
Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-graduação em Ciência da Computação

THAIS CHRISTINA WEBBER DOS SANTOS

Reducing the Impact of State Space Explosion in
Stochastic Automata Networks

Porto Alegre, Brasil

2009

THAIS CHRISTINA WEBBER DOS SANTOS

Reducing the Impact of State Space Explosion in
Stochastic Automata Networks

Tese de Doutorado apresentada como requisito para

obtenção do título de Doutor em Ciência da Com-

putação pelo Programa de Pós-graduação da Facul-

dade de Informática. Área de concentração: Ciência

da Computação.

Orientador: Paulo Henrique Lemelle Fernandes

Co-orientador: Jean-Marc Vincent

Porto Alegre, Brasil

2009

Abstract

The solution of Markovian models with large state spaces is one of the major challenges in perfor-

mance evaluation. Structured formalisms such as Stochastic Automata Networks (SAN) were pro-

posed to describe multiple components through the use of automata, whose transitions are determined

by local or syncronizing events, having constant or functional rates. Due to the inherent modular rep-

resentation of SAN, it is possible through tensor (Kronecker) algebra, to store the model infinitesimal

generator in memory, in a compact and efficient manner. The numerical methods that calculate the

stationary probabilities distribution are adapted to these structured representations.

The basic operation is the vector-descriptor multiplication, which is the product of a probability

vector by tensor products composed by sparse matrices. The traditional Shuffle algorithm is char-

acterized by the access and shuffling positions of the vectorwhen multiplied by each matrix of a

tensor product term. This approach is considered highly memory-efficient, however, presents a high

processing time for the solution of real models. We propose amore flexible and hybrid algorithm

for the vector-descriptor product called Split, putting the Shuffle approach in perspective, present-

ing significant improvements in the execution time for a diverse set of models without impairing

the computational resources. Its main idea is to divide eachtensorial term in two parts, aggregating

its matrices for the calculation of scalars to be tensorly multiplied by the remaining matrices. The

algorithm provides gains for the examples, mainly in processing time, even spending more memory.

Nevertheless, increasing the state space of models, this algorithm also becomes unsuitable to

obtain a numerical solution. To mitigate the impact of statespace explosion, it is proposed the use

of simulations to estimate the stationary probability distribution as close as possible to analytical

solutions, executing long-run trajectories. We propose the application of perfect sampling techniques

(also called exact simulation) to produce reliable samplesthrough trajectory couplings, in reverse

simulation time. This technique is distinguished from traditional simulation by avoiding transient

periods and the initial state to be chosen. It is discussed the feasibility of these algorithms applied

to SAN, specially when monotonicity properties are detected in the models. Partially ordered state

spaces allows the execution of an efficient version of the technique by reducing the number of parallel

trajectories needed for the generation of a sample.

The iterative numerical analysis and the simulation of stochastic models are approaches that

present advantages and limitations when applied to the solution of structured models such as SAN.

The main contribution of this thesis focuses on the reduction of the impact of state space explosion of

markovian models described in SAN, proposing solutions when the computational time of analytical

techniques is too long or when the memory requirements for the probability vector exceeds current

technologies storage capacity.

iv

Keywords: Structured Formalisms; Stochastic Automata Networks; Numerical Solutions, Exact

Simulation.

Resumo

A solução de modelos markovianos com grande espaço de estados é um dos maiores desafios da área

de avaliação de desempenho de sistemas. Os formalismos estruturados, como as Redes de Autô-

matos Estocásticos (SAN), foram propostos para descrever realidades com múltiplos componentes

através de autômatos, cujas transições são regidas por eventos locais ou sincronizantes, com taxas

de ocorrência constantes ou funcionais. Devido à capacidade de representação modular de SAN foi

possível, através de álgebra tensorial (ou de Kronecker), armazenar o gerador infinitesimal do mod-

elo de forma compacta e eficiente em memória. Os métodos numéricos de solução que calculam a

distribuição estacionária das probabilidades são adaptados a estas representações tensoriais.

A operação básica e’ a multiplicação vetor-descritor, que éo produto de um vetor de probabili-

dades por termos tensoriais compostos por matrizes normalmente esparsas. O principal algoritmo de

multiplicação chama-se Shuffle e é caracterizado pelo acesso e embaralhamento de posições do vetor

quando multiplicado pelas matrizes de cada termo. Este método é considerado extremamente eficaz

no armazenamento em memória, entretanto apresenta um tempode processamento alto para a solução

de modelos reais, sendo suas otimizações alvo de pesquisas recentes. Propõe-se um algoritmo híbrido

e mais flexível para a multiplicação vetor-descritor, chamado Split, que coloca o algoritmo Shuffle

em perspectiva, apresentando ganhos significativos no tempo de execução para diversas classes de

modelos, sem onerar os recursos computacionais. Sua ideia principal é dividir cada termo tensorial

em duas partes, de forma a agregar algumas de suas matrizes para obtenção de escalares a serem

tensorialmente multiplicados pelas matrizes restantes. Ouso do algoritmo, dentro de limites geren-

ciáveis de memória, proporciona ganhos significativos em tempo de processamento, fato demonstrado

através de exemplos.

Entretanto, quando os modelos aumentam em escala, este algoritmo torna-se inadequado devido

à explosão do espaço de estados. Para mitigar o impacto desteproblema propõe-se o uso de soluções

alternativas de simulação, as quais buscam estimar a distribuição estacionária de probabilidades tão

próximas quanto possível das soluções analíticas, baseando-se na execução de longas trajetórias.

Utiliza-se a técnica de simulação baseada em amostragem perfeita (também chamada de simulação

exata), onde os algoritmos objetivam fornecer amostras confiáveis da distribuição estacionária através

do casamento de trajetórias sobre o espaço atingível, em tempo de simulação reverso. Esta difere-se

da simulação tradicional por evitar o período transiente e aescolha aleatória de um estado inicial.

Mostra-se a viabilidade destes algoritmos aplicados a SAN,principalmente quando se detectam pro-

priedades de monotonicidade nos modelos. Espaços de estados parcialmente ordenados permitem a

execução de uma versão eficiente da técnica ao reduzir o número de trajetórias em paralelo necessárias

para obtenção de uma amostra.

vi

A análise numérica iterativa e a simulação de modelos estocásticos são abordagens que apre-

sentam vantagens e limitações quando aplicadas à solução demodelos estruturados como SAN. A

principal contribuição desta tese foca na redução do impacto da explosão do espaço de estados de

modelos markovianos descritos em SAN, propondo soluções quando o tempo de computação das téc-

nicas analíticas é muito longo ou quando os requisitos de armazenamento do vetor de probabilidade

excedem a capacidade de memória das tecnologias correntes.

Palavras-chave: Formalismos estruturados; Redes de Autômatos Estocásticos; Soluções Numéri-

cas; Simulação Exata.

vii

List of Figures

2.1 Example of a SAN model with a functional rate 13

2.2 SAN model of Figure 2.1 without functional rates 14

2.3 Equivalent Markov chain for both SAN examples (Figure 2.1 and 2.2) 15

3.1 Sparsemethod illustration . 27

3.2 Shufflemethod illustration . 29

3.3 Split method illustration .33

4.1 Illustration of a forward trajectory 46

4.2 Illustration of a backward coupling of trajectories 48

4.3 Backward coupling in 6 iterations for the SAN example in Figure 2.2 50

4.4 Illustration of a monotone backward coupling of trajectories 52

4.5 Extremal set construction for the QN model in SAN 56

4.6 Canonical component-wise ordering for the QN model in SAN 58

4.7 Another component-wise ordering for the QN model in SAN 59

4.8 Non-lattice component-wise ordering in a model of3 philosophers 60

4.9 Non-lattice component-wise ordering in a model of6 philosophers 61

4.10 Illustration of the coupling vector reduction collecting samples 66

5.1 Thesis contributions scheme 74

A.1 Queueing network and equivalent SAN model 88

A.2 Classical resource sharing SAN model 89

A.3 Dining Philosophers table configuration 89

A.4 Dining Philosophers SAN model with reservation 90

A.5 Dining Philosophers SAN model without reservation 91

A.6 First available server SAN model 91

A.7 Ad hoc wireless sensor network SAN model (4 nodes) 92

viii LIST OF FIGURES

A.8 Master-slave parallel algorithm SAN model 93

ix

List of Tables

2.1 SANdescriptor . 18

2.2 Transition functionΦ(s̃, ep) for the model of Figure 2.2 20

3.1 Split as a generalization of traditional algorithms 32

3.2 Resource SharingSAN model results . 38

3.3 Dining PhilosophersSAN model results . 39

3.4 First Available ServerSAN model results . 40

3.5 Ad Hoc Wireless Sensor NetworkSAN model results 40

3.6 Master-Slave Parallel AlgorithmSAN model results 41

3.7 Iterative numerical solution gains 43

4.1 Dining Philosophersmodel (with resource reservation) - sampling results 64

4.2 Dining Philosophersmodel (without resource reservation) - sampling results 65

4.3 Expected parallel distribution gains for simulation 67

5.1 Numerical approaches comparison 70

5.2 Split general performance compared withShuffle 71

5.3 Simulation approaches comparison 72

5.4 Numerical and simulation approaches comparison 75

x LIST OF TABLES

xi

List of Algorithms

2.1 Event firing verification procedure 22

3.1 Sparsealgorithm -π = υ ×⊗K
k=1Q

(k) . 28

3.2 Shufflealgorithm -π = υ ×⊗K
k=1Q

(k) . 30

3.3 Split algorithm -π = υ ×⊗K
i=1Q

(k) . 34

3.4 Tensor terms execution times for aσ sampling . 37

4.1 Forward simulation 47

4.2 SAN backward coupling simulation 49

4.3 General monotone backward coupling with a doubling scheme 53

4.4 SAN monotone backward coupling simulation 54

4.5 Extremal set for SAN models with component-wise formation 55

xii LIST OF ALGORITHMS

xiii

Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

1 Introduction 3

1.1 Modeling Structured Representations 4

1.2 Solutions for Kronecker-based Descriptors 5

1.3 Thesis Objective 6

1.3.1 Hybrid numerical algorithms to reduce computationaltime 8

1.3.2 Advanced simulation techniques to reduce memory costs 8

1.4 Thesis Organization 9

2 Stochastic Automata Networks 11

2.1 Basic Concepts and Definitions 11

2.2 Graphical Representation and Primitives 13

2.3 Structural Representations 16

2.3.1 Kronecker-baseddescriptor . 16

2.3.2 Event-baseddescriptor . 20

3 Kronecker-based Descriptor Solution 25

3.1 Vector-Descriptor Product 25

3.1.1 Sparsesolution . 26

3.1.2 The memory-efficientShufflealgorithm . 29

3.2 The HybridSplit Algorithm . 31

3.2.1 Theoretical contributions 35

3.2.2 Practical contributions 36

xiv CONTENTS

3.3 Conclusions and Perspectives 42

4 Event-based Descriptor Solution 45

4.1 Forward Simulation 46

4.2 Backward Coupling Simulation 48

4.2.1 SAN perfect sampling .. 49

4.3 Monotone Backward Coupling Simulation 51

4.3.1 SAN monotone perfect sampling 53

4.3.2 Extremal global states extraction 54

4.4 Theoretical Contributions 62

4.4.1 Statistical validation 63

4.4.2 SAN monotone perfect sampling analysis 64

4.5 Conclusions and Perspectives 66

5 Conclusion 69

5.1 Thesis Summary .. 69

5.1.1 The hybrid vector-descriptor product 70

5.1.2 The exact simulation .. . 72

5.1.3 Thesis general contribution 73

5.2 Open Problems and Future Works 76

Bibliography 79

A SAN Examples 87

A.1 Queueing Networkmodel . 87

A.2 Resource Sharingmodel . 88

A.3 Dining Philosophersmodel . 89

A.3.1 Dining Philosophersmodel (with resource reservation) 90

A.3.2 Dining Philosophersmodel (without resource reservation) 90

A.4 First Available Servermodel . 91

A.5 Ad Hoc Wireless Sensor Networkmodel . 92

A.6 Master-Slave Parallel Algorithmmodel . 93

B Kronecker Algebra 95

B.1 Kronecker (tensor) product 95

B.2 Kronecker (tensor) sum 96

B.3 Classical Kronecker properties 97

CONTENTS 1

C Notation 99

C.1 Stochastic Automata Networks 99

C.1.1 Basic Concepts and Definitions (Section 2.1) 99

C.1.2 Graphical Representation and Primitives (Section 2.2) 100

C.1.3 Structural Representation (Section 2.3.1) 100

C.1.4 Structural Representation (Section 2.3.2) 101

C.2 Kronecker-based Descriptor Solution 101

C.2.1 Vector-Descriptor Product (Section 3.1) 101

C.2.2 Sparsesolution techniques (Section 3.1.1)101

C.2.3 The memory-efficientShufflealgorithm (Section 3.1.2) 102

C.2.4 The HybridSplit Algorithm (Section 3.2) 103

C.2.5 Practical contributions ofSplit (Section 3.2.2) 104

C.3 Event-based Descriptor Solution 104

C.3.1 Forward Simulation (Section 4.1) 104

C.3.2 Backward Coupling Simulation (Section 4.2) 105

C.3.3 SAN perfect sampling (Section 4.2.1) 105

C.3.4 Monotone Backward Coupling Simulation (Section 4.3 and 4.3.1) 106

C.3.5 Extremal global states extraction (Section 4.3.2) 106

2 CONTENTS

3

Chapter 1

Introduction

Performance evaluation of modern systems becomes a challenging problem due to the complexity

involved in describing and solving models. Several solution techniques are available in the litera-

ture but one of the most commonly used techniques is the analytic modeling and evaluation, which

produces accurate results. Markov chain is the analytic modeling formalism most widely applied in

different domains such as computer, inventory and manufacturing systems, communication networks,

bioinformatics, and many other fields not necessarily computational.

The Markov chains formalism power is the simplicity of description because one only needs to

characterize a system as discrete states describing the manner in which it moves from one state to

another. So the system can be represented as a Markovian process when the time spent in each state

appears exponentially distributed. A collection of statesis associated to this Markovian process. The

system can assume only one state at any time, in other words, the evolution of the process depends

exclusively on the current state [61].

Formally, a Markov chain model has aX finite state space set composed byn = |X | states, where

its transition rates will derive an infinitesimal generatorrepresented by ann × n square matrixQ,

where∀i6=j q(i,j) ≥ 0 and∀i q(i,i) = −
∑

j 6=i q(i,j). The matrixQ can be computationally stored

in a compact format since it is normally composed by few nonzero elements. In other words it is

numerically represented by an unstructured component,i.e., by a unique huge matrix.

The solution of a Markov chain is the stationary probabilities associated to each state in the model

and these are often obtained by the long-run probability distribution calculated by an iterative solution

for the linear systemπQ = 0. The probability vectorπ of dimensionn is distributed considering that
∑n

i=1 π(i) = 1. Iterative methods [59] such asPower method,Arnoldi or the generalized minimal

residual method (usually abbreviatedGMRES), compute a successive product of a probability vector

π by a Markovian infinitesimal generatorQ (a huge sparse matrix) until it reaches a stationary regime.

Markov chains are solved with a fast computational technique if both matrix and vectors fit in

4 CHAPTER 1. INTRODUCTION

memory, otherwise the state space explosion will avoid the explicit mapping of the chain to its corre-

spondent transition matrix in memory. The systems of linearequations of this size cannot be solved

in practice even with our current technologies. The increasing size and complexity of systems quickly

invalidate the use of Markov chains for stochastic modelingof complex systems.

An alternative method to the numerical analysis of models isthe simulation based on systems

dynamics. An evolution of states is simulated using pseudo-random events to decide the trajectory

and from this, the results related toπ are estimated. The simulative analysis of systems generates

samples from the stationary distribution and it is applicable mainly to large state spaces which can be

described by state transition functions based on discrete events [58].

Nevertheless, one must consider the accuracy of results when choosing a given analysis technique,

analytic or simulative. The simulation results are statistical in nature, then very long simulation

runs are necessary to obtain results with sufficient confidence. There are new simulation techniques

concerned in producing exact samples. However, the memory to accomplish this task is considerably

increased when applied to huge Markov chains [43].

1.1 Modeling Structured Representations

Not directly applying simulation approaches to solve huge models, structured formalisms based

on Markov chain principles introduce the possibility of describing more than one irreducible com-

ponent, with interactions among components and individualbehavior. This interactions are called

events, which are primitives associated by rates or probabilities. Due to the fact that systems are

normally composed of many components, Markovian structured formalisms like Stochastic Petri nets

(SPN) [1], Stochastic Automata Networks (SAN) [55] and Performance Evaluation Process Algebras

(PEPA) [44] were proposed to cope with the problem of the state space explosion and the consequent

matrix storage problems.

Given the difficulty in constructing these models, the use ofSAN, proposed by Plateau [54], is

becoming increasingly important in the field of stochastic modelling of parallel and distributed com-

puter systems, such as communicating processes, concurrent processors, shared memory, behavior of

communication network protocols, and many other realitiesinside the scope of Markov chain appli-

cations [4, 8, 12, 20, 29, 34, 35, 53, 57]. The advantage of SANmodeling over other formalisms is

its simplicity and similarity with Markov chains in terms ofthe finite number of states and transitions

labeled by events.

The specific advantage the SAN approach has over generalizedstochastic Petri nets, and indeed

over any Markovian analysis that requires the generation ofa transition matrix containing rates, is

that its representation remains compact even as the number of states in the underlying Markov chain

1.2. SOLUTIONS FOR KRONECKER-BASED DESCRIPTORS 5

begins to explode. The state transition matrix is not stored, instead, it is represented by a number of

much smaller matrices. These matrices are defined with all relevant information may be determined

without explicitly generating the global matrix. This research field presents many alternative model-

ing paradigms, but structured models have the common need ofa compact representation, an efficient

storage and alternative solutions for very large state spaces.

1.2 Solutions for Kronecker-based Descriptors

An available alternative to a compact storage for SAN modelsis the implicit generation of the

infinitesimal generatorQ of the underlying Markov chain, keeping the structured characteristics into

their internal representation. This advance becomes possible employing tensor (Kronecker) algebra

to store the infinitesimal generator, so large systems can berepresented by a sum ofK tensor products

of N matrices given algebraically by
∑K

j=1(
⊗N

i=1Q
(i)
j). The sparse matrices composing each tensor

product are in fact a way of taking advantage of all the structural information inside original automata.

Such principle appears since the first definitions of SAN [55], but recently it has also been used in

other stochastic formalisms [32, 45]. In all those references, the termdescriptoris used to refer to a

tensor represented infinitesimal generator.

Another intrinsic aspect related to structured formalismsis the insertion of unreachable states

when computing the probability vectorπ so many approaches use Kronecker algebra∗ for represen-

tation [21, 23, 52]. Their solution have implicit tensor operations called vector-descriptor product

and the method is based onshufflealgebra principles [26]. The complexity to treat memory-efficient

structured models lead us to a less time-efficient solution approach when compared to the pure sparse

multiplication, which can be easily done respecting the memory bounds. For further information

about tensor algebra properties and their application in specialized numerical algorithms refer to

[2, 26, 37].

The current SAN solver use a Kronecker description as basis to perform vector-descriptor mul-

tiplications inside the iterative methods implemented. The Shufflealgorithm is known as the most

memory-efficient numerical solution for descriptors [6, 16, 37]. The tensor product operation is sum-

marized as
∑K

j=1

[

π(
⊗N

i=1Q
(i)
j)
]

= 0, whereπ is a probability vector and
⊗N

i=1Q
(i)
j is thejth tensor

product in adescriptor. Note that the descriptor sizeK can be potentially increased when synchro-

nizations become more frequent among model components. This algebraically represents more tensor

products inside descriptors, consequently the total number of iterations become more time consuming

until convergence.

Moreover, there is still a memory limit imposed by the current technology even when dealing

∗The basic concepts of the classical tensor algebra are detailed on the Appendix B of this thesis.

6 CHAPTER 1. INTRODUCTION

with structured descriptors. The state space explosion in this case can avoid the application of the

traditional numerical solution. Several approaches are proposed to deal with massive product state

spaces, the techniques vary from hybrid solutions for simulation and numerical analysis [15] to pure

forward simulations [10, 46, 47].

The Markovian simulation research has evolved to be appliedto situations not necessarily involv-

ing any time dynamics in the chains. The problem is restricted to generate samples directly from the

stationary distribution. The transition kernel of a Markovchain ofn = |X | states allows to start a

trajectory from an initial states0 ∈ X chosen arbitrarily, running for a timet and outputting the state

st ∈ X . The forward simulation approaches execute a fixed number ofsteps walking in the chain to

collect samples. The major problem of forward simulations is the definition of an initial state and the

quantity of steps to execute,i.e., to decide how many steps are considered satisfactory to avoid the

transient period of the these simulations. The uncertaintyof these parameters generates bias samples.

Approaches based onCoupling from the Pasttechniques [56] (also calledperfect samplingor

exact simulation) emerge to guarantee samples confidence in Markovian simulations [65]. These

techniques consider all states as initial states, running trajectories in parallel until their coalescence†.

It is proved in the literature [43, 51, 56] that the coupling in backward steps guarantee unbiased

samples. The perfect sampling technique can be applied to solve many systems, mainly those with

huge state spaces and an identified monotone set of events. There are recent researches conducted

towards algorithmical adaptation for monotone systems [66], for example, reducing a huge number

of initial states to control in parallel into selected trajectories based on monotonicity properties.

Simulative techniques are considered alternative methodsfor the solution of structured descriptors

where the computational resources are insufficient to perform an analytical solution. The challenge

in this research is related to the adaptation of these current simulation advances to complex structures

with huge underlying state spaces.

