorithms

indexes (line and column) related to the combination of thezero elements of each matrix in the
group. The scalat is the result of this combination (or matricaggregation computed using the
nonzero values found in the matrices.

Each one of thosAUNFs should be tensorly multiplied by the second group of megrigsing a
Shufflelike approach. Th&hufflealgorithm is applied normally in this subset of matricessidaring
that the probability vector to be multiplied, has already the information related toABNF. The
shuffling operation is applied to eadltUNF generated from the first group of matrices. The ideais to
split the tensor terms in two sets of matrices treating them in tifferdnt ways. Table 3.1 presents
the general idea dplitgraphically. The index of the matrix chosen for delimitihg tend of the first
set of matrices is calledut-parameterw. It is possible to observe that tigparse(c = K) and the
Shuffle(lc = 0) methods are particular cases of Sit algorithm.

The Figure 3.3 shows a tensor product termioimatrices indicating &ut-parameters after
the Q-2 matrix. The sparse part will generate the combinations @fzemo elements of each
matrix in this subset, calculating thdJNFs. Supposing we have three matrices in this part with
nzy = 2, nzy = 2 andnzz = 1 respectively §z; is the number of nonzero elements of each matrix).
Consequently, the combination of these elements gendmate8UNFs ([[_, nz; = 2 x 2 x 1) and

3.2. THE HYBRID SPLIT ALGORITHM 33

oW o® QK-2) QE-1) oF)
gcr o/ | .o .
| |1 |
SPARSE PART SHUFFLE PART

Tensor Product term — K matrices

SPARI?E2 P,?.I?T SHUFFLE PART
- 1
®i:1 Q Q(K—l) ® I Uy
[[J
o
o | | e
Vg X =1
° oo

~ RITE - B

Figure 3.3:Splitmethod illustration

their indexes in the implicit matrix (correspondent to tparse part) are calculated based on the lines
and columns of each nonzero element considered. The shafflendicated at right in the Figure 3.3

is applied to eaclWUNF of the sparse part individually. This means that the MMdNF is multiplied

by the vectory,, then the resultant vecter, is used as input to the shuffle part, accumulating the
result on the vector. After that, the secondUNF is multiplied by the vector,, and so on, until the
last scalar in the sparse part.

Algorithm 3.3 defines formally the steps of the splitting gedure using the notation for the
input vector and;, the auxiliary vectors in the multiplication. It consiststite computation of the
scalar element of eachAUNF in 6(1...0) by multiplying one nonzero element of each matrix of
the first set of matrices fro@") to Q@ (lines2 to 9). According to the elements row indexes used
to generate the scalar elementa contiguous slice of input vector, calledv,,, is taken. Vectow,,
of size nright, (corresponding to the product of the order of all matricésrahecut-parameter of
the tensor product term) is multiplied by the elementines10 to 11 perform the multiplication of
the scalar element composing theNF for each position i, then finishing the sparse part.

The resulting vector also;, is used as input vector to ti&hufflelike multiplication (lines13 to
31) by the tensor product of the matrices in the second set afigeat(fromQ+1) to QX)) At the
end of the Shuffle part, the vectoobtained is accumulated in the final vectaflines32 to 34). Note
that thecut-parametel is pre-defined before running the algorithm, which meansroag define

34 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

Algorithm 3.3 Splitalgorithm -7 = v x @&, Q®)

1. T=0
2: forall iy,...,45,51,...,Jo €0(1...0) do
3 a=1
4: base;, = basey,; =0
5. forall k=1,2,...,0do
6: a=axX q(@ .
(ikJ%)
7: base;, = basey, + ((i, — 1) X nrighty)
8: basey; = baseyy + ((Jx — 1) X nrighty)
9: end for
10. forall[=0,1,2,..., nright, —1do
11: vin|l] = v[base;, +1] X a
12: end for
13: foralli=o0c+1,..., K do
14: base = 0
15: forallm:0,1,2,...,%ﬁ;—1do
16: forall j =0,1,2,..., nright; do
17: ndex = base + j
18: forall {=0,1,2,...,n, —1do
19: Zin|l] = Viplindex]
20: index = index + nright;
21: end for
22: multiply Zow = Zin x QW
23: ndex = base + j
24: forall [=0,1,2,...,n, —1do
25: Vinlindex] = zgu]l]
26: index = index + nright;
27: end for
28: end for
29: base = base + (nright; X n;)
30: end for
31: end for
32:. forall1=0,1,2,..., nright, — 1 do
33: m[basepy + 1| = m[baseoy + 1] + vinl]
34: end for

35: end for

3.2. THE HYBRID SPLIT ALGORITHM 35

this division point considering the memory available torstand manipulate thAUNFs as well as
use the characteristics of the tensor product terms foomsito decide the bestit-parametein each
situation.

The hybrid solution, depending on the sparsity of descritwan do better tha®hufflealgorithm
since most matrices can have few nonzero elements whichrhaspact in the number cAUNFs.
Shufflepays an additional overhead in time for the efficient savingpace because it deals with
complex indexes calculations. The next section shows thgpatational costs of th8plit algorithm
considering also some optimizations. Following, we shasuthmerical results of th®plitalgorithm
application in SAN descriptors, presenting an algorithmsiampling a well-fittectut-parameterr
for each tensor product term.

3.2.1 Theoretical contributions

This section presents the computational cost in number diiphaations (Equation 3.7) for the
Split algorithm, which is also considered a theoretical contrdmuin thesis, since the operations
involved are reduced when compared to 8taufflealgorithm computational cost (Equation 3.5).

The computational cost is calculated taking into accoumtntiimber of multiplications performed
to generate each scalar element composing@NF (o — 1 multiplicationg, plus the number of
multiplications of the scala# by each position value of the vectoy,. There is also the cost to
multiply the values in the input vectar,, by the tensor product of matrices in tBaufflelike part.

(Hn> [<o—_1>+ (I n) n (T xS Zz)] -

i=o+1 i=o+1 i=o+1
In practical implementations of vector-descriptor mdigation algorithms, improvements can

also be done to speedup the execution. These optimizationst@ange significantly the theoretical
computational cost presented in the Equation 3.7.

Regarding the&shufflemethod, there is an optimization on the way of handling idgmatrices.
Those matrices do not need to generate normal factors, lseeg identity matrices, they generate a
normal factor that is also an (huge) identity matrix itsdlhe computational cost is clearly reduced
in the Shufflealgorithm execution when using this solution. It corregito transform the number
of floating point multiplications equation for ttf&hufflealgorithm (Equation 3.5) to Equation 3.8:

K K N
i : 3.8
Lnr 25, @9
if fQW#AId
This improvement suggests the same skipping-identitieexaation to theShufflelike part (ma-

36 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

trices Q(+1) to QX)) of the Split (Algorithm 3.3) identifying if the matrix indexed by varibi of
the algorithm Q) is not an identity matrix, adding to the cost multiplications only for these
ones. Analogously t&hufflealgorithm, Equation 3.7 will be rewritten changing tBkufflepart cost
accordingly too. The resulting number of floating point multiplications tbe Split algorithm will
be (Equation 3.9):

o K K K
nz;
(E nzl> (c—1)+ <i:111m> + 1:111 n; X i;I o (3.9
iffQWAId

Usually the tensor product terms of a SAN model are very spéasfew thousands nonzero
elements). The only cases where a more significant numbemaziano elements are found, are those
when we are dealing with a tensor product term with many itdentatrices. It is important to recall
that to eactAUNF, the scalar is computed as the product of one single element of eachxmatri

The second optimization is the precomputation of these eranglements and their storage. This
optimization was already largely studied in [16]. It resutbnsequently in a reduction of tisglit
algorithm computational cost, similar to that one presgmeSection 3.1.1 (Equation 3.2) regarding
the computation of nonzero elements. Hence, the final defndf the number of floating point

multiplications for theSplitmethod is no longer defined by Equation 3.9, but as (Equatib®)3

o K K K Nz
<:Zl_[1 nzl> (ZI:L nl> + Z-I:an X i;I o (3.10)
if fQW#Id

For very sparse tensor products the best cut-parameiemts to a pure sparse approach mainly
because feWAUNF will be generated avoiding the shuffling operations. Thehwoeét obviously, is
much more effective if the nonzero elements do not have teebemputed at each vector multi-
plication. Therefore, th&plit algorithm must balance together the computational costrimg of
multiplications and its memory needs consideringdiescriptorplus the size of the new structures
such as thé&UNF. The next section presents the practical results obtausdg the equations above

to demonstrate the gains achieved.

3.2.2 Practical contributions

The collection of classical and practical [3, 34] examplapgendix A) counts with a vari-
ety of tensor product formations, since semantic aspeldw alifferent automata interconnections
through more or less synchronizing (or local) events. Oegpie significant computational cost re-

3.2. THE HYBRID SPLIT ALGORITHM 37

duction given by functional transitions, functions are mandatory when modeling or solving with
SAN. Models with functions are converted to an equivaleptesentatiohusing only synchronizing
events [13].

The performance results were collected running the algorimplementation, varying theut-
parametero from Shuffleto Sparseon a 3.2 GHz Intel Xeon under Linux operating system with 4
Gb of memory. The prototype module is inside P S200Znvironment and was compiled using
theg++ compiler with optimizations{03).

All tensor product termg of each Kronecker descript@ were executed in all possibtait-
parameterss, collecting time outputs for 100 runs (samples). The reswire obtained in time
intervals with 95; of confidence. Th&plitalgorithm executions times presented in the tables are the
sum of the average best execution times obtained for easbrtproduct term composing, consid-
ering their different cut-parametersand av number of samples, according to the Algorithm 3.4.

Algorithm 3.4 Tensor terms execution times forasampling
1: forall 7 € Q do
2: forall 0 € Ndo
3 Runr samples collecting execution times
4 end for
5: end for
6: Calculate the confidence interval for the execution times
7
8
9

. ldentify the fastest execution tintg within the confidence interval,
: forall o0 € N do
- take execution time,;
10: verifyif t, >t thendiscardt, and go to nexv;
11: end for
12: for all ¢, non-discardedo
13: markt, with the less memory needed,;
14: end for
15: forall 7 € Q do
16: assign the market to o7;
17: end for

Each tensor terrd” received oneut-parameteir+ after the execution of Algorithm 3.4. When
o7 requires an unstructured part in the descriptor the praeeduUAUNFS generation is activated
to store the elements and their indexes. All other iteratiarthe method needed to solve the model
descriptor are executed using and data structures related to this choice.

All tables in this section show the results obtained for tire¢ methodsShuffle SplitandSparse
analyzing each one in three columns, representing the f@et $n seconds per iteratiosgc), size

TThe impact analysis of this translation to obtain the nugasolution is out of the scope of this work.

38 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

in Kb and the computational cost in floating point multiplicasafpm) following the equation 3.10.
The column named’ stands for the product state space (the dimension of thepiidly vector).

We also preserve the predefined order of automata given bytuel description, do not per-
forming automata permutatiohsefore runningsplit In such way, it is possible to say that t8plit
results presented here tend to force the trade-off betweenand memory efficiency towards time
savings. The opposite choice (memory savings) would fdre&Split method to obtain practically
the same efficiency of th&hufflealgorithm, known as a memory-efficient solution.

Resource Sharingnodel results

This section evaluates tiieesource SharinAN model results (see Figure A.2). Table 3.2
shows different network configurations namedPa® indicating the numbepP of processes angt
of resources. Note that tHpm columns remains the same f8plit and Sparsecolumns, so due to
tensor terms sparsity this cost is the same for both appesaaid better than the pure application of
Shuffle

Models Py Shuffle Split Sparse
(P_R time (s) | size (Kb)] fpm time (s) | size (Kb) [fpm time (s) | size (Kb)| fpm

10_16| 17,408 0.04851 11.25| 1,003,520} 0.01550| 2,018.25| 327,680| 0.01636| 5,131.25| 327,680
10 20| 21,504| 0.06211 13.75| 1,249,280} 0.01910| 2,373.75| 409,600| 0.02009| 6,413.75| 409,600
11 11| 24,576| 0.07477 8.94| 1,531,904 0.02304| 2,615.42| 495,616|| 0.02448| 7,752.94| 495,616
11 14| 30,720|| 0.09387 11.00| 1,937,408| 0.02906| 3,524.13| 630,784| 0.03187| 9,867.00| 630,784
12 12| 53,248 0.17808 10.50| 3,637,248 0.05793| 5,674.31| 1,179,648|| 0.06897| 18,442.50| 1,179,648
13 13| 114,688 0.42021 12.19| 8,519,680 0.15609| 10,859.88| 2,768,896| 0.20394| 43,276.19| 2,768,896
14 10| 180,224 0.72949 10.50| 14,221,312|| 0.27686| 16,654.25| 4,587,520|| 0.34378| 71,690.50| 4,587,520
14 11| 196,608 0.80280 11.38| 15,597,568|| 0.30455| 18,316.41| 5,046,272|| 0.37499| 78,859.38| 5,046,272

Table 3.2:Resource Sharin§ AN model results

The maximum resource needed in memory, in these exampkeshisved by the last model with
almost~19 Mb used. The reduction of the time spent per iteration @egbwith theShuffleresults
shows the improvement obtained using the flexibility of 8pdit algorithm. TheSplit method is two
times faster solving this models against 8teufflewhich is five times less memory consuming.

Dining Philosophersmodel (with resource reservation)

This section presents ti@ning PhilosophersSAN model results (Figure A.4). Table 3.3 shows
the results for’ philosophers in the network. The model analyzed supposesarce reservation

iThe Shufflealgorithm implements automata permutations to optimizesthlution of descriptors mainly those de-
scribed with generalized tensor algebra [37].

3.2. THE HYBRID SPLIT ALGORITHM 39

by the philosophers meaning each autom@ta® has three states and consequently the matrices
composing the descriptor have a fixed dimensigni- 3.

Models Py Shuffle Split Sparse
(K) time (s) | size (Kb)[fpm time (s) | size (Kb)| fpm time (s) | size (Kb) [fpm
6 7291 0.00116 1.69 17,496(| 0.00058 17.09 13,365 0.00042 92.81 5,832
7 2,187 0.00421 1.97 61,236| 0.00241 47.52 50,787| 0.00153 320.91 20,412
8 6,561 | 0.01447 2.25| 209,952| 0.00477| 242.84 76,545 0.00537| 1,095.75 69,984

9 19,683|| 0.04639 2.53| 708,588| 0.01632| 1,106.91| 236,196/ 0.01740| 3,693.09| 236,196
10 59,049 0.15348 2.81| 2,361,960|| 0.05753| 4,035.28| 787,320| 0.06492| 12,304.69, 787,320
11 177,147|| 0.53765 3.09| 7,794,468)| 0.25230| 7,387.28| 2,598,156\ 0.29316| 40,599.28| 2,598,156

Table 3.3:Dining Philosopher$SAN model results

Note that thpmneeded in each method does not mean that a method will be fiasteconds,
it is also related also to the access of structures in menuwagrding to thecut-parameters of each
tensor term. A structured descriptor exploitation fordes algorithm to access more positions in
memory to update indexes and store results. However it that this is dependable of tensor term
formation,i.e. the number of non-zero elements in each matrix and the nuofbdentity matrices
in the term define the number of scalars in the sparse parhandiension of the structured part.
The Splitalgorithm presents a time efficiency superior than$parsemethod and it means that
sometimes structured behavior obtained with more shufliperations can bring better performance
not only regarding memory savings as expected. For the nvattelK’ = 11 is spent~7 Mb of extra
memory to obtain thé&plit performance as close as possible to 8marsemethod computational
time.

First Available Servemodel results

This section presents the results for Hiest Available Serve SAN model (Figure A.6). Table 3.4
shows another example with better performance in time egending more memory tha®huffle
The models variations are indicated by the numieof servers in the network. This model is
composed by sparse matrices and identities with dimensien 2 in the tensor terms. Considering
that this model presents many synchronizing events, itmsnson the insertion of identity matrices
in the tensor terms, indicating the events has no effectamaltated automata. The incidence of these
small identity matrices in the sparse part defined bydineparameter does not compromises the
memory a lot.