1.3 Thesis Objective

This thesis enforces that numerical analysis and simulation both have advantages and limitations

when applied to the solution of structured models such as stochastic automata networks. Note that

an analytical solution of models is always the best alternative when accuracy is needed. However,

for all other models we could not even generate the state space (for example those underlying a

huge queueing network or a SAN) we demonstrate that it is possible to design adapted exact simu-

lation algorithms. The available numerical algorithms forthe SAN formalism are basically iterative

solvers for Kronecker representations [37] (set of transition matrices operating with tensor algebra),

†The termcoalescencein this thesis is also referred ascouplingof trajectories.

1.3. THESIS OBJECTIVE 7

implemented in thePEPSsoftware tool environment [5, 49], and some first approachesto simulate

SAN focusing on the concept of uniformized events and forward simulation techniques [57].

The objective of this thesis is the reduction of the impact ofstate space explosion in the solution

of huge models described as Stochastic Automata Networks.

The state space explosion is the major problem of the analytical modeling and its numerical so-

lution. This thesis focus is the numerical solution of models described as sets of stochastic automata

and the contribution is two folded: (i) provides a Kronecker-based descriptors solution which aims

to speed up the vector-descriptor product and (ii) providesan alternative solution for event-based

descriptors based on advanced simulation techniques such as theexact simulation. Both approaches

take advantage of the structural configuration of models to optimize their operations.

The Kronecker based approach helped changing the compositional viewpoint towards efficient

solutions. However, despite the positive theoretical points, the impact of the tensor algebra for the

study of models coming from the real world is still very limited [16, 33]. Many researches focused on

a memory-efficient approach without perceiving that the formal restrictions in this case lead us many

times to time-inefficient solutions. We conclude that is possible to design algorithms to consider

the aggregation or splitting selected sparse parts of descriptors, consequently accelerating the vector-

descriptor product. The objective is not to devise a method to store also the vector in an efficient

manner, but to multiply this (huge) vector in a time-efficient manner when compared to theShuffle

approach.

Additionally, for those vectors and descriptors that can not fit in memory, we propose an approx-

imated solution based onperfect sampling, with a memory-efficient approach when monotonicity

properties can be applied. Many researches were already conducted proposing new storage tech-

niques associated with specialized algorithms for structured models in general, not specifically for

SAN. Nevertheless, alternative solutions such as simulations approaches were not deeply studied in

the context of SAN. We conclude that is possible to adapt backward coupling algorithms to obtain

unbiased samples for statistical analysis. Consequently,there is a need in SAN solution research to

devise methods that exploit monotonicity properties of models and potentially other structural infor-

mation.

The research presented in this thesis points out new solutions for the SAN formalism, which

in future works can possibly be generalized to any structured model representation, in which sys-

tems are described by independent components, and each one can have interdependencies given by

synchronizing or functional transitions [54, 55].

The next section details the specific research guidelines toaccomplish the objective of this thesis.

8 CHAPTER 1. INTRODUCTION

1.3.1 Hybrid numerical algorithms to reduce computationaltime

This section describes the first axis of this thesis which is the improvement of the computational

time of the vector-descriptor product, maintaining the solution efficacy. Tensor products related to

SAN models of practical applications are quite sparse mainly because they represent dependent be-

haviors among automata considering each event separately.These characteristics lead us to analyze

the possibility of taking advantage of matrices sparsity (already indicated as an advantage for nu-

merical methods [16]), combined with the natural sparsity of classical tensor product decomposed in

normal factors [37]. Considering the classical Kronecker properties used to decompose tensor prod-

ucts, we design a flexible and hybrid approach to the vector-descriptor multiplication, exploiting the

tradeoff between time and memory to propose a new algorithm calledSplit.

In fact, theSplitalgorithm proposes a way to balance the actual memory cost toreduce the multi-

plications needed to complete an iteration, resulting in a more time-efficient approach for many cases,

where the matrices composing descriptors are sparse or ultra-sparse‡. Even so we are obliged to aug-

ment the memory cost storing new structures, it is reduced the vector-descriptor product complexity.

In the worst case,Split has the same order of complexity presented by the traditional Shufflemethod.

The new algorithm is analyzed in terms of its efficacy to solvemodels and also efficiency when

compared to the traditionalShufflemethod for Kronecker-based descriptors. Moreover, a set ofnu-

merical optimizations are proposed to accelerate even morethis complex, but necessary, operation.

Although its flexibility to deal efficiently with classical Kronecker descriptors, the product state space

is still a limit to solve huge models even with advanced solutions for linear equations. Note that this

hybrid solution is applied to solve descriptors using classical tensor algebra. Considering that models

with a generalized descriptor can be rewritten with only constant values in the matrices, then func-

tional dependencies are not discussed in the context of thisthesis. Nevertheless, results obtained with

constant rates, show that once we have a time-efficient way toevaluate measures of interest, theSplit

algorithm will continue to be as efficient as it already is. Inthe conclusions, we point out some fu-

ture works in the direction of a functional hybrid solution between sparse techniques and generalized

Kronecker descriptors.

1.3.2 Advanced simulation techniques to reduce memory costs

This section discusses the second axis of this thesis which is the application of advanced simula-

tions in the context of SAN. A new algorithmic solution called perfect samplingor exact simulation

which is based on backward coupling as theCoupling from the Past(CFTP) algorithm [56] overcome

‡A matrix classification in sparse or ultra-sparse is given bythe relation of the total number of nonzero elements by
its dimension [16].

1.4. THESIS ORGANIZATION 9

the burning time problem generating unbiased samples. CFTPproposes the execution of trajectories

in parallel, starting from all states of the Markov chain. Running time in backward steps, the coupling

of all trajectories in a given state guarantees that this sample is originated from the stationary regime.

Researches on perfect simulation of Markovian queueing networks [65, 66, 63, 64] shows possible

algorithmic improvements when the state space has a partialordering.

The proposition of an exact simulation application to SAN opens new discussions about struc-

tured models,allowing the description of an even more complex variety of systems. Another contribu-

tion of this thesis is the study of the partial ordering of product state spaces, concluding that for some

models with a component-wise ordering it is possible to run alternative solutions [38]. We propose

one adaptation of perfect sampling techniques to solve SAN models, regarding their reachable state

space, also some structural analysis to devise monotone versions of the backward coupling method.

The simulation of SAN can take advantage of the underlying chain structural properties and

indexes of interest, to find a way to solve with less memory costs. We work on the memory drawback

imposed by backward coupling techniques contracting the reachable state space in a smaller subset.

In this work, we focus on the SAN adaptability to exact simulation to produce model evaluations,

e.g., performance indexes, steady-state probabilities. The research of time-efficient simulations is out

of the scope of this thesis, but some considerations about improvements of this issue are drawn on the

conclusions.

1.4 Thesis Organization

This thesis is composed of four chapters, a conclusion and three appendices. Firstly we explained

the background related to the numerical solution of Markovian models focusing on SAN as modeling

formalism. The solutions proposed are presented in different chapters and appendices. This introduc-

tion explained the major objective of this thesis as well as the research directions to accomplish it.

Chapter 2 focuses on SAN descriptor to allow the comprehension of developed models and nu-

merical solutions proposed in this thesis. Forward in the context of a discrete-event description, this

chapter also extends the definition of well-defined SAN,i.e., the reachable state space is compatible

with the system evolution rules.

Chapter 3 explains how a SAN model can be structurally explored to obtain the solution combined

with Kronecker algebra to efficiently store the descriptor.Different SAN models are used to validate

the hybrid algorithm proposed (resource sharing and allocation models, a model for wireless networks

protocol evaluation and a model for a parallel algorithm implementation) collecting both execution

times and memory spent also for the traditionalShufflemethod.

Chapter 4 shows that is possible to design a perfect simulation algorithm for SAN,i.e., using

10 CHAPTER 1. INTRODUCTION

backward coupling simulation to sample states directly from the stationary distribution. We briefly

review simulation concepts, and using specific SAN examples, we show what is structurally fitted to

run memory-efficient backward simulations,e.g., a canonical or component-wise structure§ (queueing

systems and resource allocation models such as those based on the classicaldining philosophers

problem).

Chapter 5 is the conclusion and presents a brief summary of the results obtained in the context

of this thesis, in comparison with the solution bounds pointed out in the literature. This comparison

shows the effectiveness demonstrated in the practical results of the advanced numerical method pro-

posed, and the theoretical contribution of a simulation technique presented as an alternative SAN so-

lution based on the coupling method. Moreover, this chapterpresents final considerations about the

future works, prioritizing the solution of huge state spaces.

Appendix A presents a description of the SAN examples studied in the Chapters 3 and 4. The

Appendix B is a review of classical tensor algebra properties and the tensor product decomposition in

normal factors needed in the Chapters 2 and 3. Appendix C presents the notation used in each chapter

of this thesis, indexed by section.

§Structure classification, ascanonicalor component-wise, in the context of this thesis is related to the chain structure
underlying a SAN model.

11

Chapter 2

Stochastic Automata Networks

The first step involved in calculating the steady-state distribution of discrete systems is to charac-

terize the states of the system and describe the manner in which it moves from one state to another

[61]. Given the difficulty in constructing these models as a unique component, the use of stochastic

automata networks (SAN) as proposed by Plateau [54] is becoming increasingly important for model-

ing parallel and distributed systems such as communicatingprocesses, concurrent processors, shared

memory, behavior of communication network protocols and many other applications non specific to

computer science. However the complexity of the modeling process brings the need of advanced

numerical solutions.

Structured formalisms such as SAN allow modeling with more than one component that operate

more or less independently, requiring sometimes interactions such as synchronizing their actions, or

operating at specific rates (or probabilities) depending onthe state of other component. The concept

of synchronizing events and functional dependencies are introduced with SAN as powerful primitives

to represent different realities.

2.1 Basic Concepts and Definitions

The SAN basic idea is to represent a whole system by a collection ofK subsystems described as

K stochastic automataA(k), with k ∈ [1..K]. In each of these automata the transitions are labeled by

events. Each event includes probabilistic and timing information, and the network of automata has a

setξ with all events in the model. This framework defines a modularway to describe continuous and

discrete-time Markovian models [54, 55].

Definition. Each automatonA(k) has a setδ(k) of local statess(i) wherei ∈ {1 . . . nk}, intercon-

nected by transitions and their respective eventsep ∈ ξ, ξ = {e1, . . . , eP} consideringP events in the

12 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

model. The constantnk is the cardinality ofδ(k), i.e., the total number of states in automatonA(k).

Each eventep ∈ ξ has its own rateλp and a probability associated.

Definition. The local states(i) (i ∈ {1 . . . nk}) of an automatonA(k) is just the state it occupies

at a timet.

Definition. A global statẽs of a SAN model withK automata is a vector̃s = {s(1); . . . ; s(K)}

where each automatonA(k) is in the local states(k) ∈ δ(k) at a timet.

Definition. The set of all global states is calledproduct state space. The product state spaceX of

a SAN model is the Cartesian product of all setsδ(k).

It is natural the insertion of unreachable states inside theproduct state space since not all com-

binations of local states are valid in the global perspective. The reachable state space indicates the

consistent state space related to a model,i.e., all the states inside this set are reachable by any other

state.

Definition. The reachable state spaceXR
s̃0

(or XR) is an irreducible component obtained from a

given initial global statẽs0 ∈ X and successive firing of events inξ. Each global statẽs reached by

any possible combination of events is included in this set.

A SAN model can describe a reachability functionFR which indicates the global states effec-

tively accessible by one or more events fired composingXR.

Definition. The reachability functionFR is considered well-defined if and only if it indicates

exactly the states in the setXR, i.e., the componentXR presents a strong connected transition graph.

The eventep can occur in more than one automata meaning there is a synchronization occurring

among components,i.e., the eventep is associated to more than one transition in different automata.

An eventep can also be local in one automaton,i.e., it occurs only inside a component in a given

local states(k). Sometimes from this local states(k), the occurrence of an eventep can lead to more

than one state,i.e., there is more than one transition labelled by the same event. To deal with this, one

additionalprobability is associated toep in each transition. The absence of probabilities in transitions

is tolerated if only one transition can be fired by an event from a given local state.

Events can contain constant or functional rates, in the functional case, the event can be dependent

of the local state of other automata to be fired as synchronizing events do, without changing every lo-

cal automaton in the function. Note that the importance of modeling primitives such as synchronizing

events and functional rates is the facility to model characteristics that conveys real world problems,

where components always interact in some manner beyond their individual behavior. Functional in-

teractions can be also represented by synchronizing events[6, 13] since it is possible to set a state

2.2. GRAPHICAL REPRESENTATION AND PRIMITIVES 13

with aself-transition,i.e., the local state can fire a transition without really changing its local state.

Definition. A SAN model can be calledwell-formedif and only if theXR component is irre-

ducible.

A well-formedmodel contains states that are reachable by any other state and states that fire some

transition to at least one another state, which means there is no absorbent neither unreachable state.

In this thesis, we assume that the reachable set is given by the model designer. Despite of that, it is

relevant to numerical solutions that the reachable state spaceXR is, in the worst case, equal to the

product state spaceX of the SAN model,i.e., XR ⊆ X .

The large models we are interested, in the context of this work, are those with a hugeX and fewer

reachable global states to deal with. A great advantage fromthis fact is that, knowingXR, one can

reduce the overhead related to the state space explosion problem adapting this characteristic inside

the numerical solution as an optimizing factor. The efficient generation and storage of reachable

states are not in the context of this work, mainly because to cope with that there are very efficient

approaches already studied [17, 52].

2.2 Graphical Representation and Primitives

A SAN model presents a simple graphical representation and this is a great feature considering the

modeling of complex behaviors. In this section is presentedan example with the available modeling

primitives. Figure 2.1 is a SAN model with two automataA(i), and five events (|ξ| = 5).

0(1)

1(1)

e1e2

A(1)

e3

A(2)

0(2)

2(2) 1(2)

e2(π2)

e5

Type Event Rate
loc e1 f1

syn e2 α2

loc e3 α3

loc e4 α4

loc e5 α5

e4 e2(π1)

f1 =
[(

st A(2) == 0(2)
)

∗ α11

]

+
[(

st A(2) == 2(2)
)

∗ α12

]

Figure 2.1: Example of a SAN model with a functional rate

This example shows two types of events (local and synchronizing) with constant rates (repre-

sented byαi) and functional rates (represented byf1). The functional ratef1 returns a constant value

14 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

considering evaluations of other automaton local states using the primitivest, i.e., the associated event

is fired with a function that depends on the local states of other automata. Events that occur in differ-

ent transitions issued from the same state must present a probability of occurrence associated to the

rate. In the example, the evente2 with constant rateα2 is associated to the probabilitiesπ1 andπ2

respectively.

The model presented on the Figure 2.1 has a functional dependency that could also be expressed

as synchronizing events with constant rates associated. The conversion of a descriptor based on

generalized tensor algebra in a descriptor using classicaltensor algebra is a process already studied

[13] and is possible to achieve an equivalence of results∗ using different modeling primitives. The

descriptors containing functional rates are converted to aclassical algebra representation. Figure 2.2

represents a classical description of the example in Figure2.1.

e3

A(2)

0(2)

2(2) 1(2)

e2(π2)

e5

e2(π1)

e2

A(1)

0(1)

1(1)

e12

e11

e4

e11

e12

Type Event Rate
syn e11 α11

syn e12 α12

syn e2 α2

loc e3 α3

loc e4 α4

loc e5 α5

Figure 2.2: SAN model of Figure 2.1 without functional rates

For both representations we have an equivalent Markov chainrepresenting the reachable state

spaceXR of the model, where all states, but one inX , are reachable. Figure 2.3 shows all states and

transitions for the example, indicating the correspondentMarkov chain (theXR set) in the inner box.

SAN descriptions can define theXR set through the insertion of a reachability functionFR by

the designer. The boolean evaluation of this function, whenapplied to every global state insideX ,

returns the reachable states composingXR. One can also indicate a subset ofXR using apartial

reachabilityfunction denoted byFR∗, where it is possible to indicate at least one reachable state for

the model (so the set can be derived from this state or subset of states). More details can be found

in [5, 49].

The example presents only one unreachable state, so the reachability functionFR can be defined

∗The impact of functional rates in comparison to the use of synchronizing events [13] are not explored in this thesis.

2.2. GRAPHICAL REPRESENTATION AND PRIMITIVES 15

α11

α4 α5

α5

α12

α2π1α2π2

α3

α4

α4

XR X

0(1)0(2)

0(1)1(2)

1(1)0(2)

1(1)1(2)

0(1)2(2)

1(1)2(2)

Figure 2.3: Equivalent Markov chain for both SAN examples (Figure 2.1 and 2.2)

to exclude the global state {1(1);1(2)} as following:

FR = (stA(1) ! = 1(1)) && (stA(2) ! = 1(2));

The functionFR can also be partially defined with only a subset of reachable states, then it can

be later calculated iteratively from these specific states.As an example, the global state {0(1);0(2)} is

indicated in the partial reachability functionFR∗:

FR∗ = (stA(1) == 0(1)) && (stA(2) == 0(2));

For huge models is really difficult to determine the fully function FR in a model description.

There are researches concerned in propose very efficient approaches for the determination and for the

compact storage of the reachable set [17, 52]. In the contextof SAN formalism, the definition of a

partial reachability functionFR∗ is sufficient for the current PEPS tool [5, 49] to find the states in

XR. The following section discusses the internal structural representation of SAN models presenting

two different approaches despite both use the concept of events as a key for enabling new numerical

solutions.

16 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

2.3 Structural Representations

Given a well-formed SAN description which is a structured representation of a Markov chain,

the next step is to store and solve the model analytically (ornumerically) to obtain the stationary (or

transient) probability distribution. Following Kronecker properties (refer to Appendix B) the modular

behavior of the system can be decomposed in adescriptor, i.e., a set of small transition matrices

containing the model rates as elements. This decompositionallows iterative solvers to perform the

vector-matrix product, considering a multidimensional state space.

However, for SAN models, or even for other structured formalisms, there is another possible

structured representation which can be simply event-based. We can extract the set of events related to

a model (uniformizing their respective rates) and construct a transition function to represent the firing

of events. Both approaches must deal with a SAN model (or any structured model) as input, and

become a basis to generate the probability distribution as output. In this section, we briefly discuss

separately both approaches of SAN descriptions:Kronecker-based andEvent-based.

2.3.1 Kronecker-baseddescriptor

The use of tensor (Kronecker) algebra [2, 26, 37] to represent large complex models in a structured

description undeniably reduces the needs of memory avoiding the storage of the infinitesimal genera-

tor which is a full flat matrix. The SAN formalism, for example, takes advantage of this approach to

represent the infinitesimal generator of the model as an algebraic formula. In fact, instead of defining

one single, and usually huge, matrix of order equal to the product state space of the model, we de-

fine a set of tensor product terms with smaller matrices in which the combination through Kronecker

operations is equal to the underlying Markov chain transition matrix.

The local behavior of eachK automaton is represented by a unique tensor sum ofK matrices.

We indicate byQ(k)
l the matrices composed of local events occurrence rates as elements, with a cor-

respondent negative diagonal adjustment, which is a negative value correspondent to the line ordinary

sum. The synchronizing behavior is represented by tensor product terms of matrices containing the

rates of these synchronizing events. For each event is generated a tensor product term where one

affected matrix calledQ(k)
ep

+, contains the occurrence rate, and the other matrices involved contain the

value1 in the respective synchronizing transition. Automata thatnot interfere the synchronization,

present identity matricesIQ(k) of ordernk in the tensor product term.

For each tensor product term generated by a synchronizing eventep (positive tensor terme+ =
⊗K

k=1Q
(k)

e+
p

), another related tensor term is needed containing the diagonal adjustment for the syn-

chronizing behavior with matricesQ(k)
ep

− (negative tensor terme− =
⊗K

k=1Q
(k)

e−p
). Here the number of

synchronizing events is given byE.

2.3. STRUCTURAL REPRESENTATIONS 17

Thedescriptoris then composed of two parts and is given by the Equation 2.1:

Q =

K
⊕

k=1

Q(k)
l +

∑

ep∈E

(

K
⊗

k=1

Q(k)

e+
p

+

K
⊗

k=1

Q(k)

e−p

)

(2.1)

Kronecker algebra properties (see Appendix B) decompose a tensor sum in an ordinary multipli-

cation of tensor products called normal factors [55], for example,Q(1) ⊕ Q(2) = (Q(1) ⊗ IQ(2)) ×

(IQ(1) ⊗ Q(2)). Consequently, adescriptorQ can be defined as a sum of only tensor products of

matrices generically expressed byQ(k)
j .

Definition. Each matrixQ(k)
j has its dimension given by the the cardinality ofδ(k) (nk) of each au-

tomatonA(k) in the model. Their elements are the rates (or probabilities) associated to each transition

in A(k) depending on the tensor product been analyzed.

Definition. A SAN model withK automata andE synchronizing events has asdescriptorQ as

an algebraic formula composed by a sum ofK + 2E tensor products withK matricesQ(k)
j each.

Algebraically,Q =
∑K+2E

j=1

⊗K

k=1Q
(k)
j

Table 2.1 details the descriptorQ showing the tensor sum operation in the local part decomposed

into a ordinary sum ofK normal factors,i.e., a sum of tensor products where all matrices but one are

identity matrices. Therefore, only the non-identity matrices (in the local part the matricesQ
(k)
l) need

to be stored. The synchronizing part of thedescriptoris represented with positive tensor termse+

and negative tensor termse−.

For the SAN example in Figure 2.2, thedescriptoris a set ofK +2E tensor products and follows

the general descriptor formula (consideringK = 2 automata andE = 3 synchronizing events):

Q =
∑K+2E

j=1

⊗K

k=1Q
(k)
j = (Q(1)

l ⊗ I
Q

(2)
l

) + (I
Q

(1)
l

⊗ Q(2)
l) +

(Q(1)

e11
+ ⊗ Q(2)

e11
+) + (Q(1)

e11
− ⊗ Q(2)

e11
−) +

(Q(1)
e12

+ ⊗ Q(2)
e12

+) + (Q(1)
e12

− ⊗ Q(2)
e12

−) +

(Q(1)
e2

+ ⊗ Q(2)
e2

+) + (Q(1)
e2

− ⊗ Q(2)
e2

−)

Note that the automatonA(1) has no local events so the local part of the formula has in factK− 1

normal factors to decompose,i.e., there is no factorQ(1)
l ⊗ I

Q
(2)
l

in the decomposition ofQ(1)
l ⊕Q

(2)
l ,

we have justI
Q

(1)
l

⊗Q(2)
l to analyze. For each synchronizing event we proceed with thedecomposition

in positivee+ (and negativee−) tensor products, summarizing2E terms. Following are presented the

matrices composing each tensor term for the SAN example in Figure 2.2.