The trade-off time-memory brings a new numerical approaxhaf faster solution of vector-
descriptor products. For the model witti = 18 is spent an extra memory 6¥17 Mb to obtain
more time efficiency in th&plit method. The computational time gains are notable when coedpa

40 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

Models Py Shuffle Split Sparse
(N) time (s) [size (Kb)| fpm time (s) [size (Kb) | fpm time (s) | size (Kb) [fpm
12 4,096 || 0.02110 4.05 368,640|| 0.00330 72.90 71,136|| 0.00349 900.02 57,342
13 8,192 0.04832 4.70 851,968|| 0.00675 279.06| 134,240\ 0.00711| 1,924.67| 122,878

14 16,384 || 0.10892 5.39| 1,949,696/ 0.01313| 1,062.34| 278,976| 0.01464| 4,101.36] 262,142
15 32,768| 0.24731 6.13| 4,423,680|| 0.02843| 1,287.49| 579,360| 0.03219| 8,710.10| 557,054
16 65,536|| 0.55665 6.91| 9,961,472 0.06395| 2,118.83| 1,200,640/ 0.07764| 18,438.88| 1,179,646
17 131,072|| 1.25347 7.75| 22,282,244 0.14731| 6,701.31| 2,514,336|| 0.18160| 38,919.71| 2,490,366
18 262,144 2.85996 8.63| 49,545,224 0.34844| 16,907.83| 5,295,968|| 0.40969| 81,928.59| 5,242,878

Table 3.4:First Available ServelSAN model results

to theShufflealgorithm, even spending more memory unstructuring the SI&striptor withSplit.

Ad Hoc Wireless Sensor Networkodel results

This section presents the results for thd Hoc Wireless Sensor NetwoBAN model (Fig-
ure A.7). The numerical results were obtained for this mad@énding the number of automata
N (nodes), then also extending the number of synchroniziegtsuo treat as tensor product terms.
Table 3.5 shows that as the numbBénf nodes in the mobile chain increases, so does the compu-
tational time to solve, as well as the memory needed. SireBhhfflealgorithm is memory-efficient
compared to the other two approaches, consequently it mppesfextra operations to multiply the
sparse matrices in a tensor term. It is showed thaStmgfflemethod is slower than the other two

methods in the models presented. These methods, on thaigoane very time efficient despite their
need for memory consuming.

Models Py Shuffle Split Sparse

(N) time (s) | size (Kb)] fom time (s) | size (Kb) | fom time (s) [size (Kb)] fom
6 324 0.00075 1.52 7,344]] 0.00013 5.30 1,798] 0.00025 18.93 1,114
8 2,916 0.00633 2.25 93,312| 0.00071 103.22 14,332|| 0.00163 219.88 13,928
10 26,244| 0.07454 2.99 1,084,752| 0.01307 170.11 185,364| 0.01520 2,510.61 160,488
12 236,196] 0.87020 3.72| 11,967,264 0.18774] 1,461.79] 2,230,740| 0.20951] 27,513.35 1,760,616
14 | 2,125,760]| 9.35304 4.46| 127,545,900 1.75147| 13,536.58 22,674,856| 2.07020| 292,060.08 18,691,560
16 | 19,131,900| 96.44355| 5.19| 1,326,477,700] 17.99368| 118,103.25 235,251,512| 21.02443| 3,028,726.82 193,838,184

Table 3.5:Ad Hoc Wireless Sensor NetwdBAN model results

For small models{¥ < 12 nodes) the computational time and memory efficiency areoredde
enough to be dealt regardless of any algorithm in virtuallymachine. It demands few more thag
Mb in the sparse alternative and it takes less thd&00 milliseconds per iteration for all algorithms.
However, even in these small examples we noticed the quipeessive memory efficiency of the
Shufflealgorithm that keeps the memory needs insignificant eveqdie large models.

3.2. THE HYBRID SPLIT ALGORITHM 41

The remarkable result in Table 3.5 is the better time effwyjehat beats even the sparse approach.
Although, for each tensor product, the sparse approachd dmilfaster for most cases, terms with
many identity matrices could have a better time efficiencyffleor Split algorithms. Since a
SAN model is composed of many tensor product terms sfithrseor ultra sparsé matrices,Split
is the best option in tensor product terms where the spapm®agh could be faster, but too memory
demanding.

The largest modelN = 16) shows thatSplit is around 3 seconds faster th&parse with a
memory needed of little more than 100 Mb, rather than 3 Gbegég the sparse solutione., Split
takes for this case almost 30 times less memory and stillorgs the time efficiency compared to
Sparse It is important to observe, as well, that this model has aswarable product state space
of more than 19 million states. Such large model could belyé&aractable if a time and memory
efficient solution is not found.

It is also noticeable that the number of floating point muitgtions computed to each algo-
rithm is not relevant to indicate a better performance iretsmce observations indicate that alloca-
tions/deallocations have considerable influence on thaidttigns performance.

Master-Slave Parallel Algorithrmmodel results

This section presents the results for khaster-Slave Parallel Algorith'SBAN model (Figure A.8).
This model was extended to run experiments for different lmens of V' slaves and the buffer was
fixed with forty positions { = 40) meaning that the tensor terms are composed by matrices with
dimensions given by, = 3 (representing = 1....S slaves) and a matrix with dimensiony = 41
(the buffer with an empty position).

Models v Shuffle Split Sparse

(N) time (s) | size (Kb)] fom time(s) | size (Kb) | fom time (s) | size (Kb) | fpm

5 29,889 0.0983 16.63 1,797,228 0.0223 1,447.69 399,036 0.0254 5,229.25 333,608
6 89,667 0.3507 20.31 6,488,829 0.0931 3,183.29 1,742,271 0.1087 18,531.62 1,184,724
7 269,001 1.3178 23.35 22,488,916 0.3713 9,446.93 6,555,978 0.4039 64,222.72 4,108,760
8 807,003 4.5805 26.43 76,534,019 1.2393 28,236.07 23,037,480 1.3487 231,315.37| 14,802,495
10 7,263,030/ 50.0752 32.43| 847,176,190 12.9219| 240,596.27| 246,651,139| 13.9086| 2,363,273.71 151,247,442
12 65,367,200 535.2877 38.54| 9,137,063,300| 135.9426| 2,282,495.12 2,787,370,431] 147.5943| 26,195,236.61 1,676,492,676

Table 3.6:Master-Slave Parallel Algorithi8AN model results

Table 3.6 shows that th®plit algorithm once again demonstrates a better time efficiemela
results of all model extensions. In fact, it presents, inegah results a little faster than the sparse
approachi.e., roughly around 10% faster in larger models.

§Sparse matrices are classified due to their level of spasgparse ultra sparseor hyper sparsén [16].

42 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

However, the memory savings obtained in this second setashples seem less impressive than
those obtained for th&d Hoc Wireless Sensor Netwonkodel extensions. Th8plit method still
gives a considerable reduction for the huge last exantple (12) bringing the memory needs from
nearly intractable 26 Gb in sparse approach to large, betiaiode 2.2 Gb. Once again, it is important
to keep in mind that we are dealing with a model with 65 millgiates of product state space, and
then some significant amount of memory and computation& éire expected to achieve a stationary
(or transient) solution.

3.3 Conclusions and Perspectives

The main contribution of this work is the proposition of a flég hybrid vector-descriptor algo-
rithm. The application of th&plit algorithm on SAN models of real problems [24] showed a good
tradeoff between memory and time efficiency when compardtiddraditionalSparseand Shuffle
approaches. Considering that we need many iterations caleé the final probability vector, the
memory and time spent surely can be evaluated and balanceddawy to the available time and
computational resources. Nevertheless, it is also shoatrttileSplit algorithm is flexible enough to
deliver in extreme cases at least the same time efficiencyeeSarseapproach, or, alternatively,
the same memory efficiency as tBhuffleapproach. For all experiments tbet-parameter of each
tensor term is chosen by running in the first iterations, seimellations of different, then collecting
the best times obtained in a given confidence interval, demnisig also the memory needed.

In the Section 3.2.2 is presented the Algorithm 3.4, wheesdoice of the division point in
each tensor term (choice of the cut-paramefecan be made before starting the iterative method,
running some sampling iterations for each term. This procedan have no relevant computational
cost considering the gains we can achieve after running nt@rations until the convergence for the
solution. The sampling can be set up to reject runs cleatljeasible such as entirely sparse due to
memory constraints, or entirely structured if many idgntiatrices in the term. The identities placed
for example in the sparse part only generate more AUNFS te,stdhile in the structured part they
are certainly skipped.

Note that the research for an heuristic to automaticallyoskothecut-parameterand a well-
suited permutation of matrices, for each tensor produd, ésnsiderable research challenge. This
is not a trivial task, due to the tensor product term fornmraénd intrinsic matrices details such as
dimension, total number of nonzero elements and computicost in terms of multiplications.
These parameters opens the possibility of a thorough asalythe related theoretical computational
cost. Since tensor terms can be differently formed due tsthetured models we deal with, the
performance can also be very dependent on the choice ofaealaced in each group. The tensor

3.3. CONCLUSIONS AND PERSPECTIVES 43

product terms that do not have too many identity matriceapddentities at all, can be multiplied in
a sparse fashion.

However theShufflealgorithm deals better with terms containing many idesgibecause it simply
jumps the execution for the next normal factor to multiplANs are structured models composed of
tensor product terms with a reasonable number of identitirioes, i.e. are the most commonly
encountered ones, tending to push 8mit algorithm to the structured solution, but if the memory
available is not a problem, it is better to treat them in a spavay as much as possible. Note that
models with multiple synchronizations among automata terabtain proportionally multiple tensor
terms to treat, precisely two per event. The occurrence edelevents will determine the matrices
sparsity and the number of identities to be splitted.

The Table 3.7 exemplifies the computational resources gpehthe gains obtained after finding
well-fitted cut-parametergor each tensor term in the descriptors. All models preskentaverge
with different number of iterations. The previous sectibiowed the computational time gains and
memory consumption for one single iteration. However, wihealing with practical complex models
to evaluate in real-life projects they demand at first theiciidn of the computational time.

Models Total iter. . Shuffle - . Split _ . Sparse -
time | size time | size time | size
Dining philosophers (10 650 | 1.66min.| 2.81Kb| 0.62min.| 3.94Mb| 0.73min.| 12.02 Mb

Ad hoc WSN (14) 78,029| 8.45days| 4.46 Kb | 1.58 days| 13.22 Mb || 1.87 days| 285.21 Mb
Master-Slave (12 2,568| 15.91 days 38.54 Kb || 4.04 days| 2.18 Gb|| 4.39 days| 24.98 Gb

Table 3.7: Iterative numerical solution gains

As we can see in Table 3.7 the increasing of memory to solvestaaften represents a gain in
computational timei.e., not in seconds but sometimes in days of processing. ThéNastxamples
(the Ad hoc Wireless Sensor Netwarlodel with 14 nodes and thdaster-Slave Parallel Algorithm
model with 12 slaves) are distinct SAN models presenteddarstictions 3.2.2 and 3.2.2 respectively.
Both represent real applications modeled through SAN gesguns and show the expressive gains
obtained in terms of processing time using 8@itapproach.

Additionally, it is also possible to foresee an even more glemanalysis that considers not only
a sequential version of th8plit algorithm, but also parallel implementations. For the sedjal
version, memory and time efficiency are dealt as a single ddniat parallel implementations should
consider the amount of memory needed, volume of data exeldeanyd processing demands to be as
evenly as possible distributed among parallel machinesvidDbly, this further analysis is much
more deep and complex since neither the number of floatingt poultiplications, nor any other
known index for that matter, seems to be a good estimationaafgssing time.

44 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

In future researches tHgplit algorithm could be enhanced with considerations aboutrtipact
of functional elements (with their particular dependegkia the descriptor, since it is a new advance
starting to emerge also for other formalisms [45]. A similaark about these functional dependen-
cies changed completely the performance of $irifflealgorithm [37] when the tensor terms take
advantage of generalized tensor algebra [37]. It is onlyna&to estimate that similar computational
gains with functional dependencies analysis and posstitaaata permutations could benefit from
the Splitalgorithm as well. At least the results for descriptors tatied with classical tensor alge-
bra allow us to notice that theplitalgorithm is already a better choice for practical vectesatiptor
products.

Despite of that, the bottleneck imposed for vector-desariproduct in terms of memory is always
the storage of the probability vectar(including the storage of the auxiliary vectarsof the same
size of the product state space, except on optimized impl&tiens using sparse vectors [7]. The
Splitmethod does not focus on this problem, it was proposed talsipethe iterative method based
on the vector-descriptor product operation.

The probability vectotr obtained using iterative methods is the basis from modetsorements
such as steady-state probabilities of global states oopeénce indexes calculations. Using vector-
descriptor products the only way to obtain specific measabesit a model is generating the huge
vectors until they reach the memory bound imposed by theentitechnologies.

Focusing on state space explosion, which implies to deal avitequation system very large to be
solved in a timely manner, the traditional tensorial SANusioh can be replaced by another kind of
structural exploitation for example a simulation-basegrapch.

45

Chapter 4
Event-based Descriptor Solution

Real life complex systems normally are composed of many ooripts with massive state spaces.
As mentioned before, SPN [1], SAN [55] and PEPA [44, 45] weneppsed to cope with the prob-
lem of the state space explosion and consequently to hanoieidy the matrix storage problems.
However, this problem is still very challenging and it is iyet possible to analytically solve such
huge models, even with advanced numerical methods suchoas firesented on Chapter 3. An
alternative to enable the numerical solution of large medethe use of simulation techniques.

Simulation is a widely used and increasingly popular metioodtudying complex systems [48].
Discrete-event simulation approaches [10, 46, 47, 57] &emased to estimate an approximation
of the steady-state behavior of systems, providing sangdléise stationary distribution for later
statistical analysis. Note that new trends for numerichltgms were proposed in recent years, in-
cluding alternatives combining numerical methods and ktran approaches [15, 14] for Markov
chains. These techniques were also adapted to structyregsentations, but still remains the prob-
lem of having a large state space to store, and a considezabiplexity to manipulate multiple
components.

In the context of the SAN formalism, systems are describeddmewhat independent compo-
nents called automata, and each one can have interdepésigiven by synchronizing or functional
transitions (refer to Chapter 2). Since in discrete-eventkation [42] the system dynamics is repre-
sented only by its events and transitions effects, we cdatdextend this kind of description to struc-
tured models (Section 2.3.2). First approaches to sim@ats focused on the network dynamics,
adapting the model characteristics as a simulation kefoegxample, road traffic simulation [57].
Such model-driven approach was implemented as a hierarfchgiformized events based on the
automata description, starting from a predefined glob&t stanning forward steps.

This chapter introduces forward simulation (Section 4.i$tulssing the advantages and disad-
vantages of this approach in general. This background idete® understand the contribution of

46 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

applying advanced simulation techniques (Section 4.2 aBy duch as th€oupling from the Past
[56] to an approximated numerical solution for SAN, where skate space is intractable.

4.1 Forward Simulation

The classical event-driven simulation technigivgrkov chain Monte CarldMCMC) or sim-
ply Forward simulation, considers the dynamic of the system defined bgrhitrary initial state
and the application of a sequence of events generatingjectory. The simulation estimates the
system steady-state on a long run trajectory via the ergbéiarem [43, 58], which states that the
system reached its stationary regime after a fixed amoumep$ s.e., the estimation of the stationary
distribution of being in a stateis given by the proportion of passages through this state.

The time7r* consists of what is known as tlearm-upperiod,transientperiod orburn-in time
Thewarm-upperiod indicates the time when is still favorable to delay $sample collection, because
the transient period produces unreliable samples. Thisatat the effects of the initial conditions
have yet significance in the trajectory evolution. When itdraes insignificant, the simulation has
reached the stationary regime. However, the drawbacksi®fafiproach are mainly the@arm-up
period which is empirically fixed from an arbitrary initigdbse, and the fact that will certainly generate
bias samples [43, 48, 58].

States §) Forward simulation

Generated

\/ — @ state
/V .-

state .

Biased sample
control of the lorn-in time
dependence on initial state

o 1 2 3 4 5 6 7 8 ... 7* Time
e;] ez e3 e4 e eg ey eg Er*

Stopping rule (empirical)

Figure 4.1: lllustration of a forward trajectory

Section 2.3.2 already described the system evolution asiti@n functions defined b$(3, e;) =
7, sinces is a state inX*, and after the firing of an evenf, one new staté in X is achieved. A
trajectory is traced running forward steps through theiappbn of uniformized events, which are
randomly chosen and successively applied to a séatg {ollowing the distribution given by a tran-

4.1. FORWARD SIMULATION 47

sition matrix) then obtaining, in each application, a neatest (when an event could not be applied
to one statg the state is not changed doing a skip operation). The last ista trajectory of length

7% is considered @amplefrom the stationary distribution, although it can be potentially biased.
Figure 4.1 exemplifies a trajectory generated when sinngdtie events application in forward steps.

An initial states is established (Algorithm 4.1, line 2) and from it, the exgamte applied changing
the current staté until reached the number of steps defined as length by thextomy (line 7). The
sample is then collected (line 8).

Algorithm 4.1 Forward simulation
1: repeat
2: 5« 3 {choice of the initial state insid& %}
3. repeat
4 e — Generate-event()
5 { random generation of according the distributio® . .. °2)}
6: § « ®(5, e) { computation of next state&, ,; according to event}
7
8
9:

until stopping criteria { pre-defined trajectory steps }
returns { generated sample is a staté
until stopping criteria {pre-defined numberof samplesy calculation}

The problem of the establishment of how many samples areeddedbtain a confident distribu-
tion 7 of states probabilities is still under research (Algorithrh, line 9 indicates as the number of
desired samples to collect and calculaje The steady-state condition in simulations may be tested
using statistical confidence intervals [58].

The complexityC (Equation 4.1) to generate a sample in this approach is depenf thed (s, e)
(transition function) complexity costy and the simulation time* (e.g, a pre-defined trajectory
size). The transition function complexity is dependenteftnodel characteristics such as the size of
automata, the number of events in each transition, and qaesdy, the chosen implementation.

Co=cp X T" (4.1)

Next section introduces a different advanced techniqueséocome all main drawbacks of for-
ward simulations calleBackward Couplingimulation and follows with its application in the SAN con-
text pointing out the characteristics of the simulationecor

48 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

4.2 Backward Coupling Simulation

A new algorithmic solution based on ti@oupling from the Past(CFTP) algorithm, proposed
by Propp and Wilson [56], overcomes tharn-in time problem and guarantees unbiased samples.
CFTP or simplyexactsimulation, can generate a sample from the stationaryilalisiton based on
the concept o€ouplingor coalescencef trajectories.

Couplinghas been used in many ways in Markov chains analysis [51hddntext of this work,
coupling is related to trajectories having the same sequehevents applied until their arrival in a
common state. Theoupling timer occurs when trajectories coalesced in a given stafehen the
general principle of CFTP is the execution of trajectorreparallel starting from all states of the
model. At each simulation step an event is applied to allesurstates. In a given timet (or 7),
the transitions lead the system to the same state, and #tésista sample which can be collected.
The establishment of an initial state and its dependendagitiveburn-in timein traditional forward
simulations are not a problem anymore using backward cogspli

Backward coupling simulation
States §)

Unbiased sample

running backward in time
° application going in the past
initial state dependence eliminated

Generated
state

l\l\J§ h

-%

7 6 5 4 3 2 1 0 1me

er eg es e4 e3 €2 €1

®
0

Stopping time (coupling)

Figure 4.2: lllustration of a backward coupling of trajatts

In the Figure 4.2 all trajectories issued from all statesraet-8 coupled in a state at time
Since the coupling time of the backward scheme is almost surely finite [51, 56], theste pro-
vides a sample distributed according the steady-stataibeca other words, the method determines
automatically when to stop and collect samples.

The average complexity/, (Equation 4.2) to generate a sample in this approach is depeof

*This simulation technique is known psrfectsampling or alsexactsampling because enables us to compute samples
exactly distributed according to the stationary distritmiof the Markov process.e., produces unbiased samples.

4.2. BACKWARD COUPLING SIMULATION 49

the number of trajectories in parallek., the cardinality oft' , the average coupling tiniér and the
®(3, e) (transition function) complexity cost,. The transition function complexity, is the same
pointed out in the forward simulation section, considenmayv realizations (firings) in backward
steps.

Cy = |XE| x ET X cq (4.2)

4.2.1 SAN perfect sampling

The SAN formalism presents an underlying Markov chain, scagpplication of perfect sampling
techniques takes advantage of the network dynamics to sobekels and obtain the probabilities of
global states in the stationary distribution. The backvearabling simulation states thata SAN model
must bewell-formed consequently the model must produce only non absorbebabdtates as initial
states for the simulation algorithm. The number of trajgesorunning in parallel can be at maximum
equal to the cardinality of th&? set, and the backward scheme will evolve, going to the past, u
their coalescence as explained in Section 4.2.

Algorithm 4.2 SAN backward coupling simulation
1: forall 5 € X do
w(8) < s {initializing trajectories with global states}
3: end for
4: repeat
5: e« Generate-event() {random generatioreatccording the distributio™ . .. &)}
6: w « w {saving the states of each trajectory}
7
8
9

N

{computingw(5) at time0 of trajectory issued from the global statat timer}
forall 5 ¢ X do
w(s) «— w(P(3,¢e))
10: end for
11: until global states are equal in all trajectories
12: returnw(S) {generated sample is a global state}

Given a set of stated’”?, a set€ of events, and the transition functi@n : X% x £ — X%,
backward couplingpccurs when issuing from all states A, the trajectories couple in a statdor
a given sequence of everts, },,cy going to the past in time. The sample (state) collected iglgur
drawn from the stationary distribution. Algorithm 4.2 bdsm the Propp and Wilson technique [56]
can be used to solve any structured representations of Matkains, such as the SAN formalism.
It demands the list of states it'? as initial states for the parallel trajectories. Strudtyyahe
trajectories are represented as a vegtarhich is initialized with the global statésc X', supposing

50 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

a well-formed SAN model (lin€). A vectorw stores a copy of the current states of trajectories at
each iteration.

An evente is generated (Algorithm 4.2, liri§ and the related transition functidr(s, e) is applied
to the current global states placed.ipositions (line8—10). Note that a global state is in fact a vector
of size K containing the automata local stat¢d. The event is applied to each local state through
the functionp(s*), e) updating it (refer to Section 2.3.2). At the end, the new glaitate is updated
too, indexing the vecto&w which contains the earliev stored. This process is called backward
coupling because we comput€s) at time0 of trajectory issued from at time—¢. The routine will
be repeated until all positions of vectothave the same resulting state.e., all trajectories running
in parallel have coupled (lingél). The sample of each iteration is then collected for latatistical
analysis (linel2).

Time

Figure 4.3: Backward coupling in 6 iterations for the SAN rexde in Figure 2.2

Figure 4.3 exemplifies a backward coupling which generate=xact sample in few stepse., it
outputs a global state for the SAN example in the Figure 2e2{8n 2.2). The process begins firing
an event each time (starting in tiri@nd then backwards), for all states¥#. The application results
(the new states achieved) following the transition functizfinition on Table 2.2 (Section 2.3.2)
are plotted in backward steps (from the right to the left).e Bxample shows that all trajectories
issued from the global statef)!; 0}, {0W; 13}, {0W; 2@} {1W: 0@}, {11): 22)}) at time—6
coupled in the staté0™; 1} at timeo.

The memory needed for running the algorithm considers thrage of vectors oft' | statesi.e.,

4.3. MONOTONE BACKWARD COUPLING SIMULATION 51

one for coupling trajectories and another for collectingnpkes statistics. The needed size in mem-
ory is given by2|Xf|. Simulation methods can bring a memory optimization to sshodels when
compared to traditional iterative numerical solutionsrdtive solvers spent at leas#’| (two vectors
for the iterative method and one to store the stationary aiitities) except considering sparse im-
plementations where the vectors size can be very reducehfifily for models when the reachable
state space is considerably smaller than

Searching for new solutions for models whose are not passiabbtain a numerical solution due
to the size of product state spa&e we combined structured Markovian models such as SAN, with
perfect sampling techniques. However, even naturallyrecting the state space using only the
reachable state space in the proposed simulation solthiesijze oft' % can also become a bottleneck
for backward couplings. This lead us to exploit the prodtatesspace and monotonicity properties
to reduce the number of trajectories in parallel and obtarenfiexibility solving huge models.

4.3 Monotone Backward Coupling Simulation

The size ofY'® can be exponential according to the SAN model and it can fiewlifto generate
and really huge to deal with. It becomes a limitation for bhaakd coupling methods in terms of cou-
pling time for some models, basically because it is neededsonulation per state in the model. This
section introduces concepts of monotone backward couplntgpartial ordering of states. Recent
studies showed that the monotonicity property is fundaaldat improving the efficiency of back-
ward couplings to solve Markovian systems [10, 66, 64] sihelows the reduction of the number
of trajectories in parallel, through the establishmentdisdovery of extremal states.

Propp and Wilson [56] have shown that for monotone Markowandels with an ordered state
space it is needed to run only two trajectories in parallek starting from the largest state and other
for the smallest state. So the algorithm operate most effigigvhen the state space idadtice’ and
a monotonicity condition for the events holds.

Definition. An evente, € ¢ is said to be monotone if it preserves the partial ordering(der)
onX. ThatisV(s,5) e X 5<3§ = ®(5,¢,) < ®(3,¢,). If all events are monotone, the global
system is said to be monotone.

Definition. Given two global state§;, s, € X, a states; is minimal if there exists a sta& such
that3, < 5 then3, = 5. Thens € X™". Analogously, given state§, 5, € X, a states; is
maximal if there exists a stagg such thats, > s; thens, = 55. Thens; € XM

A lattice is a partially ordered set (also called a poset) lriclv every pair of elements has a unique supremum (the
least upper bound of elements) and an infimum (the greatest loound) [25].

52 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

Definition. The extremal set’" is a set composed by maximal and minimal states in a partially
orderedX. ThenX™ = xmaxy ymin,

Suppose a sequence of events: {e, }.cn, given any partial order of’, and consequently an
extremal setv™ | if all trajectories issued frork’ coupled at time 0, then they will also coalesce
for all states [56] int' 2,

Monotone backward coupling simulation

—2* States §)

> 5 generated
i 'd

2 -1 0 Tme

Figure 4.4: Illustration of a monotone backward couplingrafectories

Figure 4.4 illustrates the general behavior of a monoto&ward coupling, where the extremal
setXM C X" has two states (one maximal and other minimgl}| = 2. Going back to the
past, step by step, until trajectories coalesce at tinadl trajectories issued from,,., ands,,;, are
computed ink steps from time-2* to 0.

The simplest form of the monotone backward coupling metloodiclers only two extremal states
Smaz (Upper state) ands,,;, (lower state) to start trajectories at time. If the trajectories did not
coalesce by timé®, a new value for is chosen, then restarting the simulation from the new time
—t. The coupling scheme will preserve the ordering just repgie same sequence of events already
generated, generating more events to complete the cuteeation.

The simulation continues until the coupling of both chaihgirme 0. The application of this
algorithm tries to estimate successively the val@eumber of backward steps) for couplingtas
1,2,4,8,... until find at = 2 when coupling occurs on simulation time 0. This adaptatte@ s
size is calleddoubling schema.e., at each step in the past, the length of the step is multijayed
(Algorithm 4.3).

4.3. MONOTONE BACKWARD COUPLING SIMULATION 53

Algorithm 4.3 General monotone backward coupling with a doubling scheme
1.t 1
2: repeat
3. upper Sma

4 lower «— 3,,in

5. fori=—-tto —1do
6: upper— ®(uppere;)
7 lower — ®(lower, ¢;)
8: end for

9: t« 2t

10: until upper = lower

The average complexity to generate a sample in this appf&aphation 4.3) is mainly dependent
of the number of trajectories started from extremal statesthe cardinality oft*. The complexity
considers the average coupling tifiie and thed(s,) complexity costs.

Cy = |&M| x 2B7 x co (4.3)

4.3.1 SAN monotone perfect sampling

We know that the samples computation may be reduced by dgaily trajectories issued from
the set of extremal states when events are monotonous. Ifnee R’ it is possible to run a
monotone version of the backward coupling algorithm [38].

Adapting the Algorithm 4.3 for the SAN context we computgédctories starting from the ex-
tremal states using a coupling vectorof size related to the cardinality of*. This algorithm
have the same convergence properties as Algorithm 4.2 upresent a better coupling time for
monotonous systems multiplied by a factor &/ | (which can be small enough to improve the sim-
ulation time). Also, regarding the reuse of events at eagfation loubling schemjeit is needed to
maintain the events generated through the whole traje¢®@jy Algorithm 4.4 uses a vectar of
generated events (liry increased at each period (ling At each step in the past, tiseupling time
7 (i.e, the length of the step) is multiplied 2y(line 4).

The memory needed for running the monotone algorithm islhigkated to the cardinality of
XM (which states the size of the coupling vector) and the siz& 6f(size of the vector to collect
samples statisticsjge., the needed size in memory is given gy | + |XE|.

54 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

Algorithm 4.4 SAN monotone backward coupling simulation

1.n=1

2: E[1] «— Generate-event() { arra stores the backward sequence of events}

3: repeat

4: n < 2n{doubling scheme}

5. foreachs € XM do

6: w(8) < s {initial states at time—n}

7. end for

8: for i = ndownto (; + 1) do

9: E[i] «— Generate-event() { generate events fron} (-1) to —n, events from-1to (-5 +1)

have been generated in a previous loop}

10: end for
11: for i = n downtol do
12: foreachs € XM do
13: { w(8) is the state at time{i — 1) of the trajectories issued fromat time—n}
14: w(8) «— P(w(8), Ei])
15: end for
16: end for

17: until all positions of vectow are equal
18: returnw(S) { generated sample is the global statevifs)}

4.3.2 Extremal global states extraction

Glasserman and Yao [42] investigated the search for pdatial total) ordering in discrete-event
models looking at their own structure, naturally retainthg order in which states in the chain are
accessed firing the respective events. This procedurenmerrilly generates feasibleset (set of
trajectories), until all states are accessed (total ondgrior a given partial ordering is identified.
However, the search for an order regarding feasible setsl t@ve a high enhanced computational
cost for huge models because one must look at all possilpetnaies starting front’ 7 to effectively
begin to search extremal states.

It is a fact that the monotonicity property of events guagastthe existence of a partial ordering
in which is possible to obtain th& set of extremal states [56]. So applying transition funttio
over each state i¥’?, retaining the new states achieved one can just verify gehmew ones are
greater (not yet accessed in some way) than the source st firing process. In this case is not
necessary to retain the order of access of these new stdessése sets do [42].

In a SAN context, thextremalsetX" is composed of global states where there is no greater state
achieved in¥f than itself in the underlying chain, after the firing of alleexs iné. The constructive
algorithm proposed (Algorithm 4.5) analyzes each rea@hsatate of the model (lin20), firing the
events of the sef (line 5) and storing the generated (achieved) states at each finmegl()). The

4.3. MONOTONE BACKWARD COUPLING SIMULATION 55

Algorithm 4.5 Extremal set for SAN models with component-wise formation

1: M[0] « Add(3,.:,); { list of accessed states in th', initially storing the staté,,,;,,}
2: cState « M [i]; { it indicates the current observed state in the ligtinitially : = 0}
3: repeat

4: isExtremal— true;

5. forall e, € £do

6 { events firing over the current observed state}

7: nState — ®(cStateg,);
8
9

if (nState ¢ {M]0], ..., M[cState]}) then
{ifitis not already accessed, it adds new state to theMlisand it is not an extremal}

10: M — Add(nState);
11: isExtremal— false;
12: end if
13: end for

14. {if no nState are added to the lidf, cState is an extremal}

15: if (isExtremal)then

16: XM — Add(cState); { it adds cState t& }

17: endif

18: i =1+ 1;{itgoes to the next element if/ to analyze firings}

19: cState— M{[i|; { it updates current state}

20: until ¢ = | x| { the condition is to access all reachable states in the mautes}
21: return extremal set’; { the extremal set is completed }

search for extremal elements starts from an initial ségig (line 1) defined by a component-wise
ordering already known (which can be simply a lexicograghicder).

It is important to notice that event firings from a state caadléo the same state (or reachable
states already accessed). In this case, the state observée an extremal state (lineé$ — 17), i.e,,
the classification as an extremal stdtappens if the state does not generate any new state, métaning
is before accessed with the firing of all possible eventsemtiodel. Note that, by the same principle,
transitions fired from the established minimal state do nbieve states lower than itself, considering
we already started from the canonical minimum.

The complexity to find the extremal set using Algorithm 4.§iigen by the cardinality of’* and
is dependent of the number of evefgsin the model (Equation 4.4).