18 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

∑

Q
(1)
l ⊗ IQ(2) ⊗ · · · ⊗ IQ(K−1) ⊗ IQ(K)

IQ(1) ⊗ Q
(2)
l ⊗ · · · ⊗ IQ(K−1) ⊗ IQ(K)

K ...
IQ(1) ⊗ IQ(2) ⊗ · · · ⊗ Q

(K−1)
l ⊗ IQ(K)

IQ(1) ⊗ IQ(2) ⊗ · · · ⊗ IQ(K−1) ⊗ Q
(K)
l

2E

Q
(1)

e+
1

⊗ Q
(2)

e+
1

⊗ · · · ⊗ Q
(K−1)

e+
1

⊗ Q
(K)

e+
1

e+ ...
Q

(1)

e+
E

⊗ Q
(2)

e+
E

⊗ · · · ⊗ Q
(K−1)

e+
E

⊗ Q
(K)

e+
E

Q
(1)

e−1
⊗ Q

(2)

e−1
⊗ · · · ⊗ Q

(K−1)

e−1
⊗ Q

(K)

e−1

e− ...
Q

(1)

e−
E

⊗ Q
(2)

e−
E

⊗ · · · ⊗ Q
(K−1)

e−
E

⊗ Q
(K)

e−
E

Table 2.1: SANdescriptor

Local behavior of automatonA(2) represented as a tensor product:

I
Q

(1)
l

⊗Q(2)
l =

(

1 0

0 1

)

⊗







−α5 0 α5

0 −α3 α3

α4 0 −α4







Behavior of synchronizing evente11 with constant rateα11:

- Positive tensor term (e11
+)

Q(1)
e11

+ ⊗Q
(2)
e11

+ =

(

0 α11

0 0

)

⊗







1 0 0

0 0 0

0 0 0







2.3. STRUCTURAL REPRESENTATIONS 19

- Negative tensor term (e11
−)

Q(1)
e11

− ⊗Q
(2)
e11

− =

(

−α11 0

0 0

)

⊗







1 0 0

0 0 0

0 0 0







Behavior of synchronizing evente12 with constant rateα12:

- Positive tensor term (e12
+)

Q(1)

e12
+ ⊗Q

(2)

e12
+ =

(

0 α12

0 0

)

⊗







0 0 0

0 0 0

0 0 1







- Negative tensor term (e12
−)

Q(1)
e12

− ⊗Q
(2)
e12

− =

(

−α12 0

0 0

)

⊗







0 0 0

0 0 0

0 0 1







Behavior of synchronizing evente2 with constant rateα2 (associated probabilitiesπ1 andπ2):

- Positive tensor term (e2
+)

Q(1)

e2
+ ⊗Q

(2)

e2
+ =

(

0 0

α2 0

)

⊗







0 π1 π2

0 0 0

0 0 0







- Negative tensor term (e2
−)

Q(1)
e2

− ⊗Q
(2)
e2

− =

(

0 0

0 −α2

)

⊗







(π1 + π2) 0 0

0 0 0

0 0 0







Many approaches are studied to store and manipulate a Kronecker representation [21, 23, 52]. The

descriptor can be stored as a set of sparse matrices using a compact format, for example, Harwell-

Boeing format (HBF) [61] where only the nonzero elements andtheir indexes are explicitly indicated.

20 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

The tensor operations are implicit in the vector-descriptor product and the current SAN solver uses

this description inside iterative methods. More information on this subject is presented and discussed

on Chapter 3.

2.3.2 Event-baseddescriptor

This section proposes another discrete-event representation [42] for SAN models, where the setξ

of events can be defined with an associated transition functionΦ between global states. Considering

the product state spaceX of a model, and the fact that SAN have an underlying Markoviansystem,

we consider the model composed by a set of global statess̃ and a finite collectionξ = {e1, . . . , eP}

of P events (local and synchronizing events are all in the setξ).

Definition. The global transition function defined byΦ(s̃, ep) = r̃ (p ∈ [1..P]) is the set of rules

that associate to each global states̃ ∈ X a new global state denoted byr̃ ∈ XR, through the firing of

the transition labeled by eventep ∈ ξ.

Definition. An eventep is said to be enabled in the global states̃ ∈ X , if and only ifΦ(s̃, ep) = r̃,

where s̃ 6= r̃, and r̃ ∈ X . Analogously, an event is said to be disabled in states̃, if and only if

Φ(s̃, ep) = r̃, ands̃ = r̃.

In each global statẽs some events are enabled,i.e., they change the global statẽs into another

stater̃. However, not all events may occur from a given global state.In those cases, the transition

function assigns the permanence in the same global state. Table 2.2 shows the transition function

application for the SAN in Figure 2.2, considering all global statess̃ ∈ XR and all eventsep ∈ ξ.

In this table, the resulting global statesr̃ = Φ(s̃, ep) are represented, where those corresponding to

possible transitions are marked in bold face,i.e., those corresponding to enabled events†.

s̃ ∈ XR r̃ = Φ(s̃, ep), ep ∈ ξ
Φ(s̃, e11) Φ(s̃, e12) Φ(s̃, e2) Φ(s̃, e3) Φ(s̃, e4) Φ(s̃, e5)

{0;0} {1;0} {0;0} {0;0} {0;0} {0;0} {0;2}
{0;1} {0;1} {0;1} {0;1} {0;2} {0;1} {0;1}
{0;2} {0;2} {1;2} {0;2} {0;2} {0;0} {0;2}
{1;0} {0;1} {0,2} {1;0} {1;0} {1;0} {1;2}
{1;2} {1;2} {1;2} {1;2} {1;0} {1;2} {1;2}

Table 2.2: Transition functionΦ(s̃, ep) for the model of Figure 2.2

†It is important to observe that the transition functionΦ is a theoretical definition that is not necessarily used in
current SAN solvers implementation, since the Kronecker descriptor present another structural perspective for the solution
algorithms.

2.3. STRUCTURAL REPRESENTATIONS 21

The SAN model construction as a Markov process has the rates of each eventep seen as intensities

αp of Poisson processes (rates), and they are supposed to be independent. If an eventep can lead to

more than one state, it is needed to decompose the eventep in new events as new Poisson processes

with their respective rates. In the case of an eventep with a functional rate, it is decomposed in as

many events as possible evaluationsi of the function. For each function evaluation we have a new

Poisson process, and consequently a new eventepi
associated.

The SAN description has now a table of events and their characteristics as basis. The idea of

events uniformization is to introduce the independence among events applied successively. The uni-

formized process is driven by the Poisson process with rateα =
∑P

p=1 αp and generates at each time

an eventep ∈ ξ according to the distribution
(

α1

α
, . . . , αp

α

)

.

Definition. The dynamic of the system is defined by one initial global state s̃0 ∈ X and a sequence

of eventse = {ep}p∈N . The sequence of states{s̃n}n∈N is a stochastic recursive sequence typically

given by: s̃n+1 = Φ(s̃n, ep+1) for p ≥ 0 and is called atrajectory.

The global process execution [9, 60] described is related tothe underlying uniformized Markov

chain. Its transitions are given byΦ applications overX . However, it is common to have global states

that are not reachable by any other global state through a transition.

SAN models have|XR| reachable states, so the others are considered unreachableglobal states in

the model. Establishing the global state{0; 0} as the initial global statẽs0, we can have the reachable

state spaceXR
s̃0

(or XR) successively applying the defined transition functions. For our example,

XR ⊆ X and the model iswell-formedexcluding the unreachable state{1; 1}. A simple procedure

to find reachable states is to apply the notion of stochastic recursive transition function mainly when

the reachability function is not explicit in the SAN formal descriptions‡.

Considerations about events firing inSAN

One intrinsic characteristic of structured formalisms such as SAN is the multidimensional state

space required. The global state of a system is established by the combination of local states of every

component in the model. Considering a finite reachable statespaceXR containing global states com-

posed of automata local states, for each event inξ, the global transition functionΦ(s̃, ei) application

is given by an eventei internally operating over each local states(k) in s̃ = {s(1); . . . ; s(K)}, changing

or not the global state.

There are two ways that an automaton can change its local state: with a synchronizing event

(certainly affecting other automata) and with a local event. Both ways can be modeled with functional

‡SAN descriptions can define theXR set through the insertion of a reachability functionFR (or a partialFR∗). The
boolean evaluation of this function, when applied to every global state insideX , returns the reachable states inXR. More
details can be found in [5, 49] and some explanations on Section 2.2.

22 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

dependencies based on different automata. An event activation must verify all involved automata,

indicating that an eventep ∈ ξ is enabled (or disabled) considering each local states(i) ∈ δ(k) of each

automatonA(k) in the network.

Definition. The function̟(ep) = {A(i)}i∈N returns a set of automata directly affected by the

eventep ∈ ξ.

Definition. The local transition functionφ(s(k), ep) returns a new local state resulting of the event

ep firing over a local states(k). The new local state returned can be the sames(k), if ep does not affect

it.

Considering a local states(k) of automatonA(k), which belongs to̟ (ep). Theφ function appli-

cation results in the stater(k) means that the event is enabled for the local states(k). If the φ function

application results in the states(k), consequently the eventep is disabled for this local state.

Analogously, as mentioned in Section 2.3.2, given a global states̃ = {s(1); . . . ; s(K)}, the global

transition function can be viewed generically asΦ(s̃, ep) = r̃ if ep is enabled for̃s, or Φ(s̃, ep) = s̃ if

ep is disabled for̃s.

Algorithm 2.1 Event firing verification procedure

1: Ap ← ̟(ep) { Ap is the list of automataA(i) involved inep}
2: { looking at each local state iñs }
3: for all s(k) ∈ s̃ = {s(1); . . . ; s(K)} do
4: { automatonA(k) involved in eventep }
5: if A(k) ∈ Ap then
6: r(k) ← φ(s(k), ep)
7: { the eventep was not activated in the local states(k) }
8: if r(k) = s(k) then
9: { the global statẽs did not change}

10: returnΦ(s̃, ep) = s̃
11: end if
12: end if
13: end for
14: { the event was activated in all concerned automata, return next global statẽr }
15: returnΦ(s̃, ep) = r̃

Algorithm 2.1 shows the firing verification procedure, whereeach local state iñs related to an au-

tomaton included in̟ (ep) is analyzed to fire an eventep. Considering the example in the Figure 2.2,

following we show some local transitions firings throughφ, generating different global states.

Firing evente2 from the global statẽs = {1(1); 0(2)}:

2.3. STRUCTURAL REPRESENTATIONS 23

̟(e2) = {A(1),A(2)}

1(1) ∈ A(1) → φ(1(1), e2) = 0(1)

0(2) ∈ A(2) → φ(0(2), e2) = 2(2)

New state: r̃ = {0(1); 2(2)}

Firing evente4 from the global statẽs = {1(1); 2(2)}:

̟(e4) = {A(2)}

2(2) ∈ A(2) → φ(2(2), e4) = 0(2)

New state: r̃ = {1(1); 0(2)}

Firing evente3 from the global statẽs = {0(1); 0(2)}:

̟(e3) = {A(2)}

0(2) ∈ A(2) → φ(0(2), e3) = 0(2)

New state: r̃ = {0(1); 0(2)}

Focusing on the structural aspects of SAN models, we look at the global states and the effect

of events over them. Note that, for event firing purposes, it is not explicitly considered the event

type, i.e., all events present a synchronizing behavior even for the cases where it involves just one

automaton. This means that the global state still changes independently of the events types defined in

SAN descriptions.

This chapter summarized the SAN formalism background needed for the understanding of the

solutions proposed in this thesis. Different SAN models descriptions are used as case studies for both

numerical and theoretical results and they are presented inthe Appendix A.

24 CHAPTER 2. STOCHASTIC AUTOMATA NETWORKS

25

Chapter 3

Kronecker-based Descriptor Solution

The implementation of stationary and transient solvers must deal with a compact format through

algorithms well-fitted to a multidimensional Kronecker representation of the infinitesimal generator

Q. This chapter discusses vector-descriptor product procedures for solution purposes. In practice,

the structured (Kronecker) representation ofQ can be obtained using different modeling formalisms

beyond SAN, for example, stochastic Petri nets (SPN) [1] or even a less procedural approach but

very modular description such as stochastic process algebra (PEPA) [44, 45]. The tensor principle

[2, 26] recently has also been used in other stochastic formalisms [32, 45]. Thus, any structured

formalism with a tensor representation,e.g., SPN or PEPA, could employ the numerical algorithms

of this chapter without any loss of generality.

The background needed to understand the numerical contribution of this thesis to SAN, involves

concepts of classical tensor algebra (Appendix B) and specific notions of the SAN descriptor as an

algebraic formula (Sections 2.1 and 2.3.1).

3.1 Vector-Descriptor Product

Assuming that the underlying Markov chain is irreducible and it does not contain unreachable

states, for many applications it can be large and composed ofmany nonzero elements. Due to this,

the compact representation is a valid alternative, enabling even larger systems to be described and

solved. In order to efficiently analyze Markovian models based on Kronecker products, three algo-

rithms for vector-descriptor product are proposed [6, 16, 37] and implemented as the core for iterative

solution techniques in different modeling formalisms. These formalisms are integrated in different

software packages such as SMART (Stochastic Model CheckingAnalyzer for Reliability and Tim-

ing) [22], PEPS (Performance Evaluation of Parallel Systems) [5, 49] and the PEPA Workbench

[41]. Concerning the descriptor structure, there are solution approaches proposed, varying from hy-

26 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

brid solutions for simulation and numerical analysis [15] to algorithms adapted to alternative storage

structures [16, 52].

Despite the algorithmic differences, the approaches can besummarized in finding an efficient

way to multiply a (usually huge) vector by a non-trivial structure (adescriptor) inside an iterative

method,e.g., Powermethod [59, 61]. The aim is to obtain the stationary distribution π related to the

model. Old stochastic Petri net solutions [1] translate themodel representation into a singular sparse

matrix. Obviously, this sparse approach is difficult to be employed for really large models (e.g.more

than 500 thousand states), since it usually requires the storage of a too large sparse matrix (e.g.more

than 4 million nonzero elements). This is only possible withnon-trivial solutions such as disk-based

approaches [27],On-the-flygeneration techniques [28] or even parallel implementations [4, 31, 62].

The usual SAN solution is theShufflealgorithm [26, 37] and it deals with permutations of matrices

and tensor products. However, in an algebraic view, this algorithm can be applied to the analysis of

any Markov chain based on Kronecker products, independently from the modeling formalism. The

vector-descriptor multiplication, in this case, corresponds to the product of a probability vectorυ, as

big as the model product state space, by a descriptorQ in a Kronecker representation. Therefore, by

a simple distributive property, vector-descriptor product algorithms can be viewed in a simpler format

as a sum ofK + 2E products of the a vectorυ by a tensor product term composed byK matrices

(Equation 3.1):
K+2E
∑

j=1

(

υ ×

[

K
⊗

k=1

Q(k)
j

])

(3.1)

The research related to the numerical solutions of structured huge Markov models aims to speedup

the basic operationυ×
[

⊗K

k=1Q
(k)
j

]

. In this section, classical algorithms used to compute the multi-

plication of a vector by Markovian descriptors are presented, showing their advantages and limitations

when tensor structures are used.

3.1.1 Sparsesolution

The sparse solution is the most intuitive method to solve themapping of the Kronecker structure

into a matrix containing only nonzero elements multiplied by a probability vector. The numerical

algorithm is called in this thesis theSparsealgorithm. It aims to consider a tensor product termT

explicitly as a single sparse matrix, multiplying it by a product state space sized probability vector.

This means that an evaluation of the algebraic expression leads to a matrix of size equal to the product

state space.

Considering a tensor productT of K matricesQ(k), each one of dimensionnk , and withnzk

nonzero elements, theSparsealgorithm generates element by element of one large matrixQ =

3.1. VECTOR-DESCRIPTOR PRODUCT 27

...

SPARSE method

. . .

. . .

. . .

.

Tensor Product term − K matrices

Q(2) Q(K−2) Q(K)

υ× = π

Sparse matrixQ generatedυ

π

Q(1) Q(K−1)

Figure 3.1:Sparsemethod illustration

⊗K
k=1Q

(k), with order
∏K

k=1 nk. Then, the corresponding elements of vectorυ (with dimension given

by
∏K

k=1 nk) are multiplied by the sparse matrixQ, storing the results in the probability vectorπ.

Figure 3.1 shows an illustration of theSparsemethod where the nonzero elements in the matrixQ

are represented generically by the small black circles in the matrices.

This approach has storage disadvantages but the time-efficiency is less intuitive, because the full

matrix storage is not necessary if one can generate each nonzero ofQ as fast as it is needed in

the multiplication. According to the classical tensor product definition (refer to Appendix B) this

operation requiresK − 1 additional multiplications to generate a nonzero elementa.

Definingθ(1...K) as the set of all possible combinations of nonzero elements of the matrices from

Q(1) to Q(K), the cardinality ofθ(1...K), i.e., the number of nonzero elements inQ is given by:
∏K

k=1 nzk. Additionally, theSparsemethod needs the information of the dimension of the state space

corresponding to all matrices after thekth matrix of the tensor product, callednrightk (numerically

defined by
∏K

i=k+1 ni). We also have the analogous concept ofnleftk which is numerically equal to

28 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

Algorithm 3.1 Sparsealgorithm -π = υ ×⊗K
k=1Q

(k)

1: Υ = 0
2: for all i1, . . . , iK , j1, . . . , jK ∈ θ(1 . . .K) do
3: a = 1
4: basein = baseout = 0
5: for all k = 1, 2, . . . , K do
6: a = a× q

(k)
(ik ,jk)

7: basein = basein + ((ik − 1)× nrightk)
8: baseout = baseout + ((jk − 1)× nrightk)
9: end for

10: π[baseout] = π[baseout] + υ[basein]× a
11: end for

∏k−1
i=1 ni. TheSparsemethod is presented in the Algorithm 3.1.

TheSparsecomputational cost considering the number of floating pointmultiplications is given

by (Equation 3.2):

K ×
K
∏

k=1

nzk (3.2)

However, in this algorithm, all nonzero elements ofQ are generated during the algorithm ex-

ecution. Such elements generation represents(K − 1) ×
∏K

k=1 nzk multiplications that could be

avoided by generating one (usually huge) sparse matrix to store these
∏K

k=1 nzk nonzero elements. It

would eliminate the lines3 and6 from theSparsealgorithm and reduce the number of floating point

multiplications to just (Equation 3.3):
K
∏

k=1

nzk (3.3)

This option allows theSparsealgorithm to be very time-efficient compared to specializedalgo-

rithms for the treatment of Kronecker products, but potentially very memory demanding due to the

storage of a, potentially huge, sparse matrixQ. Another interesting approach to the sparse algorithm

is to keep the nonzero elements generation inside the algorithm, but factorizing previous calcula-

tions [16]. Note that all combinations of elements, of each matrix of the tensor product, have multi-

plications in common,i.e., the nonzero elements can be generated considering partialmultiplication

results. Such solution can reduce the complexity in terms ofnumber of multiplications applying an

algorithm to exploit levels of factoring, reusing previouscalculations.

In the context of this work, the sparse approach to be considered will be the time-efficient ver-

sion,i.e., the variant with the previous generation and storage of nonzero elements ofQ. Such variant

demands a smaller number of floating point multiplications (Equation 3.3) than the traditional spe-

cialized algorithm for tensor products, but it stores a sparse matrix with
∏K

k=1 nzk nonzero elements.

3.1. VECTOR-DESCRIPTOR PRODUCT 29

3.1.2 The memory-efficientShuffle algorithm

A structured view of infinitesimal generators represented by Kronecker algebra leads us to a spe-

cialized algorithm which deals with building blocks of nonzero elements, performing shuffling op-

erations in the probability vectorυ. The immediate effect of using tensor properties to optimize the

numerical solution is the reduction of the memory spent, moving this bottleneck from the infinitesimal

generator to the probability vector.

...

SHUFFLE method

Tensor Product term − K matrices

...

...

...

...

...

...

... ...

... ...

... ...

...

Q(1) Q(2) Q(K−2) Q(K−1)

υ×

Q(K)

υ

υK−1

Inleft ⊗Q(K)υK−1Inleft ⊗Q(K−1) ⊗ Inright

υ2υ1

I1 ⊗Q(2) ⊗ InrightQ(1) ⊗ Inright υ1

υK−2

= π

π

Figure 3.2:Shufflemethod illustration

The basic principle of theShufflealgorithm is the application of the decomposition of a tensor

productT in the ordinary product of normal factors property [37] (Equation 3.4):

T = Q(1) ⊗Q(2) ⊗ . . .⊗Q(K−1) ⊗Q(K) =

(Q(1) ⊗ In2 ⊗ . . .⊗ InK−1
⊗ InK

) × (In1 ⊗Q
(2) ⊗ . . .⊗ InK−1

⊗ InK
) ×

. . . × . . . ×

(In1 ⊗ In2 ⊗ . . .⊗Q(K−1) ⊗ InK
) × (In1 ⊗ In2 ⊗ . . .⊗ InK−1

⊗Q(K))

(3.4)

30 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

Hence, theShufflealgorithm consists in multiplying successively a vectorυ by each tensor term

decomposed in normal factors. More precisely,υ is multiplied by the first normal factorQ(1) ⊗

Inright1 , then the resulting vector is multiplied by the next oneInleftk ⊗ Q
(k) ⊗ Inrightk , and so on,

until the last multiplication byInleftK ⊗Q
(K).

Internally to each normal factor, the multiplications are done using small auxiliary vectors called

zin andzout in the Algorithm 3.2. These small vectors store the values ofυ to multiply by thekth

matrix of the normal factor, and then store the result in the probability vectorπ (Figure 3.2). The

vectors dimensions are given by the matrixQ(k) dimension in each normal factor multiplied.

Algorithm 3.2 Shufflealgorithm -π = υ ×⊗K
k=1Q

(k)

1: for all k = 1, 2, . . . , K do
2: base = 0
3: for all m = 0, 1, 2, . . . , nleftk − 1 do
4: for all j = 0, 1, 2, . . . , nrightk − 1 do
5: index = base + j
6: for all l = 0, 1, 2, . . . , nk − 1 do
7: zin[l] = υ[index]
8: index = index + nrightk
9: end for

10: multiply zout = zin ×Q(k)

11: index = base + j
12: for all l = 0, 1, 2, . . . , nk − 1 do
13: υ[index] = zout[l]
14: index = index + nrightk
15: end for
16: end for
17: base = base + (nrightk × nk)
18: end for
19: end for
20: π = υ

Generalizing the multiplication of a vectorυ by thekth normal factor, it consists inshufflingthe

elements ofυ in order to assemblenleftk × nrightk vectors of sizenk , multiplying them by matrix

Q(k). Thus, assuming that matrixQ(k) is stored as a sparse matrix, the number of operations needed

to multiply a vector by thekth normal factor is:nleftk × nrightk × nzk, wherenzk corresponds to

the number of nonzero elements of thekth matrixQ(k) of the tensor product term.

Considering the number of multiplications of all normal factors in a tensor product term, the

Shufflecomputational cost to perform the basic operation (multiplication of a vector byT) is given

by [37] (Equation 3.5):

3.2. THE HYBRID SPLIT ALGORITHM 31

K
∑

k=1

nleftk × nrightk × nzk =

K
∏

k=1

nk ×
K
∑

k=1

nzk

nk

(3.5)

Another feature of theShufflealgorithm is the product optimization for functional elements, i.e.,

the use of generalized tensor algebra properties and matrices reordering [37]. All those optimizations

are very important to reduce the overhead of evaluating functional elements, but such considerations

are out of the scope of this thesis. Our focus is the vector-descriptor considering the tensor terms are

described with classical tensor algebra (more details about its properties are found in the Appendix B).

3.2 The Hybrid Split Algorithm

SAN models of practical applications are often sparse. Moreover, the tensor sum in a descriptor is

intrinsically very sparse due to the normal factors structure. The dependent behaviors represented by

tensor products let this part of the descriptor also quite sparse. These characteristics lead us to propose

a hybrid approach calledSplitalgorithm [24] that takes advantage of matrices sparsity combined with

the advantages of the classical tensor product decomposition in normal factors.

The additive decomposition property, applied to any tensorproduct termT , states that a term can

be decomposed into an ordinary sum of matrices (composed by one single nonzero element). Noe

that it is also the principle of sparse techniques.

Assumingq̂(i1,...,iK−1,j1,...,jK) the matrix of dimension
∏K

i=1 ni composed by only one nonzero

element which is in positioni1, . . . , iK , j1, . . . , jK and it is equal to
∏K

k=1 q
(k)
ik ,jk

, the additive decom-

position property is given by (Equation 3.6):

T = Q(1) ⊗Q(2) ⊗ . . .⊗Q(K−1) ⊗Q(K) =
∑n1

i1=1 . . .
∑nK

iK=1

∑n1

j1=1 . . .
∑nK

jK=1

(

q̂
(1)
(i1,j1)

⊗ . . .⊗ q̂
(K)
(iK ,jK)

) (3.6)

whereq̂
(k)
(i,j) is a matrix of ordernk in which the element in rowi and columnj is q

(k)
i,j .

The Split method proposes a combined solution using an additive property for a given set of

matrices inside a tensor product termT , performing the shuffling operations for the other matrices.

Hence, each tensor product of matrices can be partitioned (or splitted) in two different groups: the

first one with the most sparse matrices; and the second one with the matrices with a larger number of

nonzero elements. This is possible when permutations∗ of matrices are allowed.

A Sparse-like approach could be applied to the first group ofK matrices generating new factors

calledAdditive Unitary Normal Factors(AUNFs). AnAUNF presents a scalar valuea associated and

∗It is out of the scope of this thesis to analyze permutations and the effect of them for theSplit algorithm.

32 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

Split σ Tensor Product TermT = ⊗K
i=1Q

(i)

σ
↓

0 Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(K−3) ⊗ Q(K−2) ⊗ Q(K−1) ⊗ Q(K)

Shuffle

σ
↓

1 Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(K−3) ⊗ Q(K−2) ⊗ Q(K−1) ⊗ Q(K)

Sparse Shuffle

σ
↓

2 Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(K−3) ⊗ Q(K−2) ⊗ Q(K−1) ⊗ Q(K)

Sparse Shuffle
...

...
σ
↓

K-2 Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(K−3) ⊗ Q(K−2) ⊗ Q(K−1) ⊗ Q(K)

Sparse Shuffle

σ
↓

K-1 Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(K−3) ⊗ Q(K−2) ⊗ Q(K−1) ⊗ Q(K)

Sparse Shuffle

σ
↓

K Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(K−3) ⊗ Q(K−2) ⊗ Q(K−1) ⊗ Q(K)

Sparse

Table 3.1:Split as a generalization of traditional algorithms

indexes (line and column) related to the combination of the nonzero elements of each matrix in the

group. The scalara is the result of this combination (or matricesaggregation) computed using the

nonzero values found in the matrices.

Each one of thoseAUNFs should be tensorly multiplied by the second group of matrices using a

Shuffle-like approach. TheShufflealgorithm is applied normally in this subset of matrices considering

that the probability vectorυ to be multiplied, has already the information related to theAUNF. The

shuffling operation is applied to eachAUNF generated from the first group of matrices. The idea is to

split the tensor terms in two sets of matrices treating them in two different ways. Table 3.1 presents

the general idea ofSplitgraphically. The index of the matrix chosen for delimiting the end of the first

set of matrices is calledcut-parameterσ. It is possible to observe that theSparse(σ = K) and the

Shuffle(σ = 0) methods are particular cases of theSplit algorithm.

The Figure 3.3 shows a tensor product term ofK matrices indicating acut-parameterσ after

theQ(K−2) matrix. The sparse part will generate the combinations of nonzero elements of each

matrix in this subset, calculating theAUNFs. Supposing we have three matrices in this part with

nz1 = 2, nz2 = 2 andnz3 = 1 respectively (nzi is the number of nonzero elements of each matrix).

Consequently, the combination of these elements generatesfour AUNFs (
∏σ

i=1 nzi = 2× 2× 1) and

3.2. THE HYBRID SPLIT ALGORITHM 33

SPARSE PART SHUFFLE PART

...

SHUFFLE PARTSPARSE PART
Tensor Product term − K matrices

= υ1

Q(K−1) ⊗ IK IK−1 ⊗Q
(K)υ1 υ2

υ2

υ0×

⊗K−2
i=1 Q

(i)

Q(1) Q(2) Q(K−2) Q(K−1) Q(K)

υ0×

σ

= π

π

Figure 3.3:Split method illustration

their indexes in the implicit matrix (correspondent to the sparse part) are calculated based on the lines

and columns of each nonzero element considered. The shuffle part indicated at right in the Figure 3.3

is applied to eachAUNF of the sparse part individually. This means that the firstAUNF is multiplied

by the vectorυ0, then the resultant vectorυ1 is used as input to the shuffle part, accumulating the

result on the vectorπ. After that, the secondAUNF is multiplied by the vectorυ0, and so on, until the

last scalar in the sparse part.

Algorithm 3.3 defines formally the steps of the splitting procedure using the notationυ for the

input vector andυin the auxiliary vectors in the multiplication. It consists inthe computation of the

scalar elementa of eachAUNF in θ(1 . . . σ) by multiplying one nonzero element of each matrix of

the first set of matrices fromQ(1) toQ(σ) (lines2 to 9). According to the elements row indexes used

to generate the scalar elementa, a contiguous slice of input vectorυ, calledυin , is taken. Vectorυin

of size nrightσ (corresponding to the product of the order of all matrices after thecut-parameterσ of

the tensor product term) is multiplied by the elementa. Lines10 to 11 perform the multiplication of

the scalar element composing theAUNF for each position inυ, then finishing the sparse part.

The resulting vector alsoυin is used as input vector to theShuffle-like multiplication (lines13 to

31) by the tensor product of the matrices in the second set of matrices (fromQ(σ+1) toQ(K)). At the

end of the Shuffle part, the vectorυ obtained is accumulated in the final vectorπ (lines32 to34). Note

that thecut-parameterσ is pre-defined before running the algorithm, which means onemay define

34 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

Algorithm 3.3 Split algorithm -π = υ ×⊗K
i=1Q

(k)

1: Υ = 0
2: for all i1, . . . , iσ, j1, . . . , jσ ∈ θ(1 . . . σ) do
3: a = 1
4: basein = baseout = 0
5: for all k = 1, 2, . . . , σ do
6: a = a× q

(k)
(ik ,jk)

7: basein = basein + ((ik − 1)× nrightk)
8: baseout = baseout + ((jk − 1)× nrightk)
9: end for

10: for all l = 0, 1, 2, . . . , nrightσ − 1 do
11: υin[l] = υ[basein + l]× a
12: end for
13: for all i = σ + 1, . . . , K do
14: base = 0
15: for all m = 0, 1, 2, . . . , nlefti

nleftσ
− 1 do

16: for all j = 0, 1, 2, . . . , nrighti do
17: index = base + j
18: for all l = 0, 1, 2, . . . , ni − 1 do
19: zin[l] = υin[index]
20: index = index + nrighti
21: end for
22: multiply zout = zin ×Q(i)

23: index = base + j
24: for all l = 0, 1, 2, . . . , ni − 1 do
25: υin[index] = zout[l]
26: index = index + nrighti
27: end for
28: end for
29: base = base + (nrighti × ni)
30: end for
31: end for
32: for all l = 0, 1, 2, . . . , nrightσ − 1 do
33: π[baseout + l] = π[baseout + l] + υin[l]
34: end for
35: end for

3.2. THE HYBRID SPLIT ALGORITHM 35

this division point considering the memory available to store and manipulate theAUNFs as well as

use the characteristics of the tensor product terms formations to decide the bestcut-parameterin each

situation.

The hybrid solution, depending on the sparsity of descriptors, can do better thanShufflealgorithm

since most matrices can have few nonzero elements which has an impact in the number ofAUNFs.

Shufflepays an additional overhead in time for the efficient saving in space because it deals with

complex indexes calculations. The next section shows the computational costs of theSplit algorithm

considering also some optimizations. Following, we show the numerical results of theSplitalgorithm

application in SAN descriptors, presenting an algorithm for sampling a well-fittedcut-parameterσ

for each tensor product term.

3.2.1 Theoretical contributions

This section presents the computational cost in number of multiplications (Equation 3.7) for the

Split algorithm, which is also considered a theoretical contribution in thesis, since the operations

involved are reduced when compared to theShufflealgorithm computational cost (Equation 3.5).

The computational cost is calculated taking into account the number of multiplications performed

to generate each scalar element composing anAUNF (σ − 1 multiplications), plus the number of

multiplications of the scalare by each position value of the vectorυin . There is also the cost to

multiply the values in the input vectorυin by the tensor product of matrices in theShuffle-like part.

(

σ
∏

i=1

nzi

)[

(σ − 1) +

(

K
∏

i=σ+1

ni

)

+

(

K
∏

i=σ+1

ni ×
K
∑

i=σ+1

nzi

ni

)]

(3.7)

In practical implementations of vector-descriptor multiplication algorithms, improvements can

also be done to speedup the execution. These optimizations can change significantly the theoretical

computational cost presented in the Equation 3.7.

Regarding theShufflemethod, there is an optimization on the way of handling identity matrices.

Those matrices do not need to generate normal factors, sincebeing identity matrices, they generate a

normal factor that is also an (huge) identity matrix itself.The computational cost is clearly reduced

in theShufflealgorithm execution when using this solution. It corresponds to transform the number

of floating point multiplications equation for theShufflealgorithm (Equation 3.5) to Equation 3.8:

K
∏

i=1

ni ×
K
∑

i=1

iffQ(i) 6=Id

nzi

ni

(3.8)

This improvement suggests the same skipping-identities optimization to theShuffle-like part (ma-

36 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

tricesQ(σ+1) toQ(K)) of theSplit (Algorithm 3.3) identifying if the matrix indexed by variable i of

the algorithm (Q(i)) is not an identity matrix, adding to the costnzi

ni
multiplications only for these

ones. Analogously toShufflealgorithm, Equation 3.7 will be rewritten changing theShuffle-part cost

accordingly toσ. The resulting number of floating point multiplications fortheSplit algorithm will

be (Equation 3.9):

(

σ
∏

i=1

nzi

)









(σ − 1) +

(

K
∏

i=σ+1

ni

)

+









K
∏

i=σ+1

ni ×
K
∑

i=σ+1

iffQ(i) 6=Id

nzi

ni

















(3.9)

Usually the tensor product terms of a SAN model are very sparse (a few thousands nonzero

elements). The only cases where a more significant number of nonzero elements are found, are those

when we are dealing with a tensor product term with many identity matrices. It is important to recall

that to eachAUNF, the scalara is computed as the product of one single element of each matrix.

The second optimization is the precomputation of these nonzero elements and their storage. This

optimization was already largely studied in [16]. It results consequently in a reduction of theSplit

algorithm computational cost, similar to that one presented in Section 3.1.1 (Equation 3.2) regarding

the computation of nonzero elements. Hence, the final definition of the number of floating point

multiplications for theSplit method is no longer defined by Equation 3.9, but as (Equation 3.10):

(

σ
∏

i=1

nzi

)









(

K
∏

i=σ+1

ni

)

+









K
∏

i=σ+1

ni ×
K
∑

i=σ+1

iffQ(i) 6=Id

nzi

ni

















(3.10)

For very sparse tensor products the best cut-parameterσ points to a pure sparse approach mainly

because fewAUNF will be generated avoiding the shuffling operations. The method, obviously, is

much more effective if the nonzero elements do not have to be recomputed at each vector multi-

plication. Therefore, theSplit algorithm must balance together the computational cost in terms of

multiplications and its memory needs considering thedescriptorplus the size of the new structures

such as theAUNF. The next section presents the practical results obtained,using the equations above

to demonstrate the gains achieved.

3.2.2 Practical contributions

The collection of classical and practical [3, 34] examples (Appendix A) counts with a vari-

ety of tensor product formations, since semantic aspects allow different automata interconnections

through more or less synchronizing (or local) events. Despite the significant computational cost re-

3.2. THE HYBRID SPLIT ALGORITHM 37

duction given by functional transitions, functions are notmandatory when modeling or solving with

SAN. Models with functions are converted to an equivalent representation† using only synchronizing

events [13].

The performance results were collected running the algorithm implementation, varying thecut-

parameterσ from Shuffleto Sparse, on a 3.2 GHz Intel Xeon under Linux operating system with 4

Gb of memory. The prototype module is inside thePEPS2003environment and was compiled using

theg++ compiler with optimizations (−O3).

All tensor product termsT of each Kronecker descriptorQ were executed in all possiblecut-

parametersσ, collecting time outputs for 100 runs (samples). The results were obtained in time

intervals with 95% of confidence. TheSplitalgorithm executions times presented in the tables are the

sum of the average best execution times obtained for each tensor product term composingQ, consid-

ering their different cut-parametersσ and aν number of samples, according to the Algorithm 3.4.

Algorithm 3.4 Tensor terms execution times for aσ sampling
1: for all T ∈ Q do
2: for all σ ∈ N do
3: Runν samples collecting execution timestσ;
4: end for
5: end for
6: Calculate the confidence interval for the execution timestσ;
7: Identify the fastest execution timetσ within the confidence interval;
8: for all σ ∈ N do
9: take execution timetσ;

10: verify if tσ > t thendiscardtσ and go to nextσ;
11: end for
12: for all tσ non-discardeddo
13: marktσ with the less memory needed;
14: end for
15: for all T ∈ Q do
16: assign the markedtσ to σT ;
17: end for

Each tensor termT received onecut-parameterσT after the execution of Algorithm 3.4. When

σT requires an unstructured part in the descriptor the procedure of AUNFS generation is activated

to store the elements and their indexes. All other iterations in the method needed to solve the model

descriptor are executed usingσT and data structures related to this choice.

All tables in this section show the results obtained for the three methods:Shuffle, SplitandSparse,

analyzing each one in three columns, representing the time spent in seconds per iteration (sec.), size

†The impact analysis of this translation to obtain the numerical solution is out of the scope of this work.

38 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

in Kb and the computational cost in floating point multiplications (fpm) following the equation 3.10.

The column namedX stands for the product state space (the dimension of the probability vector).

We also preserve the predefined order of automata given by themodel description, do not per-

forming automata permutations‡ before runningSplit. In such way, it is possible to say that theSplit

results presented here tend to force the trade-off between time and memory efficiency towards time

savings. The opposite choice (memory savings) would force the Split method to obtain practically

the same efficiency of theShufflealgorithm, known as a memory-efficient solution.

Resource Sharingmodel results

This section evaluates theResource SharingSAN model results (see Figure A.2). Table 3.2

shows different network configurations named asP_R, indicating the numberP of processes andR

of resources. Note that thefpmcolumns remains the same forSplit andSparsecolumns, so due to

tensor terms sparsity this cost is the same for both approaches and better than the pure application of

Shuffle.

Models
X

Shuffle Split Sparse
(P_R) time (s) size (Kb) fpm time (s) size (Kb) fpm time (s) size (Kb) fpm

10_16 17,408 0.04851 11.25 1,003,520 0.01550 2,018.25 327,680 0.01636 5,131.25 327,680
10_20 21,504 0.06211 13.75 1,249,280 0.01910 2,373.75 409,600 0.02009 6,413.75 409,600
11_11 24,576 0.07477 8.94 1,531,904 0.02304 2,615.42 495,616 0.02448 7,752.94 495,616
11_14 30,720 0.09387 11.00 1,937,408 0.02906 3,524.13 630,784 0.03187 9,867.00 630,784
12_12 53,248 0.17808 10.50 3,637,248 0.05793 5,674.31 1,179,648 0.06897 18,442.50 1,179,648
13_13 114,688 0.42021 12.19 8,519,680 0.15609 10,859.88 2,768,896 0.20394 43,276.19 2,768,896
14_10 180,224 0.72949 10.50 14,221,312 0.27686 16,654.25 4,587,520 0.34378 71,690.50 4,587,520
14_11 196,608 0.80280 11.38 15,597,568 0.30455 18,316.41 5,046,272 0.37499 78,859.38 5,046,272

Table 3.2:Resource SharingSAN model results

The maximum resource needed in memory, in these examples, isachieved by the last model with

almost∼19 Mb used. The reduction of the time spent per iteration compared with theShuffleresults

shows the improvement obtained using the flexibility of theSplit algorithm. TheSplit method is two

times faster solving this models against theShufflewhich is five times less memory consuming.

Dining Philosophersmodel (with resource reservation)

This section presents theDining PhilosophersSAN model results (Figure A.4). Table 3.3 shows

the results forK philosophers in the network. The model analyzed supposes a resource reservation

‡The Shufflealgorithm implements automata permutations to optimize the solution of descriptors mainly those de-
scribed with generalized tensor algebra [37].

3.2. THE HYBRID SPLIT ALGORITHM 39

by the philosophers meaning each automataPh(k) has three states and consequently the matrices

composing the descriptor have a fixed dimensionnk = 3.

Models
X

Shuffle Split Sparse
(K) time (s) size (Kb) fpm time (s) size (Kb) fpm time (s) size (Kb) fpm

6 729 0.00116 1.69 17,496 0.00058 17.09 13,365 0.00042 92.81 5,832
7 2,187 0.00421 1.97 61,236 0.00241 47.52 50,787 0.00153 320.91 20,412
8 6,561 0.01447 2.25 209,952 0.00477 242.84 76,545 0.00537 1,095.75 69,984
9 19,683 0.04639 2.53 708,588 0.01632 1,106.91 236,196 0.01740 3,693.09 236,196
10 59,049 0.15348 2.81 2,361,960 0.05753 4,035.28 787,320 0.06492 12,304.69 787,320
11 177,147 0.53765 3.09 7,794,468 0.25230 7,387.28 2,598,156 0.29316 40,599.28 2,598,156

Table 3.3:Dining PhilosophersSAN model results

Note that thefpmneeded in each method does not mean that a method will be faster in seconds,

it is also related also to the access of structures in memory according to thecut-parametersσ of each

tensor term. A structured descriptor exploitation forces the algorithm to access more positions in

memory to update indexes and store results. However it is clear that this is dependable of tensor term

formation,i.e. the number of non-zero elements in each matrix and the numberof identity matrices

in the term define the number of scalars in the sparse part and the dimension of the structured part.

TheSplit algorithm presents a time efficiency superior than theSparsemethod and it means that

sometimes structured behavior obtained with more shufflingoperations can bring better performance

not only regarding memory savings as expected. For the modelwith K = 11 is spent∼7 Mb of extra

memory to obtain theSplit performance as close as possible to theSparsemethod computational

time.

First Available Servermodel results

This section presents the results for theFirst Available ServerSAN model (Figure A.6). Table 3.4

shows another example with better performance in time even spending more memory thanShuffle.

The models variations are indicated by the numberN of servers in the network. This model is

composed by sparse matrices and identities with dimensionni = 2 in the tensor terms. Considering

that this model presents many synchronizing events, it is common the insertion of identity matrices

in the tensor terms, indicating the events has no effect in the related automata. The incidence of these

small identity matrices in the sparse part defined by thecut-parameter, does not compromises the

memory a lot.