X < [¢] (4.4)

Supposing a queueing network (QN) with two queues (Figulig with capacitied<; and K, re-
spectively. This component-wise model where the behaviboth queues is equivalent, has arrivals

iMarkovian Free-choice Petri nets consider as extremaisstae blocking markings of event graphs [10].

56 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

and departures of clients, finite queues capacities, aadtslloss if queues are full. The initial global
state considered is both queues empty. The transitionim®{ s, e,,) which describes this behavior
considering global stateés= {s(!); 51 configurations can be given by:

O({sV;s@},e1) = {sW+1;5%}
O({KY; s ,e) = (K5}
P({sW; 5P} en) = {sW—1;5@ 41}
O({s0; K}, en) = {sO; K
@({5(1); 5(2)}’ 62) — {5(1); 52 — 1}

Starting from{0™:; 0}, or simply{00}, one can construct the extremal $&Y analyzing each
reachable state achieved through the firing of events oeestttes int . At the end, the extremal
setxXM found for this example is composed of two statgd, 22}.

€12

M = {00, 10} M ={00,10,20,01} M = {00,10,20,01,11} M ={00,10,20,01, 11}
N N A N

XM = {oo} XM = {00} XM = {oo} XM = {00}

M = {00, 10,20,01, 11,21, 02} M = {00, 10,20, 01,11,21,02, 12} M = {00, 10,20, 01,11,21,02, 12}
N N N

M = {00} M = {00} M = {00}

M = {00, 10,20,01,11, 21,02, 12,22} M = {00,10,20,01,11,21, 02,12, 22}
N N

XM — {00y XM = {00,22}

Figure 4.5: Extremal set construction for the QN model in SAN

4.3. MONOTONE BACKWARD COUPLING SIMULATION 57

Figure 4.5 shows step by step the formation of an extremaffgidwing Algorithm 4.5) for
the example in Figure A.1. Next sections present a classditaf SAN models, regarding the
component-wise orderingge., the structural formation of the underlying chain. The idfeation of
extremal states is mainly related to structural charasties: if the chain can be viewed adadtice
we identify only two extremal states, else it is classifiednas-lattice (more than two extremal
global states). Note that in the absence of a componentavdering the models yet present the
reachable set as alternative to run backward simulatiothsesrent advances such as envelopes on the
simulation of non-monotone systems could be applied [18hé& context of this work we focus on
component-wise models whose is possible to extract extretaes.

Canonical component-wise ordering in SAN

SAN models can have states naturally ordered such as tlyeirget, for example, the SAN mod-
els equivalent to some Markovian queueing networks [63664as the example presented in Sec-
tion 4.3.2. When allV queues in a system are empty, the local steltesf each queue (or automaton)
are equal t® (analogously, all queues full means automata local stajiesl €o the queues capacities
K;, wherei = 1...N). When occurring a queue arrival (or departure) the locatlests updated
with 5@ + 1 (s®) — 1, respectively). In this case, the partial order of the ezlgiroduct state space
is established based on this component-wise ordering. Séddrgptions derived from monotone
gueueing networks can be simulated taking advantage oh@avly the canonical minimum (all
gueues empty) and maximum (all queues full) states. Thentam paths are needed to simulate a
monotone backward coupling.

Definition. The canonical component-wise orderimgeans that the underlying structure of the
model can be viewed adattice, i.e., all global states have the sasgpremunandinfimumstates.

Given two arbitrary global states, 5, € X and a defined partial order, and verifyipg< 3, itis
possible to define which one is the largest state [30]. Themdl states are given canonically by the
first and the last state ot considering thaft is lexicographically ordered due to the component-
wise characteristic. So the evenrts e;; ande, are monotone according canonical component-wise
ordering ofX'. Figure 4.6 shows successive events application untilte sthere the achieved state
with a given event is itself (see the loops in specific statethe figure). At right, also shows the
underlying chain structure as a lattice.

We can consider the minimal and maximal local states of eattnzatonA*) defined by the
natural order on integer. Supposiig = 2 and K, = 3, the maximal set can be considered
XM ={{0;0},{2;3}}. The minimal local state of both automata is the stateand the maximal
local state i2 for automatonA™, and3 for automatonA®® respectively. The application of the

58 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

,,,,,,,,, Evente, @

————————— Evente,

/l
Evente;, @ 000

)
/
<
.
AW

Q
.

023

Figure 4.6: Canonical component-wise ordering for the QNlehan SAN

transition functiond(s, ¢,), for each event, € &, considering each statee X' using the Algo-
rithm 4.5, lead us to obtain the same extremal global stateasaed considering the canonical ones
firstly assumed.

Experimental work using SAN canonical component-wise ngdghowed that different state
space partial orderings can be explored due to the extragtidifferent subsets of global states when
running monotone algorithmic versions. The extremal sef@bal states is dependent on the partial
order established. Figure 4.7 shows the Markovian strad@as seen in Figure 4.6) and a different
lattice (on the right side) obtained. Now we started fromrttieimal local state of the first automaton
combined with the maximal local state of the second automgta 3}), and achieved the maximal
local state in the first automaton combined with the minimahie second2; 0}. More experiments
must be conducted towards to different sets of extremal ehésnas effective as the canonical ones
for monotone backward simulations.

The assumption of existing one minimum and one maximum letatke per automaton which

4.3. MONOTONE BACKWARD COUPLING SIMULATION 59

————————— Evente, 2

"""""" Evente,

Evente;,

Figure 4.7: Another component-wise ordering for the QN nad&AN

guarantees the exact sampling can be applied also for hudelstbat follow the canonical component-
wise ordering principle. For the example, the simulationldoun only two trajectories in parallel:
all queues empty (minimal local statés; 0}) and all queues full (maximal local staté&’;; K,}).
Other set of two extremal states could be: the first queueyeamd the second full (global state
{0; K3 }) and first queue full and the other one empty (global sféfe 0}).

Non-lattice component-wise ordering in SAN

The successive firings of events for the queueing system@eamhen already exists a canonical
formation, leads us to kttice where there are only two extremal global states (Figure 4-@w-
ever in the absence of a canonical component-wise modelatoom for each event in the model,
the state space partial ordering can be constructed firiagtewn the underlying chain structure, re-
taining or not the order in which the states are accessednainly identifying the extremal states
(Algorithm 4.5).

Considering each reachable state and all events, the Restedit states, in the trajectories of
accessed states, are the extremal states, this meansitagpartial order foA’® C X (<), when
itis possible to compare two states for a given event &, independent of event rafes

$There is a type of monotonicity callesfochastiovhich uses the model rates [40] to establish a partial ondesf
states in a Markov chain. The monotonicity we search in SANaited realizableand in the literature it deals with
transitions effectd,e., the states achieved on trealizationg[39] or event firings.

60 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

Definition. The non-lattice component-wise orderimgeans that the underlying structure of the
model presents a partial ordering but no canonical minimdlmaximal global statesge., a set of
extremal global states is identified following successigagition function applications over~.

Firstly, the component-wise ordering supposes that Ideé¢s have a predefined order, then the
Cartesian product of states generates automaticallyapigrtirdered global states. The states will
always have transitions to greater or lower global statesidering a lexicographical order. So when
there is no possible transition to be fired to a greater dtatemeans that we have found an extremal
state in the chain. The classificationram-latticeis used because this kind of model does not have
only one infimum and supremum state, then it can not be comresiggattice.

Figure 4.8: Non-lattice component-wise ordering in a madé&l philosophers

An example of a component-wise model is the classical regosinaring with mutual exclusion
presented as thaining philosopher®n Appendix A.3. Regarding the structural formation showed
in Figure 4.8 of dining philosophers with resource reseovafrelated to Figure A.4 with 3 philoso-
phers), the monotonicity properties are verified for allrdsé&,, tr;, rl;, rt., tl, andlr, since for each
one remains the state space ordering’f. Given the minimal global statg)”; 0©; 01, or sim-
ply {000} (all philosophers thinking) as initial extremal state togeate the¥', the other extremal
states (the bold faced statg®0}, {012}, {102}, {201}) are naturally the ones with greater indexes
than the states they can achieve firing transitions (Algori4.5). Note that the Figure 4.8 only rep-

4.3. MONOTONE BACKWARD COUPLING SIMULATION 61

resents the directed transitions that can be fired amongssia@allow the graphical visualization of
the extremal states, differently of Figures 4.6 and 4.7.

Supposing now six philosophers on the dining philosophdisont resource reservation (related
to Figure A.5), the application of the transition functionthe component-wise formation, returns
the extremal states for this SAN model. Regarding strutfn@perties of this model all events
ety, tep, € £ are monotone since they retain the component-wise ordefirgdobal states in the
chain formed by this class of models. T#és, e,,) application over stat€000000} (all philosophers
thinking), generate states i’ and so on, until no more new states are achieved usimg¢.

0 : 000000
9: 001001
18 : 010010
21:010101
36 : 100100
: 101010

Figure 4.9: Non-lattice component-wise ordering in a madél philosophers

Considering the model global states are formed simplyitsyrepresenting local states, so the
stateT™) is represented by and E*) represented by, we have for example, a sat* = 18 and
XM = 6. Figure 4.9 shows the states with their related indexethitéde the graphical visualization.
The marked states are extremal elements for this model witprslosophers, and their respective
configurations of local states are indicated at right in therg.

This means after all, that walking in the chain, applying tia@sition function successively, we
can reach and collect the extremal elements (Algorithmdobnecessarily retaining the state space
partial ordering. The canonical component-wise orderingefe |XY*| = 2) and the non-lattice

62 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

component-wise ordering (whef&| < |X%|) are SAN partial orderings well fitted to run mono-
tone backward simulations. However it is not always easylémtify these extremal global states
inside X mainly due to the reachable state space size and also thétgudrevents in the model.
Once they are identified, the trajectories in parallel cadrastically reduced, and consequently, the
computational cost can be minimized.

Note that in the models where the classical monotonicitperty is absent, the state space does
not contain neither a natural minimal state nor a maximaéstdome extensions are been proposed
for partilly ordered state spaces in other formaliseng, find extremal states for a sub-class of Petri
nets [10] or for Free-choice nets [11], and simulating geh@sn-monotone Markovian systems using
lower and upper envelopes[18]. Unfortunately, there areyncases in which the monotonicity does
not exist or is difficult to define. Some cases will be importendevelop a method which does
not require monotone structures [19]. However, perfectpisam enables us to obtain exact samples
which is extremely advantageous.

4.4 Theoretical Contributions

This section presents theoretical results demonstratedigh the execution of the simulation
algorithms on two classical models such as@ueueing Networknodel and th®ining Philosophers
model (Figures A.1, A.4 and A.5) mainly to validate statiatly the approach. Also is shown for these
examples the state space contraction through the findirgeoféxtremal states briefly evaluating the
sampling time to guide further works. The global probaig$itused for statistical validation were
collected directly from the probability vector obtaineddatigh the execution of the algorithms inside
the PEPSenvironment.

The numerical metho8hufflewas used to collect the stationary solution (global statebabili-
ties) with 1.0E-10 precision which represents our expeesdlt. Backward and monotone backward
coupling implementations generate= 10° samples on each run. Due to the independence of the
samples we applied the central limit theorem to compute dh&tiens confidence intervals at level
95% consideringb0 runs. The gain in state space contraction for componerg-mizdels are showed
regarding memory costs as well as a sampling time analysisngathe number of philosophers
(Tables 4.1 and 4.2), showing an average time to generateaat gample for each model with the
monotone approach.

All executions have been done on an Intel Pentium dual c@&Biz machine under Linux oper-
ating system with 2 Gb of memory. The modules insideRE£S200&nvironment were compiled
usingg++ compiler, with optimizations{03).

4.4. THEORETICAL CONTRIBUTIONS 63

4.4.1 Statistical validation

In this section the experimental probabilities obtainedsimgulation are compared to the actual
PEPSresults, for models with a canonical component-wise ongeftanonical extremal states) and
for the one with a non-lattice component-wise orderingdotd extremal states). The statistical test
used to compare the observed results with the expectedsgsalided bySplitis the Chi-square
tesfl (or simply Chf). We aim to show that there is no significant difference betwihe expected
and the observed probabilities considering a level of §icancea = 0.05 and a degree of freedom
df, for this small exampleslf = |X#| — 1.

Queueing Networkmodel results

Considering the example (Figure A.1) the queues rates;as 0.8 Ay = 0.9 \3 = 1.2 the
model stationary distribution provides our expected val{vehich is the actuaPEPS solutiohand
the statistical analysis of = 10° samples generated running both simulation algorithms as ou
observed values (backward coupling simulation and momob@ckward coupling simulation).

According to the Chi-square statistic obtained for the &kl coupling simulation output (Chi=
11.33), with @« = 0.05 and degree of freedomalf = 11), the valuel9.675 was our parameter. We
find the calculated valugl .33, lieing betweerb.578 and17.275. The corresponding probability was
0.90 < P < 0.1. This is below the conventionally accepted significancelle¥0.05 or 5%, so the
hypothesis that the two distributions are the same is vdrifie

The Chi-square statistic obtained for the monotone badkwanpling simulation output (Chi=
17.31) for samea and df lies betweenl7.275 and 19.675, then the corresponding probability is
0.10 < P < 0.05. This is also below the accepted significance level, so weidenboth distributions
the same. We vary the capacity of both queues to perform titet&its.

Dining Philosophersmodel results

Considering the example of the dining of three philosophvéth resource reservation (Fig-
ure A.4) the acquisition rates are definedOas (eventstr;, rl;, tix, Irx) and the release rates are
defined a%).3 (eventdt;, rtx). According to the Chi-square statistic obtained for thekiwaard case
(Chi* = 13.18) and the monotone backward case (Chi12.19) both lied betwees.578 and17.275.
The corresponding probability 890 < P < 0.1. This is below the accepted significance level of
0.05 or 5%, so for this example we also consider both distributionsstrae.

IChi-square is a statistical test commonly used to compaserebd data with the data we would expect to obtain,
according to a specific hypothesis.

64 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

Varying the examples size, consequently analyzing othgreds of freedom for the obtained
results, the verification still indicates that the disttiba is the same of the expected. The next
analysis to be done is related to the monotone sampling gsaekich can be memory-efficient when
compared to backward coupling approaches allowing salwfduge models.

4.4.2 SAN monotone perfect sampling analysis

Table 4.1 shows in its last lines huge models impossible k@sweith the currenPEPSsoftware
tool mainly because the size af, and theX' contraction inY™ to run the alternative solution which
is based on the perfect sampling. The costs in memory aréaiifs reduced since for monotone
versions is stored just the coupling vector with extremarednts instead of the reachable state space.
For all simulation approaches that could be used, we stiite store the frequency of coupled states,
however with iterative solutions we have stored the prodtiate space (current implementation)
which already indicates a gain in the memory constraints.

K X Xk XM | PEPS(s) | Simulation(s)

5 243 70 11 0.0001 0.0046£0.0009
6 729 169 17 0.0005 0.0194+0.0019
7 2187 408 27 0.0017 0.037#0.0028
8 6,561 985 43 0.0032 0.0734£0.0051
10 59,049 5741 111 0.0381 0.3369:0.0240

12 531,441 33,461 289 | 0.5513] 1.5873t0.0794
14 4,782,969 195,025 755| 5.7122| 6.81810.2795
16| 43,046,721 1,136,689 1,975| 68.7043| 27.7824:1.0808
18 | 387,420,489 6,625,109 5,169 n/a 108.1243:-5.2696

Table 4.1:Dining Philosophersnodel (with resource reservation) - sampling results

The same remarks are consistent to the times presentedshergally due to the fact that Table
4.1 presents times for one iteration in PEPSnumerical solution, and one sample generation for the
monotone perfect sampling. For the last modé€l£ 18) the PEPSsolution could not be achieved
since it represents a state space of more that 387 millidesstavhich is considerably above the
current overall numerical solution limitation which is 65llion states in the current implementation.

The actual number of samples needed to generate dependsis@men the numeric character-
istics of the model itself. Different parameters such asatieal numeric rates of the events may
change the required number of samples to achieve statigfipeoximation of the stationary regime.
Analogously, the numbers of iterations to perform the tteessolution methods in theEP Stool also

4.4. THEORETICAL CONTRIBUTIONS 65

depends on such characteristics. Therefore in the Tableeli@dicate the amount of time needed to
perform one single sample generation with the contracte space in the simulation module, and
one single iteration in the numerical solution implemerdadPEPS

However, the values in seconds presented here are to beleoesiwith caution, since nothing
relates the number of needed iterationBEP Swith the number of samples needed in our simulation
tool. For example, the first modek(= 6) needed 528 iterations to achieve a precision of 1.0E-10
in the PEPSsolver, while the precision achieved with® samples generated by simulation lies on
approximately 1.0E-3. The examples was extended just loetr@ncapacity limit oPEPS since the
last examplesK = 26 to K = 30) are too massive to run on our target machine.