The trade-off time-memory brings a new numerical approach for a faster solution of vector-

descriptor products. For the model withN = 18 is spent an extra memory of∼17 Mb to obtain

more time efficiency in theSplit method. The computational time gains are notable when compared

40 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

Models
X

Shuffle Split Sparse
(N) time (s) size (Kb) fpm time (s) size (Kb) fpm time (s) size (Kb) fpm

12 4,096 0.02110 4.05 368,640 0.00330 72.90 71,136 0.00349 900.02 57,342
13 8,192 0.04832 4.70 851,968 0.00675 279.06 134,240 0.00711 1,924.67 122,878
14 16,384 0.10892 5.39 1,949,696 0.01313 1,062.34 278,976 0.01464 4,101.36 262,142
15 32,768 0.24731 6.13 4,423,680 0.02843 1,287.49 579,360 0.03219 8,710.10 557,054
16 65,536 0.55665 6.91 9,961,472 0.06395 2,118.83 1,200,640 0.07764 18,438.88 1,179,646
17 131,072 1.25347 7.75 22,282,244 0.14731 6,701.31 2,514,336 0.18160 38,919.71 2,490,366
18 262,144 2.85996 8.63 49,545,224 0.34844 16,907.83 5,295,968 0.40969 81,928.59 5,242,878

Table 3.4:First Available ServerSAN model results

to theShufflealgorithm, even spending more memory unstructuring the SANdescriptor withSplit.

Ad Hoc Wireless Sensor Networkmodel results

This section presents the results for theAd Hoc Wireless Sensor NetworkSAN model (Fig-

ure A.7). The numerical results were obtained for this modelextending the number of automata

N (nodes), then also extending the number of synchronizing events to treat as tensor product terms.

Table 3.5 shows that as the numberN of nodes in the mobile chain increases, so does the compu-

tational time to solve, as well as the memory needed. Since theShufflealgorithm is memory-efficient

compared to the other two approaches, consequently it performs extra operations to multiply the

sparse matrices in a tensor term. It is showed that theShufflemethod is slower than the other two

methods in the models presented. These methods, on the contrary, are very time efficient despite their

need for memory consuming.

Models
X

Shuffle Split Sparse
(N) time (s) size (Kb) fpm time (s) size (Kb) fpm time (s) size (Kb) fpm

6 324 0.00075 1.52 7,344 0.00013 5.30 1,798 0.00025 18.93 1,114
8 2,916 0.00633 2.25 93,312 0.00071 103.22 14,332 0.00163 219.88 13,928
10 26,244 0.07454 2.99 1,084,752 0.01307 170.11 185,364 0.01520 2,510.61 160,488
12 236,196 0.87020 3.72 11,967,264 0.18774 1,461.79 2,230,740 0.20951 27,513.35 1,760,616
14 2,125,760 9.35304 4.46 127,545,900 1.75147 13,536.58 22,674,856 2.07020 292,060.08 18,691,560
16 19,131,900 96.44355 5.19 1,326,477,700 17.99368 118,103.25 235,251,512 21.02443 3,028,726.82 193,838,184

Table 3.5:Ad Hoc Wireless Sensor NetworkSAN model results

For small models (N < 12 nodes) the computational time and memory efficiency are reasonable

enough to be dealt regardless of any algorithm in virtually any machine. It demands few more than∼2

Mb in the sparse alternative and it takes less than∼100 milliseconds per iteration for all algorithms.

However, even in these small examples we noticed the quite impressive memory efficiency of the

Shufflealgorithm that keeps the memory needs insignificant even forquite large models.

3.2. THE HYBRID SPLIT ALGORITHM 41

The remarkable result in Table 3.5 is the better time efficiency that beats even the sparse approach.

Although, for each tensor product, the sparse approach could be faster for most cases, terms with

many identity matrices could have a better time efficiency inShuffleor Split algorithms. Since a

SAN model is composed of many tensor product terms withsparseor ultra sparse§ matrices,Split

is the best option in tensor product terms where the sparse approach could be faster, but too memory

demanding.

The largest model (N = 16) shows thatSplit is around 3 seconds faster thanSparse, with a

memory needed of little more than 100 Mb, rather than 3 Gb needed by the sparse solution,i.e., Split

takes for this case almost 30 times less memory and still improves the time efficiency compared to

Sparse. It is important to observe, as well, that this model has a considerable product state space

of more than 19 million states. Such large model could be nearly intractable if a time and memory

efficient solution is not found.

It is also noticeable that the number of floating point multiplications computed to each algo-

rithm is not relevant to indicate a better performance in time since observations indicate that alloca-

tions/deallocations have considerable influence on the algorithms performance.

Master-Slave Parallel Algorithmmodel results

This section presents the results for theMaster-Slave Parallel AlgorithmSAN model (Figure A.8).

This model was extended to run experiments for different numbers ofN slaves and the buffer was

fixed with forty positions (K = 40) meaning that the tensor terms are composed by matrices with

dimensions given byni = 3 (representingi = 1 . . . S slaves) and a matrix with dimensionnK = 41

(the buffer with an empty position).

Models
X

Shuffle Split Sparse
(N) time (s) size (Kb) fpm time (s) size (Kb) fpm time (s) size (Kb) fpm

5 29,889 0.0983 16.63 1,797,228 0.0223 1,447.69 399,036 0.0254 5,229.25 333,608
6 89,667 0.3507 20.31 6,488,829 0.0931 3,183.29 1,742,271 0.1087 18,531.62 1,184,724
7 269,001 1.3178 23.35 22,488,916 0.3713 9,446.93 6,555,978 0.4039 64,222.72 4,108,760
8 807,003 4.5805 26.43 76,534,019 1.2393 28,236.07 23,037,480 1.3487 231,315.37 14,802,495
10 7,263,030 50.0752 32.43 847,176,190 12.9219 240,596.27 246,651,139 13.9086 2,363,273.71 151,247,442
12 65,367,200 535.2877 38.54 9,137,063,300 135.9426 2,282,495.12 2,787,370,431 147.5943 26,195,236.61 1,676,492,676

Table 3.6:Master-Slave Parallel AlgorithmSAN model results

Table 3.6 shows that theSplit algorithm once again demonstrates a better time efficiency in the

results of all model extensions. In fact, it presents, in general, results a little faster than the sparse

approach,i.e., roughly around 10% faster in larger models.

§Sparse matrices are classified due to their level of sparsityassparse, ultra sparseor hyper sparsein [16].

42 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

However, the memory savings obtained in this second set of examples seem less impressive than

those obtained for theAd Hoc Wireless Sensor Networkmodel extensions. TheSplit method still

gives a considerable reduction for the huge last example (S = 12) bringing the memory needs from

nearly intractable 26 Gb in sparse approach to large, but tractable 2.2 Gb. Once again, it is important

to keep in mind that we are dealing with a model with 65 millionstates of product state space, and

then some significant amount of memory and computational time are expected to achieve a stationary

(or transient) solution.

3.3 Conclusions and Perspectives

The main contribution of this work is the proposition of a flexible hybrid vector-descriptor algo-

rithm. The application of theSplit algorithm on SAN models of real problems [24] showed a good

tradeoff between memory and time efficiency when compared tothe traditionalSparseandShuffle

approaches. Considering that we need many iterations to calculate the final probability vectorπ, the

memory and time spent surely can be evaluated and balanced according to the available time and

computational resources. Nevertheless, it is also shown that theSplit algorithm is flexible enough to

deliver in extreme cases at least the same time efficiency as the Sparseapproach, or, alternatively,

the same memory efficiency as theShuffleapproach. For all experiments thecut-parameterσ of each

tensor term is chosen by running in the first iterations, somesimulations of differentσ, then collecting

the best times obtained in a given confidence interval, considering also the memory needed.

In the Section 3.2.2 is presented the Algorithm 3.4, where the choice of the division point in

each tensor term (choice of the cut-parameterσ) can be made before starting the iterative method,

running some sampling iterations for each term. This procedure can have no relevant computational

cost considering the gains we can achieve after running manyiterations until the convergence for the

solution. The sampling can be set up to reject runs clearly not feasible such asσ entirely sparse due to

memory constraints, or entirely structured if many identity matrices in the term. The identities placed

for example in the sparse part only generate more AUNFS to store, while in the structured part they

are certainly skipped.

Note that the research for an heuristic to automatically choose thecut-parameterand a well-

suited permutation of matrices, for each tensor product, isa considerable research challenge. This

is not a trivial task, due to the tensor product term formation and intrinsic matrices details such as

dimension, total number of nonzero elements and computational cost in terms of multiplications.

These parameters opens the possibility of a thorough analysis of the related theoretical computational

cost. Since tensor terms can be differently formed due to thestructured models we deal with, the

performance can also be very dependent on the choice of matrices placed in each group. The tensor

3.3. CONCLUSIONS AND PERSPECTIVES 43

product terms that do not have too many identity matrices, orno identities at all, can be multiplied in

a sparse fashion.

However theShufflealgorithm deals better with terms containing many identities because it simply

jumps the execution for the next normal factor to multiply. SAN are structured models composed of

tensor product terms with a reasonable number of identity matrices, i.e. are the most commonly

encountered ones, tending to push theSplit algorithm to the structured solution, but if the memory

available is not a problem, it is better to treat them in a sparse way as much as possible. Note that

models with multiple synchronizations among automata tendto obtain proportionally multiple tensor

terms to treat, precisely two per event. The occurrence of these events will determine the matrices

sparsity and the number of identities to be splitted.

The Table 3.7 exemplifies the computational resources spentand the gains obtained after finding

well-fitted cut-parametersfor each tensor term in the descriptors. All models presented converge

with different number of iterations. The previous section showed the computational time gains and

memory consumption for one single iteration. However, whendealing with practical complex models

to evaluate in real-life projects they demand at first the reduction of the computational time.

Models Total iter.
Shuffle Split Sparse

time size time size time size

Dining philosophers (10) 650 1.66 min. 2.81 Kb 0.62 min. 3.94 Mb 0.73 min. 12.02 Mb
Ad hoc WSN (14) 78,029 8.45 days 4.46 Kb 1.58 days 13.22 Mb 1.87 days 285.21 Mb
Master-Slave (12) 2,568 15.91 days 38.54 Kb 4.04 days 2.18 Gb 4.39 days 24.98 Gb

Table 3.7: Iterative numerical solution gains

As we can see in Table 3.7 the increasing of memory to solve models often represents a gain in

computational time,i.e., not in seconds but sometimes in days of processing. The lasttwo examples

(theAd hoc Wireless Sensor Networkmodel with 14 nodes and theMaster-Slave Parallel Algorithm

model with 12 slaves) are distinct SAN models presented in the Sections 3.2.2 and 3.2.2 respectively.

Both represent real applications modeled through SAN descriptions and show the expressive gains

obtained in terms of processing time using theSplit approach.

Additionally, it is also possible to foresee an even more complex analysis that considers not only

a sequential version of theSplit algorithm, but also parallel implementations. For the sequential

version, memory and time efficiency are dealt as a single demand, but parallel implementations should

consider the amount of memory needed, volume of data exchanged and processing demands to be as

evenly as possible distributed among parallel machines. Obviously, this further analysis is much

more deep and complex since neither the number of floating point multiplications, nor any other

known index for that matter, seems to be a good estimation of processing time.

44 CHAPTER 3. KRONECKER-BASED DESCRIPTOR SOLUTION

In future researches theSplit algorithm could be enhanced with considerations about the impact

of functional elements (with their particular dependencies) in the descriptor, since it is a new advance

starting to emerge also for other formalisms [45]. A similarwork about these functional dependen-

cies changed completely the performance of theShufflealgorithm [37] when the tensor terms take

advantage of generalized tensor algebra [37]. It is only natural to estimate that similar computational

gains with functional dependencies analysis and possible automata permutations could benefit from

theSplit algorithm as well. At least the results for descriptors constructed with classical tensor alge-

bra allow us to notice that theSplit algorithm is already a better choice for practical vector-descriptor

products.

Despite of that, the bottleneck imposed for vector-descriptor product in terms of memory is always

the storage of the probability vectorπ (including the storage of the auxiliary vectorsυ) of the same

size of the product state space, except on optimized implementations using sparse vectors [7]. The

Split method does not focus on this problem, it was proposed to speedup the iterative method based

on the vector-descriptor product operation.

The probability vectorπ obtained using iterative methods is the basis from models measurements

such as steady-state probabilities of global states or performance indexes calculations. Using vector-

descriptor products the only way to obtain specific measuresabout a model is generating the huge

vectors until they reach the memory bound imposed by the current technologies.

Focusing on state space explosion, which implies to deal with an equation system very large to be

solved in a timely manner, the traditional tensorial SAN solution can be replaced by another kind of

structural exploitation for example a simulation-based approach.

45

Chapter 4

Event-based Descriptor Solution

Real life complex systems normally are composed of many components with massive state spaces.

As mentioned before, SPN [1], SAN [55] and PEPA [44, 45] were proposed to cope with the prob-

lem of the state space explosion and consequently to handle properly the matrix storage problems.

However, this problem is still very challenging and it is notyet possible to analytically solve such

huge models, even with advanced numerical methods such as those presented on Chapter 3. An

alternative to enable the numerical solution of large models is the use of simulation techniques.

Simulation is a widely used and increasingly popular methodfor studying complex systems [48].

Discrete-event simulation approaches [10, 46, 47, 57] are often used to estimate an approximation

of the steady-state behavior of systems, providing samplesof the stationary distributionπ for later

statistical analysis. Note that new trends for numerical solutions were proposed in recent years, in-

cluding alternatives combining numerical methods and simulation approaches [15, 14] for Markov

chains. These techniques were also adapted to structured representations, but still remains the prob-

lem of having a large state space to store, and a considerablecomplexity to manipulate multiple

components.

In the context of the SAN formalism, systems are described bysomewhat independent compo-

nents called automata, and each one can have interdependencies given by synchronizing or functional

transitions (refer to Chapter 2). Since in discrete-event simulation [42] the system dynamics is repre-

sented only by its events and transitions effects, we could also extend this kind of description to struc-

tured models (Section 2.3.2). First approaches to simulateSAN focused on the network dynamics,

adapting the model characteristics as a simulation kernel,for example, road traffic simulation [57].

Such model-driven approach was implemented as a hierarchy of uniformized events based on the

automata description, starting from a predefined global state, running forward steps.

This chapter introduces forward simulation (Section 4.1) discussing the advantages and disad-

vantages of this approach in general. This background is needed to understand the contribution of

46 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

applying advanced simulation techniques (Section 4.2 and 4.3), such as theCoupling from the Past

[56] to an approximated numerical solution for SAN, where the state space is intractable.

4.1 Forward Simulation

The classical event-driven simulation technique,Markov chain Monte Carlo(MCMC) or sim-

ply Forward simulation, considers the dynamic of the system defined by anarbitrary initial state

and the application of a sequence of events generating atrajectory. The simulation estimates the

system steady-state on a long run trajectory via the ergodictheorem [43, 58], which states that the

system reached its stationary regime after a fixed amount of steps,i.e., the estimation of the stationary

distribution of being in a statẽs is given by the proportion of passages through this state.

The timeτ ∗ consists of what is known as thewarm-upperiod,transientperiod orburn-in time.

Thewarm-upperiod indicates the time when is still favorable to delay the sample collection, because

the transient period produces unreliable samples. This means that the effects of the initial conditions

have yet significance in the trajectory evolution. When it becomes insignificant, the simulation has

reached the stationary regime. However, the drawbacks of this approach are mainly thewarm-up

period which is empirically fixed from an arbitrary initial state, and the fact that will certainly generate

bias samples [43, 48, 58].

0 1 52 43 6 87 . . .

. . .

. . .

control of the burn-in time

dependence on initial state

Biased sample

Initial

state

Generated
state

Stopping rule (empirical)

Forward simulationStates (̃s)

Time
eτ∗e1 e2 e3 e4 e5 e6 e7 e8

τ∗

Figure 4.1: Illustration of a forward trajectory

Section 2.3.2 already described the system evolution as transition functions defined byΦ(s̃, ei) =

r̃, sinces̃ is a state inXR, and after the firing of an eventei, one new statẽr in XR is achieved. A

trajectory is traced running forward steps through the application of uniformized events, which are

randomly chosen and successively applied to a state (e.g., following the distribution given by a tran-

4.1. FORWARD SIMULATION 47

sition matrix) then obtaining, in each application, a new states̃ (when an event could not be applied

to one statẽs the state is not changed doing a skip operation). The last state in a trajectory of length

τ ∗ is considered asamplefrom the stationary distributionπ, although it can be potentially biased.

Figure 4.1 exemplifies a trajectory generated when simulating the events application in forward steps.

An initial states̃0 is established (Algorithm 4.1, line 2) and from it, the events are applied changing

the current statẽs until reached the number of steps defined as length by the trajectory (line 7). The

sample is then collected (line 8).

Algorithm 4.1 Forward simulation
1: repeat
2: s̃← s̃0 { choice of the initial state insideXR}
3: repeat
4: e← Generate-event()
5: { random generation ofe according the distribution(α1

α
. . . αP

α
)}

6: s̃← Φ(s̃, e) { computation of next statẽsn+1 according to evente}
7: until stopping criteria { pre-defined trajectory steps }
8: returns̃ { generated sample is a states̃ }
9: until stopping criteria {pre-defined numberν of samples,π calculation}

The problem of the establishment of how many samples are needed to obtain a confident distribu-

tion π of states probabilities is still under research (Algorithm4.1, line 9 indicatesν as the number of

desired samples to collect and calculateπ). The steady-state condition in simulations may be tested

using statistical confidence intervals [58].

The complexityCs (Equation 4.1) to generate a sample in this approach is dependent of theΦ(s̃, e)

(transition function) complexity costcΦ and the simulation timeτ ∗ (e.g., a pre-defined trajectory

size). The transition function complexity is dependent of the model characteristics such as the size of

automata, the number of events in each transition, and consequently, the chosen implementation.

Cs = cΦ × τ ∗ (4.1)

Next section introduces a different advanced technique to overcome all main drawbacks of for-

ward simulations calledBackward Couplingsimulation and follows with its application in the SAN con-

text pointing out the characteristics of the simulation core.

48 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

4.2 Backward Coupling Simulation

A new algorithmic solution based on theCoupling from the Past∗ (CFTP) algorithm, proposed

by Propp and Wilson [56], overcomes theburn-in time problem and guarantees unbiased samples.

CFTP or simplyexactsimulation, can generate a sample from the stationary distribution based on

the concept ofcouplingor coalescenceof trajectories.

Couplinghas been used in many ways in Markov chains analysis [51]. In the context of this work,

coupling is related to trajectories having the same sequence of events applied until their arrival in a

common state. Thecoupling timeτ occurs when trajectories coalesced in a given states̃. Then the

general principle of CFTP is the execution of trajectories in parallel starting from all states of the

model. At each simulation step an event is applied to all current states. In a given time−t (or τ),

the transitions lead the system to the same state, and this state is a sample which can be collected.

The establishment of an initial state and its dependence during theburn-in timein traditional forward

simulations are not a problem anymore using backward couplings.

running backward in time
Unbiased sample

initial state dependence eliminated

application going in the past

Generated

Stopping time (coupling)

state

Time0-1-2-3-4-5-6-7-8
e1e2e3e4e5e6e7e8

τ States (̃s)

Backward coupling simulation

Figure 4.2: Illustration of a backward coupling of trajectories

In the Figure 4.2 all trajectories issued from all states at time−8 coupled in a state at time0.

Since the coupling timeτ of the backward scheme is almost surely finite [51, 56], the scheme pro-

vides a sample distributed according the steady-state because, in other words, the method determines

automatically when to stop and collect samples.

The average complexityCs (Equation 4.2) to generate a sample in this approach is dependent of

∗This simulation technique is known asperfectsampling or alsoexactsampling because enables us to compute samples
exactly distributed according to the stationary distribution of the Markov process,i.e., produces unbiased samples.

4.2. BACKWARD COUPLING SIMULATION 49

the number of trajectories in parallel,i.e., the cardinality ofXR, the average coupling timeEτ and the

Φ(s̃, e) (transition function) complexity costcΦ. The transition function complexitycΦ is the same

pointed out in the forward simulation section, consideringnow realizations (firings) in backward

steps.

Cs = |XR| × Eτ × cΦ (4.2)

4.2.1 SAN perfect sampling

The SAN formalism presents an underlying Markov chain, so the application of perfect sampling

techniques takes advantage of the network dynamics to solvemodels and obtain the probabilities of

global states in the stationary distribution. The backwardcoupling simulation states that a SAN model

must bewell-formed, consequently the model must produce only non absorbent global states as initial

states for the simulation algorithm. The number of trajectories running in parallel can be at maximum

equal to the cardinality of theXR set, and the backward scheme will evolve, going to the past, until

their coalescence as explained in Section 4.2.

Algorithm 4.2 SAN backward coupling simulation

1: for all s̃ ∈ XR do
2: ω(s̃)← s̃ {initializing trajectories with global states}
3: end for
4: repeat
5: e← Generate-event() {random generation ofe according the distribution(α1

α
. . . αE

α
)}

6: ω̃ ← ω { saving the states of each trajectory}
7: {computingω(s̃) at time0 of trajectory issued from the global states̃ at timeτ }
8: for all s̃ ∈ XR do
9: ω(s̃)← ω̃(Φ(s̃, e))

10: end for
11: until global states are equal in all trajectories
12: returnω(s̃) {generated sample is a global state}

Given a set of statesXR, a setE of events, and the transition functionΦ : XR × E → XR,

backward couplingoccurs when issuing from all states inXR, the trajectories couple in a states̃ for

a given sequence of events{en}n∈N going to the past in time. The sample (state) collected is surely

drawn from the stationary distribution. Algorithm 4.2 based on the Propp and Wilson technique [56]

can be used to solve any structured representations of Markov chains, such as the SAN formalism.

It demands the list of states inXR as initial states for the parallel trajectories. Structurally, the

trajectories are represented as a vectorω which is initialized with the global states̃s ∈ XR, supposing

50 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

a well-formed SAN model (line2). A vector ω̃ stores a copy of the current states of trajectories at

each iteration.

An evente is generated (Algorithm 4.2, line5) and the related transition functionΦ(s̃, e) is applied

to the current global states placed inω positions (line8−10). Note that a global state is in fact a vector

of sizeK containing the automata local statess(k). The evente is applied to each local state through

the functionφ(s(k), e) updating it (refer to Section 2.3.2). At the end, the new global state is updated

too, indexing the vector̃ω which contains the earlierω stored. This process is called backward

coupling because we computeω(s̃) at time0 of trajectory issued from̃s at time−t. The routine will

be repeated until all positions of vectorω have the same resulting states̃, i.e., all trajectories running

in parallel have coupled (line11). The sample of each iteration is then collected for later statistical

analysis (line12).

Time0−1−2−3−4−5−6

0(1)1(2)

0(1)2(2)

1(1)0(2)

1(1)2(2)

0(1)0(2)

0(1)1(2)

0(1)2(2)

1(1)0(2)

1(1)2(2)

0(1)0(2)

0(1)1(2)

0(1)2(2)

1(1)0(2)

1(1)2(2)

0(1)0(2)

0(1)1(2)

0(1)2(2)

1(1)0(2)

1(1)2(2)

0(1)0(2)

0(1)1(2)

0(1)2(2)

1(1)0(2)

1(1)2(2)

0(1)0(2)

0(1)1(2)

0(1)2(2)

1(1)0(2)

1(1)2(2)

0(1)0(2)

0(1)1(2)

0(1)2(2)

1(1)0(2)

1(1)2(2)

0(1)0(2)

e4 e11 e21 e4 e11 e12

Figure 4.3: Backward coupling in 6 iterations for the SAN example in Figure 2.2

Figure 4.3 exemplifies a backward coupling which generates an exact sample in few steps,i.e., it

outputs a global state for the SAN example in the Figure 2.2 (Section 2.2). The process begins firing

an event each time (starting in time0 and then backwards), for all states inXR. The application results

(the new states achieved) following the transition function definition on Table 2.2 (Section 2.3.2)

are plotted in backward steps (from the right to the left). The example shows that all trajectories

issued from the global states ({0(1); 0(2)}, {0(1); 1(2)}, {0(1); 2(2)}, {1(1); 0(2)}, {1(1); 2(2)}) at time−6

coupled in the state{0(1); 1(2)} at time0.

The memory needed for running the algorithm considers the storage of vectors of|XR| states,i.e.,

4.3. MONOTONE BACKWARD COUPLING SIMULATION 51

one for coupling trajectories and another for collecting samples statistics. The needed size in mem-

ory is given by2|XR|. Simulation methods can bring a memory optimization to solve models when

compared to traditional iterative numerical solutions. Iterative solvers spent at least3|X | (two vectors

for the iterative method and one to store the stationary probabilities) except considering sparse im-

plementations where the vectors size can be very reduced [7], mainly for models when the reachable

state space is considerably smaller thanX .

Searching for new solutions for models whose are not possible to obtain a numerical solution due

to the size of product state spaceX , we combined structured Markovian models such as SAN, with

perfect sampling techniques. However, even naturally contracting the state space using only the

reachable state space in the proposed simulation solution,the size ofXR can also become a bottleneck

for backward couplings. This lead us to exploit the product state space and monotonicity properties

to reduce the number of trajectories in parallel and obtain more flexibility solving huge models.

4.3 Monotone Backward Coupling Simulation

The size ofXR can be exponential according to the SAN model and it can be difficult to generate

and really huge to deal with. It becomes a limitation for backward coupling methods in terms of cou-

pling time for some models, basically because it is needed one simulation per state in the model. This

section introduces concepts of monotone backward couplingand partial ordering of states. Recent

studies showed that the monotonicity property is fundamental for improving the efficiency of back-

ward couplings to solve Markovian systems [10, 66, 64] sinceit allows the reduction of the number

of trajectories in parallel, through the establishment anddiscovery of extremal states.

Propp and Wilson [56] have shown that for monotone Markovianmodels with an ordered state

space it is needed to run only two trajectories in parallel: one starting from the largest state and other

for the smallest state. So the algorithm operate most efficiently when the state space is alattice† and

a monotonicity condition for the events holds.

Definition. An eventep ∈ ξ is said to be monotone if it preserves the partial ordering (≺ order)

onX . That is∀(s̃, s̃′) ∈ X s̃ ≺ s̃′ =⇒ Φ(s̃, ep) ≺ Φ(s̃′, ep). If all events are monotone, the global

system is said to be monotone.

Definition. Given two global states̃s1, s̃2 ∈ X , a statẽs1 is minimal if there exists a statẽs2 such

that s̃2 ≤ s̃1 then s̃2 = s̃1. Then s̃1 ∈ Xmin. Analogously, given states̃s3, s̃4 ∈ X , a statẽs3 is

maximal if there exists a statẽs4 such that̃s4 ≥ s̃3 thens̃4 = s̃3. Thens̃3 ∈ X
max.

†A lattice is a partially ordered set (also called a poset) in which every pair of elements has a unique supremum (the
least upper bound of elements) and an infimum (the greatest lower bound) [25].

52 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

Definition. The extremal setXM is a set composed by maximal and minimal states in a partially

orderedX . ThenXM = Xmax∪ Xmin.

Suppose a sequence of eventse = {en}n∈N, given any partial order ofX , and consequently an

extremal setXM , if all trajectories issued fromXM coupled at time 0, then they will also coalesce

for all states [56] inXR.

Monotone backward coupling simulation

Time0-1-2-4

s̃max

s̃min

s̃ generated

-8

−2k
States (̃s)

Figure 4.4: Illustration of a monotone backward coupling oftrajectories

Figure 4.4 illustrates the general behavior of a monotone backward coupling, where the extremal

setXM ⊆ XR has two states (one maximal and other minimal),|XM | = 2. Going back to the

past, step by step, until trajectories coalesce at time0, all trajectories issued from̃smax ands̃min are

computed ink steps from time−2k to 0.

The simplest form of the monotone backward coupling method considers only two extremal states

s̃max (upperstate) and̃smin (lower state) to start trajectories at time−t. If the trajectories did not

coalesce by time0, a new value fort is chosen, then restarting the simulation from the new time

−t. The coupling scheme will preserve the ordering just reusing the same sequence of events already

generated, generating more events to complete the current iteration.

The simulation continues until the coupling of both chains at time 0. The application of this

algorithm tries to estimate successively the valuet (number of backward steps) for coupling ast =

1, 2, 4, 8, . . . until find a t = 2k when coupling occurs on simulation time 0. This adaptative step

size is calleddoubling scheme, i.e., at each step in the past, the length of the step is multipliedby 2

(Algorithm 4.3).

4.3. MONOTONE BACKWARD COUPLING SIMULATION 53

Algorithm 4.3 General monotone backward coupling with a doubling scheme
1: t← 1
2: repeat
3: upper← s̃max

4: lower← s̃min

5: for i = −t to − 1 do
6: upper← Φ(upper, ei)
7: lower← Φ(lower, ei)
8: end for
9: t← 2t

10: until upper = lower

The average complexity to generate a sample in this approach(Equation 4.3) is mainly dependent

of the number of trajectories started from extremal states,i.e., the cardinality ofXM . The complexity

considers the average coupling timeEτ and theΦ(s̃, e) complexity costcΦ.

Cs = |XM | × 2Eτ × cΦ (4.3)

4.3.1 SAN monotone perfect sampling

We know that the samples computation may be reduced by drawing only trajectories issued from

the set of extremal states when events are monotonous. If we know XM it is possible to run a

monotone version of the backward coupling algorithm [38].

Adapting the Algorithm 4.3 for the SAN context we compute trajectories starting from the ex-

tremal states using a coupling vectorω of size related to the cardinality ofXM . This algorithm

have the same convergence properties as Algorithm 4.2 but can present a better coupling time for

monotonous systems multiplied by a factor of|XM | (which can be small enough to improve the sim-

ulation time). Also, regarding the reuse of events at each iteration (doubling scheme), it is needed to

maintain the events generated through the whole trajectory[56]. Algorithm 4.4 uses a vectorE of

generated events (line2) increased at each period (line4). At each step in the past, thecoupling time

τ (i.e., the length of the step) is multiplied by2 (line 4).

The memory needed for running the monotone algorithm is highly related to the cardinality of

XM (which states the size of the coupling vector) and the size ofXR (size of the vector to collect

samples statistics),i.e., the needed size in memory is given by|XM |+ |XR|.

54 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

Algorithm 4.4 SAN monotone backward coupling simulation
1: n = 1
2: E[1]← Generate-event() { arrayE stores the backward sequence of events}
3: repeat
4: n← 2n { doubling scheme}
5: for each s̃ ∈ XM do
6: ω(s̃)← s̃ { initial states at time−n}
7: end for
8: for i = n downto (n

2
+ 1) do

9: E[i]← Generate-event() { generate events from (−n
2
+1) to−n, events from−1 to (−n

2
+1)

have been generated in a previous loop}
10: end for
11: for i = n downto1 do
12: for each s̃ ∈ XM do
13: { ω(s̃) is the state at time (−i− 1) of the trajectories issued from̃s at time−n}
14: ω(s̃)← Φ(ω(s̃), E[i])
15: end for
16: end for
17: until all positions of vectorω are equal
18: returnω(s̃) { generated sample is the global state inω(s̃)}

4.3.2 Extremal global states extraction

Glasserman and Yao [42] investigated the search for partial(and total) ordering in discrete-event

models looking at their own structure, naturally retainingthe order in which states in the chain are

accessed firing the respective events. This procedure incrementally generates afeasibleset (set of

trajectories), until all states are accessed (total ordering), or a given partial ordering is identified.

However, the search for an order regarding feasible sets could have a high enhanced computational

cost for huge models because one must look at all possible trajectories starting fromXR to effectively

begin to search extremal states.

It is a fact that the monotonicity property of events guarantees the existence of a partial ordering

in which is possible to obtain theXM set of extremal states [56]. So applying transition functions

over each state inXR, retaining the new states achieved one can just verify if these new ones are

greater (not yet accessed in some way) than the source state in the firing process. In this case is not

necessary to retain the order of access of these new states asfeasible sets do [42].

In a SAN context, theextremalsetXM is composed of global states where there is no greater state

achieved inXR than itself in the underlying chain, after the firing of all events inξ. The constructive

algorithm proposed (Algorithm 4.5) analyzes each reachable state of the model (line20), firing the

events of the setξ (line 5) and storing the generated (achieved) states at each firing (line 10). The

4.3. MONOTONE BACKWARD COUPLING SIMULATION 55

Algorithm 4.5 Extremal set for SAN models with component-wise formation

1: M [0]← Add(s̃min); { list of accessed states in theXR, initially storing the statẽsmin}
2: cState← M [i]; { it indicates the current observed state in the listM , initially i = 0}
3: repeat
4: isExtremal← true;
5: for all ep ∈ ξ do
6: { events firing over the current observed state}
7: nState← Φ(cState ,ep);
8: if (nState /∈ {M [0], . . . , M [cState]}) then
9: { if it is not already accessed, it adds new state to the listM and it is not an extremal}

10: M ← Add(nState);
11: isExtremal← false;
12: end if
13: end for
14: { if no nState are added to the listM , cState is an extremal}
15: if (isExtremal)then
16: XM ← Add(cState); { it adds cState toXM }
17: end if
18: i = i + 1; { it goes to the next element inM to analyze firings}
19: cState←M [i]; { it updates current state}
20: until i = |XR| { the condition is to access all reachable states in the modelonce}
21: return extremal setXM ; { the extremal set is completed }

search for extremal elements starts from an initial states̃min (line 1) defined by a component-wise

ordering already known (which can be simply a lexicographical order).

It is important to notice that event firings from a state can lead to the same state (or reachable

states already accessed). In this case, the state observed can be an extremal state (lines14− 17), i.e.,

the classification as an extremal state‡ happens if the state does not generate any new state, meaningit

is before accessed with the firing of all possible events in the model. Note that, by the same principle,

transitions fired from the established minimal state do not achieve states lower than itself, considering

we already started from the canonical minimum.

The complexity to find the extremal set using Algorithm 4.5 isgiven by the cardinality ofXR and

is dependent of the number of events|ξ| in the model (Equation 4.4).

|XR| × |ξ| (4.4)

Supposing a queueing network (QN) with two queues (Figure A.1) with capacitiesK1 andK2 re-

spectively. This component-wise model where the behavior of both queues is equivalent, has arrivals

‡Markovian Free-choice Petri nets consider as extremal states the blocking markings of event graphs [10].

56 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

and departures of clients, finite queues capacities, and clients loss if queues are full. The initial global

state considered is both queues empty. The transition function Φ(s̃, ep) which describes this behavior

considering global states̃s = {s(1); s(2)} configurations can be given by:

Φ({s(1); s(2)}, e1) = {s(1) + 1; s(2)}

Φ({K(1)
1 ; s(2)}, e1) = {K(1)

1 ; s(2)}

Φ({s(1); s(2)}, e12) = {s(1) − 1; s(2) + 1}

Φ({s(0); K
(2)
2 }, e12) = {s(0); K

(2)
2 }

Φ({s(1); s(2)}, e2) = {s(1); s(2) − 1}

Starting from{0(1); 0(2)}, or simply{00}, one can construct the extremal setXM analyzing each

reachable state achieved through the firing of events over the states inXR. At the end, the extremal

setXM found for this example is composed of two states:{00, 22}.

10

00

12 21

22

02

12 012012

21

11

20 01

0011

10

20 01

12

0222 11

11

10 0221

^ ^ ^ ^

^ ^ ^

^ ^

e12

XM = {00}

XM = {00} XM = {00}

XM = {00}

XM = {00, 22}XM = {00}

XM = {00} XM = {00}

XM = {00}

e1
e1 e12 e2e1

e1 e2

e2e12

e2e12e1

e2

e2

e1 e12

e12

M = {00, 10} M = {00, 10, 20, 01} M = {00, 10, 20, 01, 11}

M = {00, 10, 20, 01, 11, 21, 02} M = {00, 10, 20, 01, 11, 21, 02, 12}

M = {00, 10, 20, 01, 11, 21, 02, 12, 22} M = {00, 10, 20, 01, 11, 21, 02, 12, 22}

M = {00, 10, 20, 01, 11, 21, 02, 12}

M = {00, 10, 20, 01, 11}

Figure 4.5: Extremal set construction for the QN model in SAN

4.3. MONOTONE BACKWARD COUPLING SIMULATION 57

Figure 4.5 shows step by step the formation of an extremal set(following Algorithm 4.5) for

the example in Figure A.1. Next sections present a classification of SAN models, regarding the

component-wise ordering,i.e., the structural formation of the underlying chain. The identification of

extremal states is mainly related to structural characteristics: if the chain can be viewed as alattice

we identify only two extremal states, else it is classified asnon-lattice(more than two extremal

global states). Note that in the absence of a component-wiseordering the models yet present the

reachable set as alternative to run backward simulations and recent advances such as envelopes on the

simulation of non-monotone systems could be applied [18]. In the context of this work we focus on

component-wise models whose is possible to extract extremal states.

Canonical component-wise ordering in SAN

SAN models can have states naturally ordered such as the integer set, for example, the SAN mod-

els equivalent to some Markovian queueing networks [63, 64,66] as the example presented in Sec-

tion 4.3.2. When allN queues in a system are empty, the local statess(i) of each queue (or automaton)

are equal to0 (analogously, all queues full means automata local states equal to the queues capacities

Ki, wherei = 1 . . . N). When occurring a queue arrival (or departure) the local state is updated

with s(i) + 1 (s(i) − 1, respectively). In this case, the partial order of the related product state space

is established based on this component-wise ordering. SAN descriptions derived from monotone

queueing networks can be simulated taking advantage of having only the canonical minimum (all

queues empty) and maximum (all queues full) states. Then only two paths are needed to simulate a

monotone backward coupling.

Definition. The canonical component-wise orderingmeans that the underlying structure of the

model can be viewed as alattice, i.e., all global states have the samesupremumandinfimumstates.

Given two arbitrary global states̃s1, s̃2 ∈ X and a defined partial order, and verifyings̃1 ≤ s̃2, it is

possible to define which one is the largest state [30]. The extremal states are given canonically by the

first and the last state ofXR considering thatX is lexicographically ordered due to the component-

wise characteristic. So the eventse1, e12 ande2 are monotone according canonical component-wise

ordering ofX . Figure 4.6 shows successive events application until a state where the achieved state

with a given event is itself (see the loops in specific states in the figure). At right, also shows the

underlying chain structure as a lattice.

We can consider the minimal and maximal local states of each automatonA(k) defined by the

natural order on integer. SupposingK1 = 2 and K2 = 3, the maximal set can be considered

XM ={{0; 0},{2; 3}}. The minimal local state of both automata is the state0, and the maximal

local state is2 for automatonA(1), and3 for automatonA(2) respectively. The application of the

58 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

Evente1

Evente2

Evente12

00

20

10

01

11

21 02

12

22 03

13

23

00

23

Figure 4.6: Canonical component-wise ordering for the QN model in SAN

transition functionΦ(s̃, ep), for each eventep ∈ ξ, considering each statẽs ∈ XR using the Algo-

rithm 4.5, lead us to obtain the same extremal global states extracted considering the canonical ones

firstly assumed.

Experimental work using SAN canonical component-wise models, showed that different state

space partial orderings can be explored due to the extraction of different subsets of global states when

running monotone algorithmic versions. The extremal set ofglobal states is dependent on the partial

order established. Figure 4.7 shows the Markovian structure (as seen in Figure 4.6) and a different

lattice (on the right side) obtained. Now we started from theminimal local state of the first automaton

combined with the maximal local state of the second automaton ({0; 3}), and achieved the maximal

local state in the first automaton combined with the minimal in the second{2; 0}. More experiments

must be conducted towards to different sets of extremal elements as effective as the canonical ones

for monotone backward simulations.

The assumption of existing one minimum and one maximum localstate per automaton which

4.3. MONOTONE BACKWARD COUPLING SIMULATION 59

13

23

22

02

0112

11

21Evente1

Evente2

Evente12

10

20

00

03

03

20

Figure 4.7: Another component-wise ordering for the QN model in SAN

guarantees the exact sampling can be applied also for huge models that follow the canonical component-

wise ordering principle. For the example, the simulation could run only two trajectories in parallel:

all queues empty (minimal local states{0; 0}) and all queues full (maximal local states{K1; K2}).

Other set of two extremal states could be: the first queue empty and the second full (global state

{0; K2}) and first queue full and the other one empty (global state{K1; 0}).

Non-lattice component-wise ordering in SAN

The successive firings of events for the queueing system example, when already exists a canonical

formation, leads us to alattice where there are only two extremal global states (Figure 4.6). How-

ever in the absence of a canonical component-wise model formation, for each event in the model,

the state space partial ordering can be constructed firing events in the underlying chain structure, re-

taining or not the order in which the states are accessed, butmainly identifying the extremal states

(Algorithm 4.5).

Considering each reachable state and all events, the last different states, in the trajectories of

accessed states, are the extremal states, this means that exists a partial order forXR ⊆ X (≺), when

it is possible to compare two states for a given eventep ∈ ξ, independent of event rates§.

§There is a type of monotonicity calledstochasticwhich uses the model rates [40] to establish a partial ordering of
states in a Markov chain. The monotonicity we search in SAN iscalled realizableand in the literature it deals with
transitions effects,i.e., the states achieved on therealizations[39] or event firings.

60 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

Definition. Thenon-lattice component-wise orderingmeans that the underlying structure of the

model presents a partial ordering but no canonical minimal and maximal global states,i.e., a set of

extremal global states is identified following successive transition function applications overXR.

Firstly, the component-wise ordering supposes that local states have a predefined order, then the

Cartesian product of states generates automatically partially ordered global states. The states will

always have transitions to greater or lower global states considering a lexicographical order. So when

there is no possible transition to be fired to a greater state,this means that we have found an extremal

state in the chain. The classification asnon-latticeis used because this kind of model does not have

only one infimum and supremum state, then it can not be considered alattice.

101011002 200

001 100010

020

000

012 102 201

Figure 4.8: Non-lattice component-wise ordering in a modelof 3 philosophers

An example of a component-wise model is the classical resource sharing with mutual exclusion

presented as thedining philosopherson Appendix A.3. Regarding the structural formation showed

in Figure 4.8 of dining philosophers with resource reservation (related to Figure A.4 with 3 philoso-

phers), the monotonicity properties are verified for all eventslti, tri, rli, rtk, tlk andlrk since for each

one remains the state space ordering inXR. Given the minimal global state{0(1); 0(2); 0(3)}, or sim-

ply {000} (all philosophers thinking) as initial extremal state to generate theXM , the other extremal

states (the bold faced states{020}, {012}, {102}, {201}) are naturally the ones with greater indexes

than the states they can achieve firing transitions (Algorithm 4.5). Note that the Figure 4.8 only rep-

4.3. MONOTONE BACKWARD COUPLING SIMULATION 61

resents the directed transitions that can be fired among states to allow the graphical visualization of

the extremal states, differently of Figures 4.6 and 4.7.

Supposing now six philosophers on the dining philosophers without resource reservation (related

to Figure A.5), the application of the transition function in the component-wise formation, returns

the extremal states for this SAN model. Regarding structural properties of this model all events

etk, tek ∈ ξ are monotone since they retain the component-wise orderingof global states in the

chain formed by this class of models. TheΦ(s̃, ep) application over state{000000} (all philosophers

thinking), generate states inXR and so on, until no more new states are achieved usingep ∈ ξ.

1

5

32 4 2

10

0 : 000000
9 : 001001

18 : 010010
21 : 010101
36 : 100100
42 : 101010

40 34

0

42 21

16

20 17

8

36 18 9

Figure 4.9: Non-lattice component-wise ordering in a modelof 6 philosophers

Considering the model global states are formed simply bybits representing local states, so the

stateT (k) is represented byO andE(k) represented by1, we have for example, a setXR = 18 and

XM = 6. Figure 4.9 shows the states with their related indexes to facilitate the graphical visualization.