K X xR XM | PEPS(s) | Simulation(s)

10 1,024 123 18 0.0005 0.0305:0.0034
12 4,096 322 30 0.0025| 0.0750t0.0059
14 16,384 843 52 0.0118 0.2109+0.0149
16 65,536 2,207 91 0.0560| 0.6020t0.0435
18 262,144 5778 159 0.2964 1.4334+0.0838

20 1,048,576 15,127 278| 1.3940| 3.4625:0.1822
25 33,554,432 167,761| 1,131| 5.1158| 28.2105:1.1764

26 67,108,864 271,443| 1,498 n/a| 41.5225-1.9412
27| 134,217,728 439,204| 1,984 n/a| 64.7593:2.5652
28 | 268,435,456 710,647| 2,628 n/a| 96.0582-4.2948
29| 536,870,912 1,149,851 3,481 n/a| 143.02744.8180
30| 1,073,741,824 1,860,498| 4,611 n/a| 210.267&7.7823

Table 4.2:Dining Philosophergnodel (without resource reservation) - sampling results

The simulation times presented in Tables 4.1 and 4.2 witin domfidence intervals are estima-
tions for a generation of one sample using perfect sampliige range of the confidence intervals
vary because different coupling times can occur in eachlsition iteration. Figure 4.10 shows differ-
ent coupling vector sizes and their contraction during grearment collecting five hundred samples
(using backward simulations for the philosophers with vese reservation example).

The graph represents an example of the different couplimgdithat can occur, and also the cou-
pling vector reductiohuntil a sample is collected. Note that we can have a quick nngnealuction
at the beginning and this specific behavior of the backwatglog occurs in many observed cases.

Future researches can exploit for example advanced fi@msiunctions to increase the coupling
probability at each backward step, reducing then the memeegs of the coupling vector which is

IThe current version for the simulation algorithms preserdgynamic vector for coupling control which reduces its
size at each iteration. At the end, with only one positior,riferred sample can be collected.

66 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

1000

Coupling vector size

10

I

600 800 1000 1200
Coupling times

Figure 4.10: lllustration of the coupling vector reductmilecting samples

related to the numbet'” of trajectories in parallel.

4.5 Conclusions and Perspectives

The discrete event simulation aims to reproduce the systetateon step by step studying a par-
ticular realization of a stochastic model. As discussedextiBn 4.1 the advantage is that simulation
is a generic approach which can be applied to every modelibedcas a set of events and associ-
ated transition functions. The main disadvantages ar¢eckl® the simulation computational cost
(justifiable only if there is no analytical solution availepand the statistical validation since tradi-
tional approaches does not guarantee exact samples arifiicislt to determine values such as the
burning time period, the starting state and the quantityaof@esa priori. The backward coupling
simulation provides a way to overcome the forward simuraticawbacks (the choose of an initial
state, not necessary anymore since we use all states gtpdiallel trajectories, and the transient
period determination, eliminated since there are a finitalmer of steps in the past to collect an exact
sample). The simulation results can be presented with camfelintervals allowing the verification
if the quantity of samples generated is sufficient for the ehgthtistical analysis.

The numerical results (Section 4.4.2) pointed out that fier thodels in which the numerical
solution is no longer possible witBplit, perfect simulation seems to be a reasonable alternative

4.5. CONCLUSIONS AND PERSPECTIVES 67

at least for component-wise models. The current limitabbiPEPSsoftware tool is in order of
X < 6 x 107 states using 1 Gb RAM machine because it needs to store pligbabctors for the
state space&’. The SAN simulation approach, on the contrary, will workyowlith vectors of size
related to the extremal set of the models and the reachatiesgiacet . Moreover the bottleneck
imposed for vector-descriptor products in terms of mema&@gds to solve and present a solution in
a timely manner (the storage of the probability vector witte equal to the product state space) is
replaced by the storage of only one vector of size equal toahehable state space and a coupling
vector at least of size related to the cardinality®f in simulations. The algorithm presented does
not focus on optimizing the simulation time at all, but it ivaid alternative to the lack of using
iterative methods based on vector-descriptor productsuige models.

Optimizations in the transition function derived from degtors, events uniformization tech-
niques, coupling test optimizations are future works fa ithprovement of the perfect sampling on
SAN. Additionally, it is also possible to foresee an even encomplex algorithm analysis that con-
siders coupling times optimization based on other modgbgntees or different transition functions
definitions. The generation of a even yet reduced extreniat'$g and also the notable reachable
state space contraction during a backward simulation reg §ection 4.4.2), are ongoing researches
for non-lattice component-wise state space formationg algorithms could also be enhanced with
recent researches in the area concerning the use of cordeptgard coupling [65] and the concept
of envelopes applied for non-monotone models [18].

Due to the independence of samples we can also considelgbaraiulations to overcome the
time complexity related to the approach in general, theesfienerating huge amounts of samples
faster. Table 4.3 shows the expected gains of a parallellaisbn of simulations even using non-
optimized algorithms. We indicate in the first column the temof processorstproc involved to
calculate10° samples and the expected computational times in each case.

#proc | execution time
1 ~7.01 years

16 | ~5.26 months
32| ~2.63 months
128 | ~19.71 days

Table 4.3: Expected parallel distribution gains for sintiola

The model used as example is the one indicated in the last folnecdrable 4.2 which has ten
philosophers (model with resources reservation) with axprately X ~ 10° of state spaceX” ~
10° and XM ~ 4 x 10%). This model has no possible solution with t8plit algorithm due to the
state space explosion problem. The simulation seems to hedaalternative mainly considering a

68 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

considerable number of processors to produce the exaciessnNote that generating more samples
in more different processors is always better in this apgroa

The main contribution of this chapter is the design of a mréampling algorithm for solving
huge SAN models using backward coupling simulation [38]réwer we studied the monotonicity
property as a key for extracting extremal global statesét&’?) in component-wise models where
there are no canonical extremal states identified. For rsodéh a non-lattice component-wise
ordering of the underlying Markovian graph, is showed thatgimulation complexity can be greatly
reduced by using only™ to run trajectories in parallel. A simple procedure (Algonn 4.5) for the
XM extraction is presented as well as the results obtainedrrgrihe monotone algorithm version
(Algorithm 4.4).

The probability vectorr obtained performing the statistical analysis of sampleélsasasis from
models measurements such as steady-state probabilisesefglobal states or performance indexes
calculations. Using simulation approaches to obtain $jgeuieasures could not demand much mem-
ory such as the vector-descriptor product where the vectbate space sized is always needed.

69

Chapter 5

Conclusion

This thesis focused on the major challenge of the modelingdtisms which is the impact of
the state space explosion problem in the numerical solsiti@he memory bound constraint appear
in conjunction with the Markov chains dissemination to mdugge complex systems. Alternative
solutions soon became popular such as the structured fismsproposed in earlier researches as
powerful modeling processes. The SAN modeling formalisiinased on independent components
formed by states and transitions labeled by events. Théa@@iprimitives for use consists of two
basic types: local and synchronizing behaviors, having@on or functional rates. Such as any other
structured formalism, a SAN state space is a cartesian ptadfutsubcomponents state spaces. It
can produce huge representation that are practically uasiel, even with specialized structures and
state-of-the-art algorithms.

This conclusion emphasizes the advantages of each tredi@tid numerical contribution as well
as it shows the time-memory tradeoffs explored to reduceripact of the state space explosion. The
chapter ends enumerating open research problems and asimtoonsidering future works.

5.1 Thesis Summary

Considering the modeling strength and the structured septation for solving SAN models, this
thesis research aims the development of new algorithmaarahialysis of the internal representation
of descriptors to optimize and provide exact and/or appnaxed solutions. Numerical algorithms are
naturally chosen due to the accuracy provided in the salatiblowever, they become inapplicable
quickly when the size and complexity of models begins to edel In other words, the number
of synchronizing events in a model is directly related tonienber of tensor products to multiply
by a vector in the solution. Even storing in a memory-efficieranner, the tensor product terms
multiplication can have a high computational cost. Moreptlee state space explosion imposes the

70 CHAPTER 5. CONCLUSION

use of alternative solutions such as simulation technigW®sen such techniques are applied, the
research challenges are shifted to finding ways to obtairtisak approximations.

In this context, two directions were established to achibi®thesis objective: solutions when
the computation time for the analytic-numeric technigueeis long; and solutions when the storage
requirements exceeds the memory capacity. Both problemexremely significant in the area
of stochastic modeling since there is a need for developmfentumerical solutions with accurate
results. Also, it lacks the formal proposition of advancidraative solutions such as discrete-event
simulation based on backward coupling to provide exact $esnpThese issues will be properly
summarized in the following sections.

5.1.1 The hybrid vector-descriptor product

The hybrid numerical solution, or tHeplit algorithm, was proposed in the Chapter 3 to reduce
the computation time of a vector-descriptor product cogrsind) one iteration. In fact, the hybrid
multiplication deals with the Kronecker products in a staued manner, performing matrices com-
binations until ecut-parameter. Actually, the non-zero values (aggregated in AUNF) reldtethe
sparse part ogplitare correspondent to the matrices aggregation processmed untilo, as seen
in the Section 3.2 (Figure 3.3). Table 5.1 compares the wefgscriptor product methods in terms of
CPU time, structure, memory and complexity (expressed atifig point multiplications). The table
shows that th&hufflealgorithm is very memory-efficient when compared to 8mgarsealgorithm
that presents a high memory demand, storing a full matrixeémh tensor term. THheplit algorithm
is placed between both methods in terms of memory, balarthimgomputational costs through its
cut-parametew.

| \ Sparse Shuffle \ Split
CPU time very efficient efficient very efficient
Structure | aggregated matrices Kronecker products aggregated matrices and Kronecker products
Memory explosion extremely efficient efficient balancing the cut-parameter

Complexity (Hkil ’rsz> <Hf:1 nk> X (“ %) (I, nz) {(HZK:GH ni) + (Hfioﬂ n; X Zj;f,éw;ld %’)}
(Equation3.3) (Equation3.5) (Equation3.10)

Table 5.1: Numerical approaches comparison

The Shufflenethod is based on the Kronecker algebra and stores onlys@taices with dimen-
sions corresponding to the automata sizes and their sparsitorrespondent to the transitions where

5.1. THESIS SUMMARY 71

each event occurs. Ttgparsemethod, on the contrary, considers the tensor product agjaeilarge
matrix, aggregating these small matrices in one, througttétimbination of their non-zero elements
in the correspondent positions. T8plitmethod performs matrices aggregations to compose a sparse
part to be multiplied by the structured part in the tensomfat. It basically needs a definition of a
cut-parameteir associated to each Kronecker term, indicating the boundhfdrices aggregations
on its left side, and for structure maintenance on the riglg. s

In terms of CPU time, th&hufflealgorithm underperforms in time per iteration with any kifd
balancing of theut-parameter in the classical Kronecker descriptoesented, mainly due to the
shuffling process that is avoided in the sparse part whemy@piit The extra memory spent, which
is balanced according @, allows faster iterations and consequently less compunatitime for the
solution of models. We consider ti&plit method as fast as tH&parsewithout loosing the storage
features obtained with Kronecker-based descriptors.

| Models (Section 3.2.2) | size (-Mb) | Splitgains () |

Resource Sharin¢lLl0_20 2.32 3.25
Resource Sharinfll 14 3.44 3.23
Resource Sharin@l3_13 10.61 2.69
Resource Sharin(ll4_ 1] 17.89 2.64
Dining Philosopherg6) 0.02 2.00
Dining Philosophergg) 0.24 3.03
Dining Philosopherg10) 3.94 2.67
Dining Philosopherg11) 7.21 2.13
First Available Serve(12) 0.07 6.39
First Available Serve(14) 1.04 8.30
First Available Serve(16) 2.07 8.70
First Available Serve(18) 16.51 8.21
Ad Hoc WSN10) 0.17 5.70
Ad Hoc WSN12) 1.43 4.64
Ad Hoc WSN14) 13.22 5.34
Ad Hoc WSN16) 115.34 5.36
Master-Slaveo) 3.11 3.77
Master-Slaves) 27.57 3.70
Master-Slave10) 234.96 3.88
Master-Slaveé12) 2,229.01 3.94

Table 5.2:Splitgeneral performance compared w&huffle

Table 5.2 presents a brief review of tBelit algorithm gains compared to tighufflealgorithm,

*The generalized Kronecker descriptors can be translateldssical Kronecker descriptors through the insertion of
new synchronizing events [13].

72 CHAPTER 5. CONCLUSION

considering some results showed in the Chapter 3 (Sect2?)3The columrsizeis expressed in/b
representing the memory cost to run 8itapproach. The columgainsindicates how many times
the Split algorithm is faster thaishuffleconsidering a complete vector-descriptor produet,the
times used to calculate tH&plit gains are the computational time spent to multiply a prdigbi
vectorv by adescriptorQ.

Note that for many models the memory spent in the solutionigmproblem, even when we reach
the total of~2.18Gb to obtain a fast resulM@ster-Slavenodel with12 slaves). Additionally, one
can balance theut-parameterr to spent less memory and still be faster ttgiwffle For all other
huge models (the last variation of each class of model) th@ong spent lies between 7.21Mb and
234.96Mb. Observing the gains for all examples, small angkelalike, theSplit gains in terms of
computational time (after finding well-fittecut-parametergor each tensor term in the descriptors)
are at least twice as better than Bleufflealgorithm. The time gains for one iteration presented here
represent an expressive overall gain in the solution witikesative method as seen in the Section 3.3.

5.1.2 The exact simulation

The other direction developed in this thesis considersfareiit SANdescriptorrepresentation as
a discrete-event system to cope with the storage requirsnadren they exceed the current memory
capacity. The system representation uses transitionins;trunning iterations for a long time until
a stop criteria.

. . . . Backward simulation
Forward simulation Backward simulation
(Monotone system)
CPU time fixed number of iterations dependent of coupling timesdependent of coupling times
Memory one state size dependent ot ” size dependent o’ size
Results distributed no yes yes
according stationary regime? (bias samples) (exact samples) (exact samples)
. S valid initial states system must be monotone
Constraints a valid initial state
(reachable state space) (extremal states)
. cp X T* |XE] x ET X cp |XM| x 2ET X cg
Complexity (Equation4.1) (Equation4.2) (Equation4.3)

Table 5.3: Simulation approaches comparison

Table 5.3 shows a summarized comparison among the simulagiproaches considering CPU
time, results distribution according stationary reginenstraints and complexity cost. TRerward
simulation is included in the comparison because it is tis¢ dipproach to simulate SAN specifically

5.1. THESIS SUMMARY 73

focusing on the network dynamics, adapting the model statesitions as a simulation kernel [57].
Such model-driven approach was implemented starting fromealefined global state, running for-
ward steps.

Section 4.1 explained the drawbacks of running forward &tmans such as the problem of se-
lecting the initial state to start the simulation, the uedetined size of théransientperiod and the
consequent generation of bias samples. Note that in thexositthis thesis we worked with back-
ward coupling simulation techniques such aspgkéect samplindpecause it certainly generates ex-
act samples. Moreover, focusing in the structural aspdatsodels one can verify the monotonicity
property and perform specialized solutions such as the toaedackward coupling simulation. The
advantage of using the perfect sampling approaches is dtietfact that one can generate exact
samples avoiding the stopping criteria problem [56].

The perfect sampling for SAN is an alternative for the nuarsolution since it has a smaller
memory demand if the model presents the monotonicity ptgpéihis is basically the reason why
the structural formation is highly important. Componenseumodels such as tli@ueueing Network
and theDining Philosophersare explored deeply in the Section 4.3.1 because both haweises
that helps reducing the impact of the state space exploSioa.procedure to obtain extremal initial
states (Algorithm 4.5) is the first initiative in SAN towartie state space reduction based on the
exploitation of component-wise state spaces.

Analyzing the results presented in the Section 4.4.2, weothstnate expressive gains overcoming
the current numerical solution limitation in terms of pretistate space, solving models which are
too massive to run on our target machine using the curreneimgntation ofPEPS The examples
were extended to beyond 65 million states, from 67 million to nearly 1 billion states (Table 4.2)
and still our procedure was capable of producing unbiasexgtes for later statistical analysis.