The marked states are extremal elements for this model with six philosophers, and their respective

configurations of local states are indicated at right in the figure.

This means after all, that walking in the chain, applying thetransition function successively, we

can reach and collect the extremal elements (Algorithm 4.5)not necessarily retaining the state space

partial ordering. The canonical component-wise ordering (where |XM | = 2) and the non-lattice

62 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

component-wise ordering (where|XM | < |XR|) are SAN partial orderings well fitted to run mono-

tone backward simulations. However it is not always easy to identify these extremal global states

insideXR mainly due to the reachable state space size and also the quantity of events in the model.

Once they are identified, the trajectories in parallel can bedrastically reduced, and consequently, the

computational cost can be minimized.

Note that in the models where the classical monotonicity property is absent, the state space does

not contain neither a natural minimal state nor a maximal state. Some extensions are been proposed

for partilly ordered state spaces in other formalisms,e.g., find extremal states for a sub-class of Petri

nets [10] or for Free-choice nets [11], and simulating general non-monotone Markovian systems using

lower and upper envelopes[18]. Unfortunately, there are many cases in which the monotonicity does

not exist or is difficult to define. Some cases will be important to develop a method which does

not require monotone structures [19]. However, perfect sampling enables us to obtain exact samples

which is extremely advantageous.

4.4 Theoretical Contributions

This section presents theoretical results demonstrated through the execution of the simulation

algorithms on two classical models such as theQueueing Networkmodel and theDining Philosophers

model (Figures A.1, A.4 and A.5) mainly to validate statistically the approach. Also is shown for these

examples the state space contraction through the finding of their extremal states briefly evaluating the

sampling time to guide further works. The global probabilities used for statistical validation were

collected directly from the probability vector obtained through the execution of the algorithms inside

thePEPSenvironment.

The numerical methodShufflewas used to collect the stationary solution (global states probabili-

ties) with 1.0E-10 precision which represents our expectedresult. Backward and monotone backward

coupling implementations generateν = 106 samples on each run. Due to the independence of the

samples we applied the central limit theorem to compute the solutions confidence intervals at level

95% considering50 runs. The gain in state space contraction for component-wise models are showed

regarding memory costs as well as a sampling time analysis varying the number of philosophers

(Tables 4.1 and 4.2), showing an average time to generate an exact sample for each model with the

monotone approach.

All executions have been done on an Intel Pentium dual core 3.0 GHz machine under Linux oper-

ating system with 2 Gb of memory. The modules inside thePEPS2007environment were compiled

usingg++ compiler, with optimizations (−O3).

4.4. THEORETICAL CONTRIBUTIONS 63

4.4.1 Statistical validation

In this section the experimental probabilities obtained bysimulation are compared to the actual

PEPSresults, for models with a canonical component-wise ordering (canonical extremal states) and

for the one with a non-lattice component-wise ordering (obtained extremal states). The statistical test

used to compare the observed results with the expected results provided bySplit is theChi-square

test¶ (or simply Chi2). We aim to show that there is no significant difference between the expected

and the observed probabilities considering a level of significanceα = 0.05 and a degree of freedom

df , for this small examples,df = |XR| − 1.

Queueing Networkmodel results

Considering the example (Figure A.1) the queues rates asλ1 = 0.8 λ2 = 0.9 λ3 = 1.2 the

model stationary distribution provides our expected values (which is the actualPEPS solution) and

the statistical analysis ofν = 106 samples generated running both simulation algorithms as our

observed values (backward coupling simulation and monotone backward coupling simulation).

According to the Chi-square statistic obtained for the backward coupling simulation output (Chi2 =

11.33), with α = 0.05 and degree of freedom (df = 11), the value19.675 was our parameter. We

find the calculated value11.33, lieing between5.578 and17.275. The corresponding probability was

0.90 < P < 0.1. This is below the conventionally accepted significance level of 0.05 or 5%, so the

hypothesis that the two distributions are the same is verified.

The Chi-square statistic obtained for the monotone backward coupling simulation output (Chi2 =

17.31) for sameα and df lies between17.275 and 19.675, then the corresponding probability is

0.10 < P < 0.05. This is also below the accepted significance level, so we consider both distributions

the same. We vary the capacity of both queues to perform the Chi2 tests.

Dining Philosophersmodel results

Considering the example of the dining of three philosopherswith resource reservation (Fig-

ure A.4) the acquisition rates are defined as0.4 (eventstri, rli, tlK , lrK) and the release rates are

defined as0.3 (eventslti, rtK). According to the Chi-square statistic obtained for the backward case

(Chi2 = 13.18) and the monotone backward case (Chi2 = 12.19) both lied between5.578 and17.275.

The corresponding probability is0.90 < P < 0.1. This is below the accepted significance level of

0.05 or 5%, so for this example we also consider both distributions thesame.

¶Chi-square is a statistical test commonly used to compare observed data with the data we would expect to obtain,
according to a specific hypothesis.

64 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

Varying the examples size, consequently analyzing other degrees of freedom for the obtained

results, the verification still indicates that the distribution is the same of the expected. The next

analysis to be done is related to the monotone sampling process which can be memory-efficient when

compared to backward coupling approaches allowing solution of huge models.

4.4.2 SAN monotone perfect sampling analysis

Table 4.1 shows in its last lines huge models impossible to solve with the currentPEPSsoftware

tool mainly because the size ofX , and theX contraction inXM to run the alternative solution which

is based on the perfect sampling. The costs in memory are drastically reduced since for monotone

versions is stored just the coupling vector with extremal elements instead of the reachable state space.

For all simulation approaches that could be used, we still need to store the frequency of coupled states,

however with iterative solutions we have stored the productstate space (current implementation)

which already indicates a gain in the memory constraints.

K X XR XM PEPS(s) Simulation(s)

5 243 70 11 0.0001 0.0046±0.0009
6 729 169 17 0.0005 0.0194±0.0019
7 2187 408 27 0.0017 0.0377±0.0028
8 6,561 985 43 0.0032 0.0734±0.0051
10 59,049 5,741 111 0.0381 0.3369±0.0240
12 531,441 33,461 289 0.5513 1.5873±0.0794
14 4,782,969 195,025 755 5.7122 6.8181±0.2795
16 43,046,721 1,136,689 1,975 68.7043 27.7824±1.0808
18 387,420,489 6,625,109 5,169 n/a 108.1243±5.2696

Table 4.1:Dining Philosophersmodel (with resource reservation) - sampling results

The same remarks are consistent to the times presented here,specially due to the fact that Table

4.1 presents times for one iteration in thePEPSnumerical solution, and one sample generation for the

monotone perfect sampling. For the last model (K = 18) thePEPSsolution could not be achieved

since it represents a state space of more that 387 million states, which is considerably above the

current overall numerical solution limitation which is 65 million states in the current implementation.

The actual number of samples needed to generate depends immensely on the numeric character-

istics of the model itself. Different parameters such as theactual numeric rates of the events may

change the required number of samples to achieve statistical approximation of the stationary regime.

Analogously, the numbers of iterations to perform the iterative solution methods in thePEPStool also

4.4. THEORETICAL CONTRIBUTIONS 65

depends on such characteristics. Therefore in the Table 4.2we indicate the amount of time needed to

perform one single sample generation with the contracted state space in the simulation module, and

one single iteration in the numerical solution implementedon PEPS.

However, the values in seconds presented here are to be considered with caution, since nothing

relates the number of needed iterations inPEPSwith the number of samples needed in our simulation

tool. For example, the first model (K = 6) needed 528 iterations to achieve a precision of 1.0E-10

in the PEPSsolver, while the precision achieved with105 samples generated by simulation lies on

approximately 1.0E-3. The examples was extended just beyond the capacity limit ofPEPS, since the

last examples (K = 26 to K = 30) are too massive to run on our target machine.

K X XR XM PEPS(s) Simulation(s)

10 1,024 123 18 0.0005 0.0305±0.0034
12 4,096 322 30 0.0025 0.0750±0.0059
14 16,384 843 52 0.0118 0.2109±0.0149
16 65,536 2,207 91 0.0560 0.6020±0.0435
18 262,144 5,778 159 0.2964 1.4334±0.0838
20 1,048,576 15,127 278 1.3940 3.4625±0.1822
25 33,554,432 167,761 1,131 5.1158 28.2105±1.1764
26 67,108,864 271,443 1,498 n/a 41.5225±1.9412
27 134,217,728 439,204 1,984 n/a 64.7593±2.5652
28 268,435,456 710,647 2,628 n/a 96.0582±4.2948
29 536,870,912 1,149,851 3,481 n/a 143.0277±4.8180
30 1,073,741,824 1,860,498 4,611 n/a 210.2677±7.7823

Table 4.2:Dining Philosophersmodel (without resource reservation) - sampling results

The simulation times presented in Tables 4.1 and 4.2 with their confidence intervals are estima-

tions for a generation of one sample using perfect sampling.The range of the confidence intervals

vary because different coupling times can occur in each simulation iteration. Figure 4.10 shows differ-

ent coupling vector sizes and their contraction during an experiment collecting five hundred samples

(using backward simulations for the philosophers with resource reservation example).

The graph represents an example of the different coupling times that can occur, and also the cou-

pling vector reduction‖ until a sample is collected. Note that we can have a quick memory reduction

at the beginning and this specific behavior of the backward coupling occurs in many observed cases.

Future researches can exploit for example advanced transitions functions to increase the coupling

probability at each backward step, reducing then the memoryneeds of the coupling vector which is

‖The current version for the simulation algorithms presentsa dynamic vector for coupling control which reduces its
size at each iteration. At the end, with only one position, the referred sample can be collected.

66 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200

C
ou

pl
in

g
ve

ct
or

 s
iz

e

Coupling times

Figure 4.10: Illustration of the coupling vector reductioncollecting samples

related to the numberXR of trajectories in parallel.

4.5 Conclusions and Perspectives

The discrete event simulation aims to reproduce the system evolution step by step studying a par-

ticular realization of a stochastic model. As discussed on Section 4.1 the advantage is that simulation

is a generic approach which can be applied to every model described as a set of events and associ-

ated transition functions. The main disadvantages are related to the simulation computational cost

(justifiable only if there is no analytical solution available) and the statistical validation since tradi-

tional approaches does not guarantee exact samples and it isdifficult to determine values such as the

burning time period, the starting state and the quantity of samplesa priori. The backward coupling

simulation provides a way to overcome the forward simulation drawbacks (the choose of an initial

state, not necessary anymore since we use all states starting parallel trajectories, and the transient

period determination, eliminated since there are a finite number of steps in the past to collect an exact

sample). The simulation results can be presented with confidence intervals allowing the verification

if the quantity of samples generated is sufficient for the model statistical analysis.

The numerical results (Section 4.4.2) pointed out that for the models in which the numerical

solution is no longer possible withSplit, perfect simulation seems to be a reasonable alternative

4.5. CONCLUSIONS AND PERSPECTIVES 67

at least for component-wise models. The current limitationof PEPSsoftware tool is in order of

X ≤ 6 × 107 states using 1 Gb RAM machine because it needs to store probability vectors for the

state spaceX . The SAN simulation approach, on the contrary, will work only with vectors of size

related to the extremal set of the models and the reachable state spaceXR. Moreover the bottleneck

imposed for vector-descriptor products in terms of memory needs to solve and present a solution in

a timely manner (the storage of the probability vector with size equal to the product state space) is

replaced by the storage of only one vector of size equal to thereachable state space and a coupling

vector at least of size related to the cardinality ofXM in simulations. The algorithm presented does

not focus on optimizing the simulation time at all, but it is avalid alternative to the lack of using

iterative methods based on vector-descriptor products forhuge models.

Optimizations in the transition function derived from descriptors, events uniformization tech-

niques, coupling test optimizations are future works for the improvement of the perfect sampling on

SAN. Additionally, it is also possible to foresee an even more complex algorithm analysis that con-

siders coupling times optimization based on other model properties or different transition functions

definitions. The generation of a even yet reduced extremal set XM , and also the notable reachable

state space contraction during a backward simulation run (see Section 4.4.2), are ongoing researches

for non-lattice component-wise state space formations. The algorithms could also be enhanced with

recent researches in the area concerning the use of conceptsof reward coupling [65] and the concept

of envelopes applied for non-monotone models [18].

Due to the independence of samples we can also consider parallel simulations to overcome the

time complexity related to the approach in general, therefore generating huge amounts of samples

faster. Table 4.3 shows the expected gains of a parallel distribution of simulations even using non-

optimized algorithms. We indicate in the first column the number of processors (#proc) involved to

calculate106 samples and the expected computational times in each case.

#proc execution time
1 ∼7.01 years

16 ∼5.26 months
32 ∼2.63 months

128 ∼19.71 days

Table 4.3: Expected parallel distribution gains for simulation

The model used as example is the one indicated in the last row of the Table 4.2 which has ten

philosophers (model with resources reservation) with approximatelyX ∼ 109 of state space (XR ∼

105 andXM ∼ 4 × 103). This model has no possible solution with theSplit algorithm due to the

state space explosion problem. The simulation seems to be a valid alternative mainly considering a

68 CHAPTER 4. EVENT-BASED DESCRIPTOR SOLUTION

considerable number of processors to produce the exact samples. Note that generating more samples

in more different processors is always better in this approach.

The main contribution of this chapter is the design of a perfect sampling algorithm for solving

huge SAN models using backward coupling simulation [38]. Moreover we studied the monotonicity

property as a key for extracting extremal global states (thesetXM) in component-wise models where

there are no canonical extremal states identified. For models with a non-lattice component-wise

ordering of the underlying Markovian graph, is showed that the simulation complexity can be greatly

reduced by using onlyXM to run trajectories in parallel. A simple procedure (Algorithm 4.5) for the

XM extraction is presented as well as the results obtained running the monotone algorithm version

(Algorithm 4.4).

The probability vectorπ obtained performing the statistical analysis of samples isthe basis from

models measurements such as steady-state probabilities ofsome global states or performance indexes

calculations. Using simulation approaches to obtain specific measures could not demand much mem-

ory such as the vector-descriptor product where the vectorπ state space sized is always needed.

69

Chapter 5

Conclusion

This thesis focused on the major challenge of the modeling formalisms which is the impact of

the state space explosion problem in the numerical solutions. The memory bound constraint appear

in conjunction with the Markov chains dissemination to model huge complex systems. Alternative

solutions soon became popular such as the structured formalisms proposed in earlier researches as

powerful modeling processes. The SAN modeling formalism isbased on independent components

formed by states and transitions labeled by events. The available primitives for use consists of two

basic types: local and synchronizing behaviors, having constant or functional rates. Such as any other

structured formalism, a SAN state space is a cartesian product of subcomponents state spaces. It

can produce huge representation that are practically unsolvable, even with specialized structures and

state-of-the-art algorithms.

This conclusion emphasizes the advantages of each theoretical and numerical contribution as well

as it shows the time-memory tradeoffs explored to reduce theimpact of the state space explosion. The

chapter ends enumerating open research problems and a discussion considering future works.

5.1 Thesis Summary

Considering the modeling strength and the structured representation for solving SAN models, this

thesis research aims the development of new algorithms and the analysis of the internal representation

of descriptors to optimize and provide exact and/or approximated solutions. Numerical algorithms are

naturally chosen due to the accuracy provided in the solutions. However, they become inapplicable

quickly when the size and complexity of models begins to explode. In other words, the number

of synchronizing events in a model is directly related to thenumber of tensor products to multiply

by a vector in the solution. Even storing in a memory-efficient manner, the tensor product terms

multiplication can have a high computational cost. Moreover, the state space explosion imposes the

70 CHAPTER 5. CONCLUSION

use of alternative solutions such as simulation techniques. When such techniques are applied, the

research challenges are shifted to finding ways to obtain solutions approximations.

In this context, two directions were established to achievethis thesis objective: solutions when

the computation time for the analytic-numeric technique isvery long; and solutions when the storage

requirements exceeds the memory capacity. Both problems are extremely significant in the area

of stochastic modeling since there is a need for developmentof numerical solutions with accurate

results. Also, it lacks the formal proposition of advanced alternative solutions such as discrete-event

simulation based on backward coupling to provide exact samples. These issues will be properly

summarized in the following sections.

5.1.1 The hybrid vector-descriptor product

The hybrid numerical solution, or theSplit algorithm, was proposed in the Chapter 3 to reduce

the computation time of a vector-descriptor product considering one iteration. In fact, the hybrid

multiplication deals with the Kronecker products in a structured manner, performing matrices com-

binations until acut-parameterσ. Actually, the non-zero values (aggregated in AUNF) related to the

sparse part ofSplit are correspondent to the matrices aggregation process performed untilσ, as seen

in the Section 3.2 (Figure 3.3). Table 5.1 compares the vector-descriptor product methods in terms of

CPU time, structure, memory and complexity (expressed in floating point multiplications). The table

shows that theShufflealgorithm is very memory-efficient when compared to theSparsealgorithm

that presents a high memory demand, storing a full matrix foreach tensor term. TheSplit algorithm

is placed between both methods in terms of memory, balancingthe computational costs through its

cut-parameterσ.

Sparse Shuffle Split

CPU time very efficient efficient very efficient

Structure aggregated matrices Kronecker products aggregated matrices and Kronecker products

Memory explosion extremely efficient efficient balancing the cut-parameterσ

Complexity
(

∏K

k=1 nzk

) (

∏K

k=1 nk

)

×
(

∑K

k=1
nzk

nk

)

(
∏σ

i=1 nzi)

[

(

∏K

i=σ+1 ni

)

+

(

∏K

i=σ+1 ni ×
∑K

i=σ+1

iffQ(i) 6=Id

nzi

ni

)]

(Equation3.3) (Equation3.5) (Equation3.10)

Table 5.1: Numerical approaches comparison

TheShufflemethod is based on the Kronecker algebra and stores only small matrices with dimen-

sions corresponding to the automata sizes and their sparsity are correspondent to the transitions where

5.1. THESIS SUMMARY 71

each event occurs. TheSparsemethod, on the contrary, considers the tensor product as a unique large

matrix, aggregating these small matrices in one, through the combination of their non-zero elements

in the correspondent positions. TheSplitmethod performs matrices aggregations to compose a sparse

part to be multiplied by the structured part in the tensor format. It basically needs a definition of a

cut-parameterσ associated to each Kronecker term, indicating the bound formatrices aggregations

on its left side, and for structure maintenance on the right side.

In terms of CPU time, theShufflealgorithm underperforms in time per iteration with any kindof

balancing of thecut-parameterσ in the classical Kronecker descriptors∗ presented, mainly due to the

shuffling process that is avoided in the sparse part when using Split. The extra memory spent, which

is balanced according toσ, allows faster iterations and consequently less computational time for the

solution of models. We consider theSplit method as fast as theSparsewithout loosing the storage

features obtained with Kronecker-based descriptors.

Models (Section 3.2.2) size (∼Mb) Split gains (×)

Resource Sharing(10_20) 2.32 3.25
Resource Sharing(11_14) 3.44 3.23
Resource Sharing(13_13) 10.61 2.69
Resource Sharing(14_11) 17.89 2.64
Dining Philosophers(6) 0.02 2.00
Dining Philosophers(8) 0.24 3.03
Dining Philosophers(10) 3.94 2.67
Dining Philosophers(11) 7.21 2.13
First Available Server(12) 0.07 6.39
First Available Server(14) 1.04 8.30
First Available Server(16) 2.07 8.70
First Available Server(18) 16.51 8.21
Ad Hoc WSN(10) 0.17 5.70
Ad Hoc WSN(12) 1.43 4.64
Ad Hoc WSN(14) 13.22 5.34
Ad Hoc WSN(16) 115.34 5.36
Master-Slave(6) 3.11 3.77
Master-Slave(8) 27.57 3.70
Master-Slave(10) 234.96 3.88
Master-Slave(12) 2, 229.01 3.94

Table 5.2:Split general performance compared withShuffle

Table 5.2 presents a brief review of theSplit algorithm gains compared to theShufflealgorithm,

∗The generalized Kronecker descriptors can be translated toclassical Kronecker descriptors through the insertion of
new synchronizing events [13].

72 CHAPTER 5. CONCLUSION

considering some results showed in the Chapter 3 (Section 3.2.2). The columnsizeis expressed inMb

representing the memory cost to run theSplitapproach. The columngainsindicates how many times

the Split algorithm is faster thanShuffleconsidering a complete vector-descriptor product,i.e. the

times used to calculate theSplit gains are the computational time spent to multiply a probability

vectorυ by adescriptorQ.

Note that for many models the memory spent in the solution is not a problem, even when we reach

the total of∼2.18Gb to obtain a fast result (Master-Slavemodel with12 slaves). Additionally, one

can balance thecut-parameterσ to spent less memory and still be faster thanShuffle. For all other

huge models (the last variation of each class of model) the memory spent lies between 7.21Mb and

234.96Mb. Observing the gains for all examples, small and large alike, theSplit gains in terms of

computational time (after finding well-fittedcut-parametersfor each tensor term in the descriptors)

are at least twice as better than theShufflealgorithm. The time gains for one iteration presented here

represent an expressive overall gain in the solution with aniterative method as seen in the Section 3.3.

5.1.2 The exact simulation

The other direction developed in this thesis considers a different SANdescriptorrepresentation as

a discrete-event system to cope with the storage requirements when they exceed the current memory

capacity. The system representation uses transition functions, running iterations for a long time until

a stop criteria.