In conclusion, simulation allows us to solve huge modelsiaprbvides an approximated result,
which means that the value obtained with numerical methoelgaide the corresponding simulation
confidence intervals. The remaining challenge is that timeilsition times are still very long mainly
because there is a need of specialized structures and patiams in the algorithms proposed which
are listed in the future works section.

5.1.3 Thesis general contribution

This thesis focused on the numerical solution of the strectdormalism SAN, in which the
modeling simplicity and modularity brings together thas&xplosion problem. The automata cardi-
nalities are combined generating a product state spaocevhich only a subset of states is reachable,
forming the X # set. The available numerical solutions are basically filegaolvers for Kronecker
representations (sets of transition matrices), implegteim thePEP Ssoftware tool environment, and

74 CHAPTER 5. CONCLUSION

a first approach to simulate SAN [57] was based on forwardnigcies. Considering that structured
formalisms in general take advantage of their modelingauttaristics as the key for performance and
flexibility of their iterative solutions, the idea in thisghis was to exploit the natural models structure
in hybrid and alternative numerical approaches, resultiran efficient, or at least effective, manner
to solve certain classes of huge structured models.

Figure 5.1 presents the thesis contributions graphicalipwing the modeling phase evolution
until the statistical analysis phase, in which the modelsuess can be calculated over the probability
vectorr generated by the numerical solutions. A model is a discyeties and the description can be
expressed using sparse matrices and Kronecker operaformge Markoviandescriptor A model
can also be described as a table of discrete events andtitvarfsinctions, defining a simulation
kernel. After that, different techniques could be employedjenerate the states probabilities as
output. The state space explosion problem, present in Ipgioaches, can affect also the solution
phase, not only the modeling phase, and its impact is médyaith two different perspectives.

\ MODELING PHASE || SOLUTION PHASE
GRAPHICAL MODEL | DISCRETE SYSTEM NUMERICAL SOLUTION STATISTICAL
") o ‘ ANALYSIS
A A ‘ Markovian = : Iterative Methods
: Descriptor —Vector—descriptor produgt m
X(®Q) ‘

' State
Space
: Explosion

Probability vectorr
-measures (f)

Discrete—events

(e1...e5)
Transition Function %fl>
Structured Markov Chain : D(s,€) ‘
—Stochastic Automata Network -

Simulation Methods
—Exact Simulation

Figure 5.1: Thesis contributions scheme

It is out of the scope of this thesis to propose new storagsifives for the state space explosion
problem found in the modeling phase of systems. The huge@eamsed in the Chapters 3 and 4 are
easily extended due to the modularity and available featof¢he SAN formalism. Also the model
reachability function can be (partially) defined in the miaugprocess using specific primitives.

The iterative solution is optimized through the propositad new vector-descriptor product op-
erations, theSplit algorithm. The use of a Kronecker representation guarargeaemory-efficient
storage, however the shuffling process involved can be ctatipnally onerous, depending on the
matrices dimensions and the number of nonzero elementssiigpa The splitting process applied
to the tensor terms aims to reduce the computational coslvied in calculating indexes to access

5.1. THESIS SUMMARY 75

the vectors positions, replacing it for an extra memory erdeahen aggregating a subset of sparse
matrices. There are many models where the synchronizagiensiade between few automaita,,

the matrices can be ultra-sparse[16] and aggregated in angesfficient way. A faster execution for
large tensor terms reduces the impact of huge state spattesiterative approach.

The simulation solution is proposed through the adaptaifqgerfect sampling techniques in the
context of SAN. The backward coupling procedures are not ongrefficient because we need to run
as much parallel trajectories as the reachable states ofdabel. Due to this, the study of models with
component-wise structures and partial ordering can be wseful since one can reduce the number
of trajectories in parallel and obtain optimized solutisash as those provided in monotone versions.
Table 5.4 generically shows a comparison among the progmations to reduce the impact of state
space explosion in terms of CPU time, number of iteratioregled and constraints involved in each
solution, considering that both can produce accuratetesudlifferent ways.

| | Vector-descriptor product

Perfect sampling |

. fixed number of operations variable coupling times
CPU time . . .
(per iteration) (per sample generation)
) . undefined until convergencedepending of the number of samples
Number of iterations . . ! .
(fixed precision) (confidence interval)

Results distributed

according stationary regimg? yes yes
Results accuracy exact solution very approximated solution
Constraints X size X size or monotonicity

Table 5.4: Numerical and simulation approaches comparison

The traditional iterative method performs a fixed numberpdrations (floating point multiplica-
tions) in each iteration, and iterates successively untdaches the steady-state, in an unpredictable
number of steps. It is quite different using transition fuimes in simulation kernels, mainly using
the perfect sampling procedure, where there is no fixed nuoftaperations to achieve the coupling
of trajectories generating an exact sample (although iagdshappens in a finite number of steps).
However, we can establish a number of steps to run (sampledlext) based on an allowed preci-
sion to obtain the result approximation. Besides, modelsmess can be directly calculated at each
sample generation and the number of replications is dem¢iodéhe allowed precision.

In the Section 4.4.2 the Tables 4.1 and 4.2 showed that huglmare impossible to solve
with the currentPEPSsoftware tool due to the size df, and thex'” contraction inY to run the
alternative solution which is based on perfect samplingroeming the state space explosion. The
costs in memory are also drastically reduced since for nommoversions it is sufficient the storage

76 CHAPTER 5. CONCLUSION

of the coupling vector with extremal elements (instead efdtbmplete reachable state space).

However, in iterative solutions, it is mandatory to store Whole state space (considering that
we have no sparse implementations for the vector) at leasetio perform the traditional vector-
descriptor product. In the simulation approaches, theag®pf a vector ofX ! positions is needed
only for the statistical analysis of samples. In order tol dath this possible memory bottleneck,
one can devise a method to consider only measures of interesject unnecessary samples. This
means that monotone backward coupling methods could be memory-efficient just improving
the sampling procedure.

Concluding, the main thesis results are situated in twoiSpelirections:

e application of classical tensor algebra properties suchesdditive decomposition of tensor
products, and matrices aggregation for the use of sparbeitpes to accelerate the solution
of Kronecker-structured models. Huge descriptors haveyrdanomposed tensor terms, so we
present a definition of a more time-efficient algorithm foe thultiplication of huge vectors
by complex structures based on Kronecker operations amuarges matrices (called vector-
descriptor product);

e application of advanced simulation techniques based okwzad coupling for complex struc-
tures such as those provided by SAN, reducing the impacedttite space explosion problem
which can avoid the use of iterative solutions. It is analyaecomponent-wise structure to
take advantage of the monotonicity property of events fatesspace contraction, and then a
consequent memory-efficient backward simulation is predid

5.2 Open Problems and Future Works

The analysis of large Markovian models suffers from stateegxplosion and future researches
may focus on the limiting factors for solutions which areibally memory and time. Apart from us-
ing sophisticated computational representations for goamtdescriptor storage, the SAN formalism
demands new efficient analysis techniques exploiting theéeatsostructure. Due to this it is natural
to take advantage of its power of modeling (functional ptives and synchronized interaction of
disjoint components) also in the solutions.

The Splitalgorithm is proposed to classical Kronecker descriptorthe next step is the proposi-
tion of a generalized version which can solve matrices witicfional rates instead of only constant
ones. A similar work about these functional dependencigsléntensor terms changed completely

5.2. OPEN PROBLEMS AND FUTURE WORKS 77

the performance of th8hufflealgorithm [37]. One can estimate that similar gains withctional
dependencies analysis (and possible automata permwwatioud benefit th&plitalgorithm as well.
However, the main aspect related to its performance is e@ifirom the flexibility proposed in the
treatment of the structured representation as seen in tapt@h3. A clearly open problem is the
choice of the division point in each tensor product term {©b®f the cut-parameter) and, even
more important, the choice of matrices permutations ineénms$ providing a more efficient aggrega-
tion at left and few multiplications at right.

The research for an heuristic to automatically choose afaatory permutation of matrices and
the cut-parameter for each tensor product, is a considerable challenge. iEhist a trivial task,
due to the tensor product term formation and intrinsic magidetails such as dimensions, total of
nonzero elements and computational cost in multiplicatiorhese parameters open the possibility
of a thorough analysis of the related theoretical companaticost to obtain a generalized version for
the Split algorithm, with a finite set of rules for the proper definitiohthe cut-parameteibased on
matrices properties and permutations.

This thesis also introduced an advanced simulation tedenfoerfect samplingto the context
of SAN using its underlying system dynamic expressed bydfiit events in descriptor A future
work in this direction is the development of optimized prdgees to find extremal states in general
chains, not only in those underlying component-wise modslgresented in the Chapter 4. Also
theoretical improvements are needed for a deep underatantithe transition functio® properties
and the bounds on the coupling time

There are researches conducted towards to the improverhdrg simulation complexity using
variance reduction techniques and functional coupling{&accelerate the samples generation. Pre-
liminary results shows that for the component-wise modelw/hich the numerical solution is no
longer possible with PEPS, perfect sampling techniques aemasonable alternative. A qualitative
analysis of SAN through new tools to facilitate the compredien of complex interactions among
automata could provide benefits from the structural aspects

Additionally, since simulation uses statistical tech@guo analyze output data, and structured
analytical models can have thousands of reachable stdtested during these experiments, a func-
tional analysis can help maintaining the memory resouasanageable limits, using these methods
based on the coupling of parallel trajectories. Avoiding storage of a huge vector is possible con-
sidering specific of measures of interest as parameterbdaampling procedure.

The numerical methods proposed for the SAN formalism in thesis, beyond their inherent
complexity, could be enhanced using parallel implemenatsince both algorithms present a natural
independence of operations. TBeglit algorithm allows independence among normal factors due
to the additive decomposition property exploited. The eenmoducts can be analyzed separately

78 CHAPTER 5. CONCLUSION

without the need to share the probability vector during iplidiation. Theperfect samplingenerates
independent and exact samples so one can also run indep&ademes of experiments without any
solution bias. An interesting aspect for future researgbairallelization should consider the amount
of memory needed, the processing demands (the number affgadint multiplications or transition
function operations), volume of data exchanged (size dbrerto be as evenly as possible distributed
among parallel machines.

In the future we hope that the development and optimizatdtisese approaches may, virtually,
have no size bound, since neither the transition matrix tm@probability vector would need to be
stored as a single matrix or vector. Such possible appdicatwill only have to deal with the time
bound optimization, then the solution of models with thawgsaof million states will become as usual
as our current tens of millions bound.

79

Bibliography

[1]

M. Ajmone-Marsan, G. Conte, and G. Balbo. A Class of Gafieed Stochastic Petri Nets
for the Performance Evaluation of Multiprocessor Syste®A€M Transactions on Computer
Systems2(2):93-122, 1984.

[2] V. Amoia, G. De Micheli, and M. Santomauro. Computer&ted Formulation of Transition-

[3]

[4]

Rate Matrices via Kronecker AlgebraEEE Transactions on ReliabilityR-30(2):123-132,
1981.

L. Baldo, L. Brenner, L. G. Fernandes, P. Fernandes, argbfes. Performance Models for Mas-
ter/Slave Parallel Program<lectronic Notes In Theoretical Computer Scient28(4):101—
121, April 2005.

L. Baldo, L. G. Fernandes, P. Roisenberg, P. Velho, and/d@bber. Parallel PEPS Tool Per-
formance Analysis using Stochastic Automata Networks. IrDdnelutto, D. Laforenza, and
M. Vanneschi, editordnternational Conference on Parallel Processing (Eura-2804), vol-
ume 3149 oL NCS pages 214-219, Berlin, Germany, December 2004. Sprivigrgag Heidel-
berg.

[5] A. Benoit, L. Brenner, P. Fernandes, B. Plateau, and \8téwart. The PEPS Software Tool.

In Computer Performance Evaluation (TOOLS 2Q0&)lume 2794 ofLNCS pages 98-115.
Springer-Verlag Heidelberg, 2003.

[6] A. Benoit, P. Fernandes, B. Plateau, and W. J. Stewart.th@rbenefits of using functional

transitions and Kronecker algebf@erformance Evaluatiqrb8(4):367—390, December 2004.

[7] A. Benoit, B. Plateau, and W. J. Stewart. Memory-effitig&nonecker algorithms with appli-

[8]

cations to the modelling of parallel systenfaiture Generation Computer SysterB2(7):838—
847, 2004.

C. Bertolini, L. Brenner, P. Fernandes, A. Sales, and.Ad¥zo. Structured Stochastic Model-
ing of Fault-Tolerant Systems. Proceedings of the 12th IEEE/ACM Internacional Symposium

80 BIBLIOGRAPHY

on Modelling, Analysis and Simulation on Computer and Tetenunication Systems (MAS-
COTS'04) pages 139-146, Volendam, The Netherlands, October 2B&E Press.

[9] A. A. Borovkov and S. G. Foss. Two ergodicity criteria &tochastically recursive sequences.
Journal Acta Applicandae Mathematicae: An Internationah&y Journal on Applying Math-
ematics and Mathematical Applicatiqrg:125-134, February 1994.

[10] A. Bouillard and B. Gaujal. Backward coupling in petgts. InProceedings of the 1st interna-
tional conference on Performance evaluation methodotogral tools (Valuetools’06page 33,
New York, NY, USA, 2006. ACM Press.

[11] A. Bouillard and B. Gaujal. Backward Coupling in BoumbEree-Choice Nets Under Marko-
vian and Non-Markovian AssumptionBiscrete Event Dynamic Systems: Theory and Applica-
tions 18(4):473-498, December 2008.

[12] L. Brenner, P. Fernandes, J. M. Fourneau, and B. PlaMadelling Grid5000 point availability
with SAN. In Proceedings of the Third International Workshop on Praati&pplications of
Stochastic Modelling (PASM’08pages 149-162, 2008.

[13] L. Brenner, P. Fernandes, and A. Sales. The Need for aadAtvantages of Generalized
Tensor Algebra for Kronecker Structured Representatibmisrnational Journal of Simulation:
Systems, Science & Technology (1JSIB{B-4):52—60, February 2005.

[14] P. Buchholz. A distributed numerical/simulative aliglom for the analysis of large continuous
time Markov chains. InProceedings of the eleventh Workshop on Parallel and Misted
Simulation (PADS'97)pages 4—11, Washington, DC, USA, 1997. IEEE Computer §ocie

[15] P. Buchholz. A new approach combining simulation anttianization for the analysis of large
continuous time Markov ChainsACM Transactions on Modeling and Computer Simulation
(TOMACS) 8(2):194-222, 1998.

[16] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. @taxity of memory-efficient Kro-
necker operations with applications to the solution of Marknodels. INFORMS Journal on
Computing 12(3):203-222, July 2000.

[17] P. Buchholz and P. Kemper. Hierarchical reachabiligpdy generation for Petri net§ormal
Methods in Systems Desigiil(3):281-315, 2002.

[18] A. Busic, B. Gaujal, and J. M. Vincent. Perfect simudatiand non-monotone Markovian sys-
tems. InProceedings of the 3rd international Conference on Perforoe Evaluation Method-
ologies and Tools (ValueTools’§)ages 1-10, Athens, Greece, October 2008.

BIBLIOGRAPHY 81

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Y. Cai. A non-monotone CFTP perfect simulation meth@&tatistica Sinical5(4):927-943,
2005.

R. Chanin, M. Corréa, P. Fernandes, A. Sales, R. SchedrA. F. Zorzo. Analytical Modeling
for Operating System Schedulers on NUMA SystemsPioceedings of the Second Interna-
tional Workshop on the Practical Application of StochaMiedeling (PASM 2005)olume 151
of Electronic Notes in Theoretical Computer Scignuages 131-149, June 2006.

G. Ciardo, M. Forno, P. L. E. Grieco, and A. S. Miner. Carnpg implicit representations of
large CTMCs. InProceedings of the 4th International Conference on the NigaleSolution of
Markov Chains (NSMC 2003pages 323—-327, September 2003.

G. Ciardo, R. L. Jones, A. S. Miner, and R. SiminiceanlMART: Stochastic Model Ana-
lyzer for Reliability and Timing. InTools of Aachen 2001 International Multiconference on
Measurement, Modelling and Evaluation of Computer-Comoation Systemspages 29-34,
September 2001.

G. Ciardo and A. S. Miner. Storage Alternatives for Laffructured State Spaces.Aroceed-
ings of the 9th International Conference on Modelling Teghas and Tools for Computer Per-
formance Evaluatioyvolume 1245 o NCS pages 44-57. Springer-Verlag Heidelberg, 1997.

R. M. Czekster, P. Fernandes, J.-M. Vincent, and T. WebBplit: a flexible and efficient al-
gorithm to vector-descriptor product. FProceedings of the 2nd international conference on
Performance evaluation methodologies and tools (ValusT@o), volume 321 ofACM Interna-
tional Conference Proceeding Seri@ussels, Belgium, Belgium, 2007. Institute for Computer
Sciences, Social-Informatics and Telecommunicationsrigsging (ICST).

B. A. Davey and H. A. Priestleylntroduction to Lattices and OrderCambridge University
Press, Cambridge, UK, 2nd edition, 2002.

M. Davio. Kronecker Products and Shuffle AlgebrdEEE Transactions on Computers
30(2):116-125, February 1981.

D. D. Deavours and W. H. Sanders. An Efficient Disk-Ba3ed! for Solving Very Large
Markov Models. InProceedings of the 9th International Conference on ComRRégformance
Evaluation: Modelling Techniques and Togl®lume 1245 of. NCS pages 58-71, 1997.

D. D. Deavours and W. H. Sanders. On-the-fly Solutiorhifegues for Stochastic Petri Nets and
Extensions. IfProceedings of the 6th International Workshop on Petri Nets Performance
Models (PNPM’97)pages 132-141, Washington, DC, USA, 1997. IEEE Computeie§o

82 BIBLIOGRAPHY

[29] F. Delamare, F. L. Dotti, P. Fernandes, C. M. Nunes, an@.LOst. Analytical modeling of
random waypoint mobility patterns. FProceedings of the 3rd ACM international workshop on
Performance evaluation of wireless ad hoc, sensor and utoigs networks (PE-WASUN'06)
pages 106—-113, New York, NY, USA, 2006. ACM Press.

[30] X. K. Dimakos. A Guide to Exact Simulatiorinternational Statistical Reviews9(1):27-48,
2001.

[31] S. Donatelli. Superposed stochastic automata: a dassochastic Petri nets with parallel
solution and distributed state spa@arformance Evaluatiqri8(1):21-36, July 1993.

[32] S. Donatelli. Superposed generalized stochastic Rets: definition and efficient solution. In
R. Valette, editorProceedings of the 15th International Conference on Apgilbtms and Theory
of Petri Nets pages 258-277. Springer-Verlag Heidelberg, 1994.

[33] S. Donatelli. Kronecker Algebra and (Stochastic) Pdets: Is It Worth the Effort? In J. M.
Colom & M. Koutny, editorProceedings of the 22nd International Conference on Appbns
and Theory of Petri Nefsvolume 2075 ofLNCS pages 1-18, London, UK, 2001. Springer-
Verlag Heidelberg.

[34] F. L. Datti, P. Fernandes, A. Sales, and O. M. Santos. WerdAnalytical Performance Models
for Ad Hoc Wireless Networks. IRroceedings of the Third International Symposium on Mod-
eling and Optimization in Mobile, Ad Hoc, and Wireless NetwqWiOpt'05) pages 164-173,
Washington, DC, USA, April 2005. IEEE Computer Society.

[35] A. G. Farina, P. Fernandes, and F. M. Oliveira. Reprisgrsoftware usage models with
Stochastic Automata Networks. Rroceedings of the 14th International Conference on Soft-
ware Engineering and Knowledge Engineeripgges 401-407. ACM Press, 2002.

[36] P. Fernandes and B. Plateau. Modeling Finite Capacitgu@ing Networks with Stochastic
Automata Networks. IiProceedings of the 4th International Workshop on Queueiegvirks
with Finite Capacity (QNETs 2000pages 1-12, July 2000.

[37] P.Fernandes, B. Plateau, and W. J. Stewart. Efficiesdrgeor-vector multiplication in Stochas-
tic Automata NetworksJournal of the ACM SIGMETRICS (JACMB(3):381-414, May 1998.

[38] P. Fernandes, J. M. Vincent, and T. Webber. Perfect Bitimn of Stochastic Automata Net-
works. InProceedings of 15th International Conference on Analyaecal Stochastic Modelling
Techniques and Applications (ASMTA'O8blume 5055 ofLNCS pages 249-263. Springer-
Verlag Heidelberg, June 2008.

BIBLIOGRAPHY 83

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

J. A. Fill and M. Machida. Stochastic Monotonicity aneédizable Monotonicity.Annals of
Probability, 29(2):938-978, 2001.

J. M. Fourneau, I. Kadi, N. Pekergin, J. Vienne, and J.Mihcent. Perfect simulation and
monotone stochastic bounds. Pmoceedings of the 2nd International Conference on Perfor-
mance Evaluation Methodolgies and Tools (VALUETOOLS'@Gume 321 ofACM Interna-
tional Conference Proceeding Serigages 65—73, Brussels, Belgium, Belgium, 2007. Institute
for Computer Sciences, Social-Informatics and Telecomoations Engineering (ICST).

S. Gilmore and J. Hillston. The PEPA Workbench: A TooBiopport a Process Algebra-based
Approach to Performance Modelling. FProceedings of the 7th international conference on
Computer Performance Evaluation : modelling techniquesbtanls pages 353—-368, Secaucus,
NJ, USA, 1994. Springer-Verlag New York, Inc.

P. Glasserman and D. D. YadMonotone structure in discrete-event systemdishn Wiley &
Sons, Inc., New York, NY, USA, 1994.

O. Haggstrom. Finite Markov Chains and Algorithmic ApplicationgCambridge University
Press, Cambridge, UK, 2002.

J. Hillston. A compositional approach to performance modelli@ambridge University Press,
New York, USA, 1996.

J. Hillston and L. Kloul. An Efficient Kronecker Repregation for PEPA models. In L. de Al-
faro and S. Gilmore, editor®roceedings of the First joint PAPM-PROBMIV Workshqg@ges
120-135. Springer-Verlag Heidelberg, September 2001.

V. V. Lam, P. Buchholz, and W. H. Sanders. A StructurethHzased Approach for Computing
Transient Rewards of Large CTMCs. Rroceedings of the The Quantitative Evaluation of
Systems, First International Conference on (QEST, ' §dpes 136-145, Washington, DC, USA,
2004. IEEE Computer Society.

V. V. Lam, P. Buchholz, and W. H. Sanders. A componewrgl@ath-based simulation approach
for efficient analysis of large Markov models. Bioceedings of the 37th conference on Winter
simulation (WSC’05)pages 584-590. Winter Simulation Conference, 2005.

A.M. Law and W. D. Kelton. Simulation Modeling and AnalysisMacGraw-Hill, New York,
USA, 1991.

84 BIBLIOGRAPHY

[49] L.Brenner, P.Fernandes, B.Plateau, and |.Sbeity. 32BB7 - Stochastic Automata Networks
Software Tool. InProceedings of the 4th International Conference on Quatmi Evaluation
of Systems (QEST 200 prges 163-164. IEEE Press, 2007.

[50] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morri€apacity of Ad Hoc Wireless
Networks. InProceedings of the 7th Annual International Conference abil@ Computing
and Networkingpages 61-69. ACM Press, July 2001.

[51] T. Lindvall. Lectures on the Coupling Methodlohn Wiley & Sons, Inc., New York, USA, 1992.

[52] A. S. Miner and G. Ciardo. Efficient Reachability Set @eation and Storage Using Decision
Diagrams. InProceedings of the 20th International Conference on Apgilimis and Theory
of Petri Nets (ICATPN’99)volume 1639 oLLNCS pages 6-25, Williamsburg, VA, USA, June
1999. Springer-Verlag Heidelberg.

[53] L. Mokdad, J. Ben-Othman, and A. Gueroui. Quality of\Beg of a Rerouting Algorithm Using
Stochastic Automata Networks. Rroceedings of the 6th IEEE Symposium on Computers and
Communicationgpages 338—-343. IEEE Computer Society, July 2001.

[54] B. Plateau. On the stochastic structure of parallelsithsynchronization models for distributed
algorithms. ACM SIGMETRICS Performance Evaluation Revig8(2):147-154, August 1985.

[55] B. Plateau and K. Atif. Stochastic Automata Networks rfimodelling parallel systemdEEE
Transactions on Software Engineerjrig/(10):1093-1108, October 1991.

[56] J. G. Propp and D. B. Wilson. Exact Sampling with Coupléairkov Chains and Applications
to Statistical MechanicsRandom Structures and Algorithp®1-2):223-252, 1996.

[57] W. J. Stewart R. Jungblut-Hessel, B. Plateau and B. tYchast simulation for Road Traffic
Network. RAIRO Operational ResearcB5(2):229-250, June 2001.

[58] S. M. Ross.Simulation Academic Press, Inc., Orlando, FL, USA, 2002.

[59] Y. Saad.lterative Methods for Sparse Linear Systefg/S Publishing Company, Boston, MA,
USA, 1995.

[60] O. Stenflo. Ergodic Theorems for Markov chains représgiby Iterated Function Systems.
Bulletin of the Polish Academy of Sciences, Mathemadi@€l):27—43, 2001.

[61] W. J. Stewart.Introduction to the numerical solution of Markov chainBrinceton University
Press, Princeton, NJ, USA, 1994.

BIBLIOGRAPHY 85

[62] C. Tadonki and B. Philippe. Parallel Multiplication afVector by a Kronecker Tensor Product
of matrices.Parallel numerical linear algebrapages 71-89, 2000.

[63] J.-M. Vincent. Perfect simulation of monotone systdargare event probability estimation. In
Proceedings of the 37th Conference on Winter Simulapages 528-537. Winter Simulation
Conference, 2005.

[64] J.-M. Vincent. Perfect Simulation of Queueing Netwsnkith Blocking and Rejection. In
Proceedings of the 2005 Symposium on Applications and teenkt Workshopages 268—
271, Washington, DC, USA, 2005. IEEE Computer Society.

[65] J.-M. Vincent and C. Marchand. On the exact simulatibfuactionals of stationary Markov
chains.Linear Algebra and its Application886:285-310, 2004.

[66] J.-M. Vincentand J. Vienne. Perfect simulation of irth@sed routing queueing networksCM
SIGMETRICS Performance Evaluation Revi8d(2):24-25, 2006.

86

BIBLIOGRAPHY

87

Appendix A

SAN Examples

This appendix presents the following SAN models descnstiosed as examples for numerical
and theoretical results. Their graphical representatoeslso included here.

- a simple queueing network model (A.1);

- aresource sharing model with a pool of resources (A.2);

- thedining philosophersnodel in two versions (with and without resource reservgt(@.3);
- a model to analyze servers availability (A.4);

- a model to analyze an ad hoc wireless sensor network (A.5);

- a model to analyze a parallel implementation (A.6).

A.1 Queueing Networkmodel

We introduce this section with a queueing system converisian SAN model [36] whose the
translation is trivial considering the interaction amongges and the independent behavior of client
arrivals and some departures. Figure A.1 represents asiguaueing network with two queues of
capacities given by;, the arrival rate in the systemads, the routing rate between queuesis(with
loss), and departure rate of the second queug.is

The equivalent SAN model has two automatd andA® representing both queues respectively,
and three events composing the &édsincee; ande, are local events, anel, is a synchronizing
event between automata) with their constant rates. In gereach queue can be represented by an
automatonA® composed ofi; + 1 states representing the number of clients in the quesethe

88 APPENDIX A. SAN EXAMPLES

Queueing network model

« o Q3
1 Kl 2 KQ 3
i A A

Equivalent SAN model

AW A®
@ @ Type| Event| Rate
loc (] %1
€12 f/ > ey es < \1‘(312 Syn €12 (8%)
\ :X loc €2 a3

. '> h
212 \ 1 22 ’/ °12

OO,

€1 €12

Figure A.1: Queueing network and equivalent SAN model

state0 represents that a queue is empty, and the sfétew K, represent that the queue is full). The
product state spac¥ of this model is formed by K + 1) x (K, + 1) global states. All states are
reachable in this model. Despite of that, one can define apegachability indicating, for example,

that both queues are emptf* = (st A1) == 01)) && (stA? == 0?),

A.2 Resource Sharingnodel

Figure A.2 represents a classical resource sharing systdmAnprocesses sharing resources.
Each process is represented by an automator{i = 1 ... P) composed of two statest”) (sleeping)
andu® (using). A resource pool is represented by the automatéri’ and it hask + 1 states
indicating the number of resources in use.

The model presents only synchronizing events composingdtig since the events:; represent
the acquiring of a resource with constant rateand the eventsr; represent the release of a resource
with constant rate;. The product state spaééof this model is formed bg” x (R+ 1) global states.
One can define a partial reachability function indicatimg,éxample, that the number of automata in
the sleeping state? is equal toP, i.e. all processes are sleeping? = (nb A® [50]) == P;

A.3. DINING PHILOSOPHERSVIODEL 89

@ @ ea e

eap erp
Event| Rate| Event| Rate

eay ery
eaq)\1 er M1 : :

eap erp

eas | Ao ery | o @)
eas | A3 | ers | us

B)

Figure A.2: Classical resource sharing SAN model

eap

A.3 Dining Philosophersmodel

This section presents another classical performance nmdehlyze mutual exclusion in resource
sharing. The modeling abstraction is called di@ing philosophers problemnd is summarized &s
philosophers sitting at a table doing one of two things +eptir thinking.

of, A%
oy &

Figure A.3: Dining Philosophers table configuration

The philosophers sit at a circular table (Figure A.3) witai@é bowl of food in the center. A fork
I} is placed between each philosoplier and as such, each philosopher has one fork to his left and
one fork to his right. The philosopher must have two forkdliatsame time) to eat.

90 APPENDIX A. SAN EXAMPLES

A.3.1 Dining Philosophersmodel (with resource reservation)

The SAN model in Figure A.4 hak automataPh®) representing the philosophers, each one
with three statesTh®) (thinking), Lf*) (taking left fork), Rf* (taking right fork). The model
allows one fork reservation to after acquiring the secomk.fo

Ph(l\')

loc | [t L
syn tr; Ai
syn ril; A

loc i | BK
syn tlx K
syn | Irg | A\g

Figure A.4: Dining Philosophers SAN model with reservation

The philosopher can reserve the fork on his immediate leftght waiting for eating with two
available forks. To avoid deadlock is established an ongetd get the forks in the table, for each
philosopher in the model. Then the model presents synchirapévents with constant rates for taking
the right and left forkst;, rl;, tlx andiry) and local eventsi{; andrt) representing the release
of forks. The product state spadeé of this model is formed by® states. The partial reachability
function can be defined, for example, indicating that allggophers are thinking, so the number of
automata in the thinking staféh*) is equal tok: F* = (nb PR®) [Th®) |) == K;

A.3.2 Dining Philosophersmodel (without resource reservation)

The SAN model in Figure A.5 hak automataP®) representing the philosophers, each one with
two states7'(®) (thinking) andE*) (eating). The stat&*) supposes the philosopher required both
forks at the same time to eat, without reserving earlier tis¢fiork to then take the second.

A.4. FIRST AVAILABLE SERVER MODEL 91

1 i I(

teK feLH ' TPA
@ Type| Event| Rate
loc ety L
tey syn te Ak
1= 2

Figure A.5: Dining Philosophers SAN model without reseiwat

Then the model presents synchronizing events with consttes for eatingiex) and local events
(et) representing the release of forks returning to thinkinige Pproduct state space of this model
is formed by2” states. The partial reachability function can be definedefample, indicating that
all philosophers are thinking, so the number of automatdénthinking statel’®) is equal tokX:
Fl = (nb PR® [TR]) == K;

A.4 First Available Servermodel

This section presents a model to analyze server availabiimsideringV servers. Each server
A® has two statesI”) (idle) andB® (busy). In this example, packages arriving aeavers switch
block depart through the first output port (or server) that is nstybas long as at least one server is
not blocked.

AW A0) AW
Type | Event| Rate
" @
loc | er 1%
syn | eas A
TN €an loc ery I
& el
‘ loc | ery n

easy..ean eq;i1..eaN

Figure A.6: First available server SAN model

The SAN model in Figure A.6 can be viewed as a framework folyamof different queueing
systemsé.gcall centers lines occupation). Each package in the queuadance as soon as possible
to the first available server without preferring one overthan(.e., the priority of servers is given by
themselves).

92 APPENDIX A. SAN EXAMPLES

The model has synchronizing events (: = 2... N) turning the servers busy. The local events
are: ea; (package arrival) andr; (to turn the servers idle). All events present constansraiée
product state spac¥ of this model is formed byp” states. The partial reachability function can be
defined, for example, indicating that all servers are idié* = (nb A®) [[V]) == N;

A.5 Ad Hoc Wireless Sensor Networkodel

The SAN model in the Figure A.7 represents a chain of four teaiwdes in a Wireless Sensor
Network (Ad Hoc WSN model) running over tt$®2.11 standard for ad hoc networks. This model
[34] resembles the ad hoc forwarding experiment presemt¢80] using SAN. The chain can be
generically modeled withV nodes, where the first nodet V! (Sourceautomaton) generates the
packets as fast as the standard allows. The packets arerfi@dvehrough the chain by theelay
automata called N, where the variable is among the value and (N — 1), until the last node
MNW) (Sinkautomaton).

MND
923
934
t1
J12

Type | Event| Rate | Type | Event| Rate

loc t 141 syn 12 A2
loc to Lo Syn | gas | A3
syn t3 3 syn | gs4 As4

Figure A.7: Ad hoc wireless sensor network SAN modehédes)

Generically, the model has local eveniyi = 1...N — 2) and a synchronizing event;_;
representing the end of the packets transmission. The symezing eventsy;», go3 and gz, are
activating the packets forwarding process. All eventsgmesonstant rates. The product state space
X of this model is formed by? x 3¥~-2 states. The partial reachability function can be defined
indicating that the&SourceautomatonMA ™ is in the idle stateF#* = (st MNY == [0));

A.6. MASTER-SLAVE PARALLEL ALGORITHM MODEL 93

A.6 Master-Slave Parallel Algorithhnmodel

Figure A.8 refers to an evaluation of the master-slave [giatplementation of the Propagation
algorithm considering asynchronous communication [3jjdating to parallel program developers
what are the possible execution bottlenecks before theeimghtation. This SAN model contains
one Master automaton, one hugBuffer automaton, andV automataSiave”, wherei = 1...N.
The Masterautomaton presents three statés: (transmitting),Rx (receiving) and/7x (idle). The
Bufferautomaton ha& positions (states) plus an empty statdheSlave” automata presents three
states:/ (idle), Pr (processing) and'z (transmitting).

Master Buffer Slaveli=1-N)
cl..cn 51..5N Event| Rate

up A

down | u

Co C; g
Si (5

Ti e

up down Di v

Figure A.8: Master-slave parallel algorithm SAN model

The model has synchronizing events related toMlasterand Siave” activities controlling also
the Buffer. up, down, ¢; ands;. The Bufferis accessed by the slaves using synchronizing event
r;. TheMasteralso fills the buffer with the synchronizing event The slaves start transmissions
with a local eventy;. This model can vary defining different numbers of slaves simds for the
buffer. The product state space of this model is given by3¥+! x (K + 1) states. The partial
reachability function can be defined indicating that kh@sterautomaton is in the idle statéf’* =
(st Master == ITx);

94

APPENDIX A. SAN EXAMPLES

95

Appendix B

Kronecker Algebra

Kronecker (tensor) algebra is an algebra defined on matwibsa product operator and a sum
operator [2, 26]. The classical tensor algebra (CTA) cardidat the matrices elements are constant
values. This appendix addresses properties and chasticienf these matrix operator&(anddp).

B.1 Kronecker (tensor) product

In general, to define the tensor product of two matri@$) of dimensions§, x ;) andQ® of
dimensions g, x 72), we haveQ = (QY) ® Q?)) as a matrix with dimensiong{p, x 7172).

However, the tenso@ is a four dimension tensor, which can be flatteneel. (put in a two-
dimension format) in a single matriQ consisting ofp;y, blocks each having dimensiong,{-).
To specify a particular element, it suffices to specify thacklin which the element occurs and the
position within that block of the element under considemtiThus, the matrix elementysg (which
corresponds to tens@ elementQ, g1 o) is in the(1, 1) block and at positio0, 2) of that block and
has the numeric valuéi); q((é)). Algebraically, the tenso@ elements are defined by:

1) (2
4q(ik)[j1) = qz'(j)qlil)

Defining two matrice®@™) andQ® as follows:

n @ 1) (1)

oo 901 Y02 o3 q(2) q(2)

1 1 1 1 1 2 00 4o1
QW = [¢t ¢t oy al¥ Q¥ = "5 i
1 1) 4o 4d11

1 1)
1

1 1 1
a0 4o G20 Qa3

96

APPENDIX B. KRONECKER ALGEBRA

Thetensor producQ = 9 @ Q@ is therefore given by

g0 Q@ | ¢{ 0@ | ¢{0? | ¢§) o®
Q= ¢yo® | ¢Ya® | ¢y a® | ¢} 0®

1 1 1 1

a5 QP | 45 Q@ | g5 Q@ | 45y Q@

A particularly important type of tensor product is the tengduct where one of the matrices is
an identity matrix of orden (1,,). These particular tensor products are cafledmal factorsand they

can be composed by matrices only on diagonal blocks:

ao | O 00 0
¢ @i |0 00 0
@ 0 0 |g% a7 |0 0
@™ = e
0 0 |0 ¢ 0 0
0 010 0 g% a
0 00 0 g o
or diagonal matrices in every block:
@ 0 0 g7 0 0
0 g 0|0 g 0
(2) _ 0 0 (J(()g) 0 0 qg)
Qrwl = @ @
a1 0 0 | 0 0
0 ¢y 00 ¢ 0
0 0 g |0 0 g

B.2 Kronecker (tensor) sum

Thetensor sunof two square matrice®!) andQ® is defined in terms of tensor products as the
sum of normal factors of matrice@!) andQ®, i.e.:
© Q¥

QWepo® =oWelr, , +I,

o(2) o)

whereng) andnq) are respectively the orders of the matri¥$ andQ®. Since both sides of the
usual matrix addition operation must have identical diners it follows that tensor sum is defined
for square matrices only. The algebraic definition of thestersumQ = QY @& Q@ are defined as:

Quirigin = 43y O + aiy 0.

B.3. CLASSICAL KRONECKER PROPERTIES 97

whered;; is the element of the rowand the columry of an identity matrix, obviously defined as:

1 ifi=j

5@']':
0 ifij

B.3 Classical Kronecker properties
Some important properties of the classical tensor produtisam operations are [2, 26]:

e Associativity:
oM ® (9% @ 9B®) = (W ® 9®) ® 9B and
QW @ (Q® @ 9®) = (W @ 9®) @ QB)

Distributivity over (ordinary matrix) addition:
(O + Q) ® (QB) + QW) =
(QW @ 9B 4+ (9@ ® 9B¥)) + (QW ® QW) + (Q?) @ QW)

Compatibility with (ordinary matrix) multiplication:
(Q(l) X Q(2)) ® (Q(B) X Q(4)) = (Q(l) ® Q(3)) X (9(2) ® Q(4))

Compatibility over multiplication:
QW ® Q¥ = (QW I) x (I 1y ® Q@)
Q Q

Commutativity of normal factors
QW ®]nQ@)) X (Ingm ® Q?) = (]ngm ® Q) x (QW ®]nQ@))

Due to the Associativity property, the normal factor defonitmay be generalized to a tensor
product of a suite of matrices, where all matrices but oneideatities. This very useful normal
factor definition can be applied to express more generalgain

e Tensor sum definition as the sum of normal factors for all ioesr
1 2 3) __ 1
oM @ 0@ g 9B = Q()®]ng(2)®lng(3) +

2
InQ(l) ® Q() ® [nQ(3) +
3
In gy ® In_y © QP

*Although this property could be inferred from tB@mpatibility with (ordinary matrix) multiplicatiofit was defined
by Fernandes, Plateau and Stewart [37].

98 APPENDIX B. KRONECKER ALGEBRA

e Compatibility over multiplication property as the prodwétnormal factors for all matrices:
1 2 3) 1
QW @oP® oW = (QURI, , ® Iy) X
2
I”Q(l) 2%]"Q<3) %

3
Ing(l) ®]nQ(Q) ® Q()

The classical tensor algebra principles are applied sineditst definitions of Stochastic Au-
tomata Networks (SAN). A SAN model is described as a sum o$deproducts, following an
algebraic formula calledescriptor[55].

99

Appendix C

Notation

C.1 Stochastic Automata Networks

C.1.1 Basic Concepts and Definitions (Section 2.1)

[Let be
A®) the k" stochastic automata in a network &fautomata;
s(®) thei'" local state in an automaton;
5k the set of local states in an automaton;
ng number of local states in an automatoa, the cardinality of(*);
€p an event of;
Ap the rate associated to the occurrence of an eygnt
1S a set of P eventsj.e. all events in the network of automata;
X the model state space; for structured models we denote jirduRict state space,
whose the cardinality is given tﬂ,f:l Nk,
xR the model reachable state space, also denotethywhereX” C X’;
S a global state inside the state spatea.e.a composition of local states of automata

wheres = {sM): ... ; s},

FE the reachability function of a model,

100 APPENDIX C. NOTATION

C.1.2 Graphical Representation and Primitives (Section 2)

O Let be
Q; a constant rate associated to the occurrence of an eyeng;
Ur a probability associated to the occurrence of an ewgat(;
fi a functional rate associated to the occurrence of an eyent;
Fhx a partial reachability function of a model;

C.1.3 Structural Representation (Section 2.3.1)

O Let be

Q) the k' matrix in a tensor product d& matrices;

Qg.'“) the k' matrix in the tensor produgtof K matrices;

Ql(’“) the k** matrix containing the local transitions rates and the diafjadjustment in
a tensor suni of K’ matrices;

QEJZL thek™ matrix containing the synchronizing event rate:pin a tensor produat,
of K matrices;

Qé’;), the k™" matrix containing the diagonal adjustment for the synctziag evente,
in a tensor produat,~ of K matrices;

Tom an identity matrix of orden,, i.e. with the same dimension of the mati@*);

et a positive tensor product terat = @1, o

€p
e a negative (diagonal adjustment) tensor product term: ®sz1 oW
€p

E the number of synchronizing events in the model,

C.2. KRONECKER-BASED DESCRIPTOR SOLUTION 101

C.1.4 Structural Representation (Section 2.3.2)

O Let be
§ a global state insid&’*;
7 a global state insid&'**;
o a transition function associated to events changing gletadés;

®(s,e,) =7 thefunction® operation with a global stateand an event, as input, and a global
stater as output;

S0 initial global state of a trajectory generateddypuccessive applications consider-
ing a sequence of events= {e, } ,cn;

w(ep) function to obtain the automata related to an evgnt

» rate of an event, € ¢;

C.2 Kronecker-based Descriptor Solution

C.2.1 Vector-Descriptor Product (Section 3.1)

[Let be
v a probability vector of dimension given by the cardinalityo;
Q adescriptorwith a Kronecker representation;

®£<:1 Qg.k) a tensor product term composed of matri@é@ ;

C.2.2 Sparsesolution techniques (Section 3.1.1)

O Let be

T a tensor product term df matricesQ®). It can be also seen as a huge matrix of
dimension[1, n;

ny, dimension of the matrix0®;

APPENDIX C. NOTATION

nrighty,

nlefty,

number of nonzero elements of the mat@¥%);

the set of all possible combinations of nonzero elementd®fd matrices in a
tensor product term;

the scalar element generated through the combination afemorelements on a
tensor product;

the size of the state space corresponding to all matricesthttk' matrix of the
tensor product (special caseight; = 1);

the size of the state space corresponding to all matriceséoétfiek!” matrix of
the tensor product(special casé&ft, = 1);

a probability vector of dimension given by the cardinalify. In the numerical
methods is used as the stationary probability vector;

C.2.3 The memory-efficientShuffle algorithm (Section 3.1.2)

O Let be

T

]m"ightl€

Inleftk

a tensor product term d& matricesQ®). It can be also the tensor product term
decomposed in normal factors (see Section B.1);

an identity matrix with dimension related to the size of ttegesspace correspond-
ing to all matrices at right of a given matr@®*) in the tensor product;

an identity matrix with dimension related to the size of ttegesspace correspond-
ing to all matrices at left of a given matr@(® in the tensor product;

an auxiliary probability vector;
an auxiliary probability vector;
a probability vector of dimension given by the cardinalityo;

a probability vector of dimension given by the cardinalify. In the numerical
methods is used as the stationary probability vector;

C.2. KRONECKER-BASED DESCRIPTOR SOLUTION 103

C.2.4 The Hybrid Split Algorithm (Section 3.2)

O Let be

1

nz;

[[i-i nei

nright,

nleft,

Uin

Uy

the correspondent line in the matwx
the correspondent column in the matkix

the set of all possible combinations of nonzero elementi®fi matrices in a
tensor product term;

atensor product term df matricesQ*). It can be also the tensor product term de-
composed into an ordinary sum of matrices composed by ogésionzero element
insidee(lmK);

a matrix of ordem;,, in which the element in rowand columry is ql-(?;

.jx) the matrix of ordef [, n; composed by only one nonzero element, which is
in the positioniy, ..., ix, J1, ..., jK;

a cut-parameterof a given tensor product term. It is a division point for #pig
a tensor product term in two separated parts=(1 ... K);

number of nonzero elements of the mat@¥;
total number of AUNF for a giveout-parameter;

a scalar element generated through the combination of noekements of matri-
ces in a tensor product term. It is the scalar inside an agditnitary normal factor

(AUNF);

the size of the state space corresponding to all matricesaaih a tensor product
term;

the size of the state space corresponding to all matricesdrefn a tensor product
term;

an auxiliary probability vector of dimension given by-ight,;
an auxiliary probability vector;

a probability vector of dimension given by the cardinalityo;

104 APPENDIX C. NOTATION

T a probability vector of dimension given by the cardinalify. In the numerical
methods is used as the stationary probability vector;

C.2.5 Practical contributions of Split (Section 3.2.2)

[Let be
T a tensor product term which has= 0. .. K as possibles division points;
v number of samples or execution times collected from a gigasdr product term,
for each possibleut-parametew;
o execution time related to theut-parameter of a tensor product term;
oT the assignedut-parametew for a tensor product terd;

C.3 Event-based Descriptor Solution

C.3.1 Forward Simulation (Section 4.1)

[Let be
S a state in a system;
Sn then!” observed state of the system;
xR the set of states considered in the system,;

®(s,e;) =7 the function® operation with a staté and an eveng; as input, and a stateas
output;

S0 an initial state of a trajectory generated bysuccessive applications considering
a sequence of evenis= {e;}icn;

T* thewarm-upperiod,transientperiod orburn-in time
T the stationary distribution;

v number of samples or states generated,;

C, the simulation complexity cost;

Co the complexity cost related to the functidn

C.3. EVENT-BASED DESCRIPTOR SOLUTION 105

C.3.2 Backward Coupling Simulation (Section 4.2)

[Let be
S a state in a system;
Xk the set of states considered in the system,;
T the coupling time;
Er the expected coupling time;
—t a given time in backward steps;
Cs the simulation complexity cost;
Co the complexity cost related to the functidn

C.3.3 SAN perfect sampling (Section 4.2.1)

[Let be

X the set of reachable states in the model;

S a global state in a model;

e an event generated:;

d(3,e) the transition functio® operating with a staté and an eveng;

(™) e) a transition function application in the local stat® of the k" automaton operat-
ing an event;

w a state vector to update the trajectories aft@pplications, initially filled with the
states int';

w a backup of the state vector

106

APPENDIX C. NOTATION

C.3.4 Monotone Backward Coupling Simulation (Section 4.3rad 4.3.1)

O Let be
gmax
gmin

XM

Cs
Cop
Er

E

a maximal global state;
a minimal global state;

the set of extremal states of the modiet. a set composed by maximal and
minimal states in a partially ordered;

the simulation complexity cost;
the complexity cost related to the functidn
the expected coupling time;

an array that stores a backward sequence of events;

C.3.5 Extremal global states extraction (Section 4.3.2)

[Let be
M
M[1]
nState
cState

€p

a list of accessed states in th€?, initially storing the statg,,,;,,;
the:*" position in the list\/ of accessed states;

a new state generated;

the current state;

an event irg to be fired over the current observed state cState;

d(cStateg,) the transition functio® operating with the current state cState and an eygnt