Forward simulation Backward simulation
Backward simulation
(Monotone system)

CPU time fixed number of iterations dependent of coupling timesdependent of coupling times

Memory one state size dependent ofXR size dependent ofXM size

Results distributed no yes yes
according stationary regime? (bias samples) (exact samples) (exact samples)

Constraints a valid initial state
valid initial states system must be monotone

(reachable state space) (extremal states)

Complexity
cΦ × τ ∗ |XR| × Eτ × cΦ |XM | × 2Eτ × cΦ

(Equation4.1) (Equation4.2) (Equation4.3)

Table 5.3: Simulation approaches comparison

Table 5.3 shows a summarized comparison among the simulation approaches considering CPU

time, results distribution according stationary regime, constraints and complexity cost. TheForward

simulation is included in the comparison because it is the first approach to simulate SAN specifically

5.1. THESIS SUMMARY 73

focusing on the network dynamics, adapting the model state transitions as a simulation kernel [57].

Such model-driven approach was implemented starting from apre-defined global state, running for-

ward steps.

Section 4.1 explained the drawbacks of running forward simulations such as the problem of se-

lecting the initial state to start the simulation, the undetermined size of thetransientperiod and the

consequent generation of bias samples. Note that in the context of this thesis we worked with back-

ward coupling simulation techniques such as theperfect samplingbecause it certainly generates ex-

act samples. Moreover, focusing in the structural aspects of models one can verify the monotonicity

property and perform specialized solutions such as the monotone backward coupling simulation. The

advantage of using the perfect sampling approaches is due tothe fact that one can generate exact

samples avoiding the stopping criteria problem [56].

The perfect sampling for SAN is an alternative for the numerical solution since it has a smaller

memory demand if the model presents the monotonicity property. This is basically the reason why

the structural formation is highly important. Component-wise models such as theQueueing Network

and theDining Philosophersare explored deeply in the Section 4.3.1 because both have structures

that helps reducing the impact of the state space explosion.The procedure to obtain extremal initial

states (Algorithm 4.5) is the first initiative in SAN towardsthe state space reduction based on the

exploitation of component-wise state spaces.

Analyzing the results presented in the Section 4.4.2, we demonstrate expressive gains overcoming

the current numerical solution limitation in terms of product state space, solving models which are

too massive to run on our target machine using the current implementation ofPEPS. The examples

were extended to beyond 65 million states,i.e., from 67 million to nearly 1 billion states (Table 4.2)

and still our procedure was capable of producing unbiased samples for later statistical analysis.

In conclusion, simulation allows us to solve huge models andit provides an approximated result,

which means that the value obtained with numerical methods are inside the corresponding simulation

confidence intervals. The remaining challenge is that the simulation times are still very long mainly

because there is a need of specialized structures and optimizations in the algorithms proposed which

are listed in the future works section.

5.1.3 Thesis general contribution

This thesis focused on the numerical solution of the structured formalism SAN, in which the

modeling simplicity and modularity brings together the state explosion problem. The automata cardi-

nalities are combined generating a product state spaceX in which only a subset of states is reachable,

forming theXR set. The available numerical solutions are basically iterative solvers for Kronecker

representations (sets of transition matrices), implemented in thePEPSsoftware tool environment, and

74 CHAPTER 5. CONCLUSION

a first approach to simulate SAN [57] was based on forward techniques. Considering that structured

formalisms in general take advantage of their modeling characteristics as the key for performance and

flexibility of their iterative solutions, the idea in this thesis was to exploit the natural models structure

in hybrid and alternative numerical approaches, resultingin an efficient, or at least effective, manner

to solve certain classes of huge structured models.

Figure 5.1 presents the thesis contributions graphically,showing the modeling phase evolution

until the statistical analysis phase, in which the model measures can be calculated over the probability

vectorπ generated by the numerical solutions. A model is a discrete system and the description can be

expressed using sparse matrices and Kronecker operators defining a Markoviandescriptor. A model

can also be described as a table of discrete events and transition functions, defining a simulation

kernel. After that, different techniques could be employedto generate the states probabilities as

output. The state space explosion problem, present in both approaches, can affect also the solution

phase, not only the modeling phase, and its impact is mitigated with two different perspectives.

GRAPHICAL MODEL

Structured Markov Chain
−Stochastic Automata Network

Markovian
Descriptor

Discrete−events

Transition Function

Simulation Methods

State
Space
Explosion

−Vector−descriptor product
Iterative Methods

−Exact Simulation

DISCRETE SYSTEM NUMERICAL SOLUTION STATISTICAL
ANALYSIS

MODELING PHASE SOLUTION PHASE

−measures (f)

0(1)

1(1)

e1e2

A(1)

e3

A(2)

0(2)

2(2) 1(2)

e2(π2)
e5

e4 e2(π1)

(e1 . . . e5)

Φ(s, e)

∑

(
⊗

Q)

Probability vectorπ

Figure 5.1: Thesis contributions scheme

It is out of the scope of this thesis to propose new storage primitives for the state space explosion

problem found in the modeling phase of systems. The huge examples used in the Chapters 3 and 4 are

easily extended due to the modularity and available features of the SAN formalism. Also the model

reachability function can be (partially) defined in the modeling process using specific primitives.

The iterative solution is optimized through the proposition of new vector-descriptor product op-

erations, theSplit algorithm. The use of a Kronecker representation guarantees a memory-efficient

storage, however the shuffling process involved can be computationally onerous, depending on the

matrices dimensions and the number of nonzero elements (sparsity). The splitting process applied

to the tensor terms aims to reduce the computational cost involved in calculating indexes to access

5.1. THESIS SUMMARY 75

the vectors positions, replacing it for an extra memory needed when aggregating a subset of sparse

matrices. There are many models where the synchronizationsare made between few automata,i.e.,

the matrices can be ultra-sparse[16] and aggregated in a memory-efficient way. A faster execution for

large tensor terms reduces the impact of huge state spaces inthe iterative approach.

The simulation solution is proposed through the adaptationof perfect sampling techniques in the

context of SAN. The backward coupling procedures are not memory-efficient because we need to run

as much parallel trajectories as the reachable states of themodel. Due to this, the study of models with

component-wise structures and partial ordering can be veryuseful since one can reduce the number

of trajectories in parallel and obtain optimized solutionssuch as those provided in monotone versions.

Table 5.4 generically shows a comparison among the proposedsolutions to reduce the impact of state

space explosion in terms of CPU time, number of iterations needed and constraints involved in each

solution, considering that both can produce accurate results in different ways.

Vector-descriptor product Perfect sampling

CPU time
fixed number of operations variable coupling times

(per iteration) (per sample generation)

Number of iterations
undefined until convergencedepending of the number of samples

(fixed precision) (confidence interval)
Results distributed

yes yes
according stationary regime?
Results accuracy exact solution very approximated solution
Constraints X size XR size or monotonicity

Table 5.4: Numerical and simulation approaches comparison

The traditional iterative method performs a fixed number of operations (floating point multiplica-

tions) in each iteration, and iterates successively until it reaches the steady-state, in an unpredictable

number of steps. It is quite different using transition functions in simulation kernels, mainly using

the perfect sampling procedure, where there is no fixed number of operations to achieve the coupling

of trajectories generating an exact sample (although it always happens in a finite number of steps).

However, we can establish a number of steps to run (samples tocollect) based on an allowed preci-

sion to obtain the result approximation. Besides, model measures can be directly calculated at each

sample generation and the number of replications is dependent of the allowed precision.

In the Section 4.4.2 the Tables 4.1 and 4.2 showed that huge models are impossible to solve

with the currentPEPSsoftware tool due to the size ofX , and theXR contraction inXM to run the

alternative solution which is based on perfect sampling, overcoming the state space explosion. The

costs in memory are also drastically reduced since for monotone versions it is sufficient the storage

76 CHAPTER 5. CONCLUSION

of the coupling vector with extremal elements (instead of the complete reachable state space).

However, in iterative solutions, it is mandatory to store the whole state space (considering that

we have no sparse implementations for the vector) at least twice to perform the traditional vector-

descriptor product. In the simulation approaches, the storage of a vector of|XR| positions is needed

only for the statistical analysis of samples. In order to deal with this possible memory bottleneck,

one can devise a method to consider only measures of interestto reject unnecessary samples. This

means that monotone backward coupling methods could be morememory-efficient just improving

the sampling procedure.

Concluding, the main thesis results are situated in two specific directions:

• application of classical tensor algebra properties such asthe additive decomposition of tensor

products, and matrices aggregation for the use of sparse techniques to accelerate the solution

of Kronecker-structured models. Huge descriptors have many decomposed tensor terms, so we

present a definition of a more time-efficient algorithm for the multiplication of huge vectors

by complex structures based on Kronecker operations among sparse matrices (called vector-

descriptor product);

• application of advanced simulation techniques based on backward coupling for complex struc-

tures such as those provided by SAN, reducing the impact of the state space explosion problem

which can avoid the use of iterative solutions. It is analyzed a component-wise structure to

take advantage of the monotonicity property of events for state space contraction, and then a

consequent memory-efficient backward simulation is provided.

5.2 Open Problems and Future Works

The analysis of large Markovian models suffers from state space explosion and future researches

may focus on the limiting factors for solutions which are basically memory and time. Apart from us-

ing sophisticated computational representations for a compact descriptor storage, the SAN formalism

demands new efficient analysis techniques exploiting the models structure. Due to this it is natural

to take advantage of its power of modeling (functional primitives and synchronized interaction of

disjoint components) also in the solutions.

TheSplit algorithm is proposed to classical Kronecker descriptors so the next step is the proposi-

tion of a generalized version which can solve matrices with functional rates instead of only constant

ones. A similar work about these functional dependencies inside tensor terms changed completely

5.2. OPEN PROBLEMS AND FUTURE WORKS 77

the performance of theShufflealgorithm [37]. One can estimate that similar gains with functional

dependencies analysis (and possible automata permutations) could benefit theSplitalgorithm as well.

However, the main aspect related to its performance is derived from the flexibility proposed in the

treatment of the structured representation as seen in the Chapter 3. A clearly open problem is the

choice of the division point in each tensor product term (choice of the cut-parameterσ) and, even

more important, the choice of matrices permutations in the terms providing a more efficient aggrega-

tion at left and few multiplications at right.

The research for an heuristic to automatically choose a satisfactory permutation of matrices and

the cut-parameter, for each tensor product, is a considerable challenge. Thisis not a trivial task,

due to the tensor product term formation and intrinsic matrices details such as dimensions, total of

nonzero elements and computational cost in multiplications. These parameters open the possibility

of a thorough analysis of the related theoretical computational cost to obtain a generalized version for

theSplit algorithm, with a finite set of rules for the proper definitionof thecut-parameterbased on

matrices properties and permutations.

This thesis also introduced an advanced simulation technique (perfect sampling) to the context

of SAN using its underlying system dynamic expressed by different events in adescriptor. A future

work in this direction is the development of optimized procedures to find extremal states in general

chains, not only in those underlying component-wise modelsas presented in the Chapter 4. Also

theoretical improvements are needed for a deep understanding of the transition functionΦ properties

and the bounds on the coupling timeτ .

There are researches conducted towards to the improvement of the simulation complexity using

variance reduction techniques and functional coupling [65] to accelerate the samples generation. Pre-

liminary results shows that for the component-wise models in which the numerical solution is no

longer possible with PEPS, perfect sampling techniques area reasonable alternative. A qualitative

analysis of SAN through new tools to facilitate the comprehension of complex interactions among

automata could provide benefits from the structural aspects.

Additionally, since simulation uses statistical techniques to analyze output data, and structured

analytical models can have thousands of reachable states collected during these experiments, a func-

tional analysis can help maintaining the memory resources to manageable limits, using these methods

based on the coupling of parallel trajectories. Avoiding the storage of a huge vector is possible con-

sidering specific of measures of interest as parameters for the sampling procedure.

The numerical methods proposed for the SAN formalism in thisthesis, beyond their inherent

complexity, could be enhanced using parallel implementations since both algorithms present a natural

independence of operations. TheSplit algorithm allows independence among normal factors due

to the additive decomposition property exploited. The tensor products can be analyzed separately

78 CHAPTER 5. CONCLUSION

without the need to share the probability vector during multiplication. Theperfect samplinggenerates

independent and exact samples so one can also run independent batches of experiments without any

solution bias. An interesting aspect for future research inparallelization should consider the amount

of memory needed, the processing demands (the number of floating point multiplications or transition

function operations), volume of data exchanged (size of vectors) to be as evenly as possible distributed

among parallel machines.

In the future we hope that the development and optimizationsof these approaches may, virtually,

have no size bound, since neither the transition matrix, northe probability vector would need to be

stored as a single matrix or vector. Such possible applications will only have to deal with the time

bound optimization, then the solution of models with thousands of million states will become as usual

as our current tens of millions bound.

79

Bibliography

[1] M. Ajmone-Marsan, G. Conte, and G. Balbo. A Class of Generalized Stochastic Petri Nets

for the Performance Evaluation of Multiprocessor Systems.ACM Transactions on Computer

Systems, 2(2):93–122, 1984.

[2] V. Amoia, G. De Micheli, and M. Santomauro. Computer-Oriented Formulation of Transition-

Rate Matrices via Kronecker Algebra.IEEE Transactions on Reliability, R-30(2):123–132,

1981.

[3] L. Baldo, L. Brenner, L. G. Fernandes, P. Fernandes, and A. Sales. Performance Models for Mas-

ter/Slave Parallel Programs.Electronic Notes In Theoretical Computer Science, 128(4):101–

121, April 2005.

[4] L. Baldo, L. G. Fernandes, P. Roisenberg, P. Velho, and T.Webber. Parallel PEPS Tool Per-

formance Analysis using Stochastic Automata Networks. In M. Donelutto, D. Laforenza, and

M. Vanneschi, editors,International Conference on Parallel Processing (Euro-Par 2004), vol-

ume 3149 ofLNCS, pages 214–219, Berlin, Germany, December 2004. Springer-Verlag Heidel-

berg.

[5] A. Benoit, L. Brenner, P. Fernandes, B. Plateau, and W. J.Stewart. The PEPS Software Tool.

In Computer Performance Evaluation (TOOLS 2003), volume 2794 ofLNCS, pages 98–115.

Springer-Verlag Heidelberg, 2003.

[6] A. Benoit, P. Fernandes, B. Plateau, and W. J. Stewart. Onthe benefits of using functional

transitions and Kronecker algebra.Performance Evaluation, 58(4):367–390, December 2004.

[7] A. Benoit, B. Plateau, and W. J. Stewart. Memory-efficient Kronecker algorithms with appli-

cations to the modelling of parallel systems.Future Generation Computer Systems, 22(7):838–

847, 2004.

[8] C. Bertolini, L. Brenner, P. Fernandes, A. Sales, and A. F. Zorzo. Structured Stochastic Model-

ing of Fault-Tolerant Systems. InProceedings of the 12th IEEE/ACM Internacional Symposium

80 BIBLIOGRAPHY

on Modelling, Analysis and Simulation on Computer and Telecommunication Systems (MAS-

COTS’04), pages 139–146, Volendam, The Netherlands, October 2004. IEEE Press.

[9] A. A. Borovkov and S. G. Foss. Two ergodicity criteria forstochastically recursive sequences.

Journal Acta Applicandae Mathematicae: An International Survey Journal on Applying Math-

ematics and Mathematical Applications, 34:125–134, February 1994.

[10] A. Bouillard and B. Gaujal. Backward coupling in petri nets. InProceedings of the 1st interna-

tional conference on Performance evaluation methodologies and tools (Valuetools’06), page 33,

New York, NY, USA, 2006. ACM Press.

[11] A. Bouillard and B. Gaujal. Backward Coupling in Bounded Free-Choice Nets Under Marko-

vian and Non-Markovian Assumptions.Discrete Event Dynamic Systems: Theory and Applica-

tions, 18(4):473–498, December 2008.

[12] L. Brenner, P. Fernandes, J. M. Fourneau, and B. Plateau. Modelling Grid5000 point availability

with SAN. In Proceedings of the Third International Workshop on Practical Applications of

Stochastic Modelling (PASM’08), pages 149–162, 2008.

[13] L. Brenner, P. Fernandes, and A. Sales. The Need for and the Advantages of Generalized

Tensor Algebra for Kronecker Structured Representations.International Journal of Simulation:

Systems, Science & Technology (IJSIM), 6(3-4):52–60, February 2005.

[14] P. Buchholz. A distributed numerical/simulative algorithm for the analysis of large continuous

time Markov chains. InProceedings of the eleventh Workshop on Parallel and Distributed

Simulation (PADS’97), pages 4–11, Washington, DC, USA, 1997. IEEE Computer Society.

[15] P. Buchholz. A new approach combining simulation and randomization for the analysis of large

continuous time Markov Chains.ACM Transactions on Modeling and Computer Simulation

(TOMACS), 8(2):194–222, 1998.

[16] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-efficient Kro-

necker operations with applications to the solution of Markov models. INFORMS Journal on

Computing, 12(3):203–222, July 2000.

[17] P. Buchholz and P. Kemper. Hierarchical reachability graph generation for Petri nets.Formal

Methods in Systems Design, 21(3):281–315, 2002.

[18] A. Busic, B. Gaujal, and J. M. Vincent. Perfect simulation and non-monotone Markovian sys-

tems. InProceedings of the 3rd international Conference on Performance Evaluation Method-

ologies and Tools (ValueTools’08), pages 1–10, Athens, Greece, October 2008.

BIBLIOGRAPHY 81

[19] Y. Cai. A non-monotone CFTP perfect simulation method.Statistica Sinica, 15(4):927–943,

2005.

[20] R. Chanin, M. Corrêa, P. Fernandes, A. Sales, R. Scheer,and A. F. Zorzo. Analytical Modeling

for Operating System Schedulers on NUMA Systems. InProceedings of the Second Interna-

tional Workshop on the Practical Application of StochasticModeling (PASM 2005), volume 151

of Electronic Notes in Theoretical Computer Science, pages 131–149, June 2006.

[21] G. Ciardo, M. Forno, P. L. E. Grieco, and A. S. Miner. Comparing implicit representations of

large CTMCs. InProceedings of the 4th International Conference on the Numerical Solution of

Markov Chains (NSMC 2003), pages 323–327, September 2003.

[22] G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. SMART: Stochastic Model Ana-

lyzer for Reliability and Timing. InTools of Aachen 2001 International Multiconference on

Measurement, Modelling and Evaluation of Computer-Communication Systems, pages 29–34,

September 2001.

[23] G. Ciardo and A. S. Miner. Storage Alternatives for Large Structured State Spaces. InProceed-

ings of the 9th International Conference on Modelling Techniques and Tools for Computer Per-

formance Evaluation, volume 1245 ofLNCS, pages 44–57. Springer-Verlag Heidelberg, 1997.

[24] R. M. Czekster, P. Fernandes, J.-M. Vincent, and T. Webber. Split: a flexible and efficient al-

gorithm to vector-descriptor product. InProceedings of the 2nd international conference on

Performance evaluation methodologies and tools (ValueTools’07), volume 321 ofACM Interna-

tional Conference Proceeding Series, Brussels, Belgium, Belgium, 2007. Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering (ICST).

[25] B. A. Davey and H. A. Priestley.Introduction to Lattices and Order. Cambridge University

Press, Cambridge, UK, 2nd edition, 2002.

[26] M. Davio. Kronecker Products and Shuffle Algebra.IEEE Transactions on Computers,

30(2):116–125, February 1981.

[27] D. D. Deavours and W. H. Sanders. An Efficient Disk-BasedTool for Solving Very Large

Markov Models. InProceedings of the 9th International Conference on Computer Performance

Evaluation: Modelling Techniques and Tools, volume 1245 ofLNCS, pages 58–71, 1997.

[28] D. D. Deavours and W. H. Sanders. On-the-fly Solution Techniques for Stochastic Petri Nets and

Extensions. InProceedings of the 6th International Workshop on Petri Netsand Performance

Models (PNPM’97), pages 132–141, Washington, DC, USA, 1997. IEEE Computer Society.

82 BIBLIOGRAPHY

[29] F. Delamare, F. L. Dotti, P. Fernandes, C. M. Nunes, and L. C. Ost. Analytical modeling of

random waypoint mobility patterns. InProceedings of the 3rd ACM international workshop on

Performance evaluation of wireless ad hoc, sensor and ubiquitous networks (PE-WASUN’06),

pages 106–113, New York, NY, USA, 2006. ACM Press.

[30] X. K. Dimakos. A Guide to Exact Simulation.International Statistical Review, 69(1):27–48,

2001.

[31] S. Donatelli. Superposed stochastic automata: a classof stochastic Petri nets with parallel

solution and distributed state space.Performance Evaluation, 18(1):21–36, July 1993.

[32] S. Donatelli. Superposed generalized stochastic Petri nets: definition and efficient solution. In

R. Valette, editor,Proceedings of the 15th International Conference on Applications and Theory

of Petri Nets, pages 258–277. Springer-Verlag Heidelberg, 1994.

[33] S. Donatelli. Kronecker Algebra and (Stochastic) Petri Nets: Is It Worth the Effort? In J. M.

Colom & M. Koutny, editor,Proceedings of the 22nd International Conference on Applications

and Theory of Petri Nets, volume 2075 ofLNCS, pages 1–18, London, UK, 2001. Springer-

Verlag Heidelberg.

[34] F. L. Dotti, P. Fernandes, A. Sales, and O. M. Santos. Modular Analytical Performance Models

for Ad Hoc Wireless Networks. InProceedings of the Third International Symposium on Mod-

eling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt’05), pages 164–173,

Washington, DC, USA, April 2005. IEEE Computer Society.

[35] A. G. Farina, P. Fernandes, and F. M. Oliveira. Representing software usage models with

Stochastic Automata Networks. InProceedings of the 14th International Conference on Soft-

ware Engineering and Knowledge Engineering, pages 401–407. ACM Press, 2002.

[36] P. Fernandes and B. Plateau. Modeling Finite Capacity Queueing Networks with Stochastic

Automata Networks. InProceedings of the 4th International Workshop on Queueing Networks

with Finite Capacity (QNETs 2000), pages 1–12, July 2000.

[37] P. Fernandes, B. Plateau, and W. J. Stewart. Efficient descriptor-vector multiplication in Stochas-

tic Automata Networks.Journal of the ACM SIGMETRICS (JACM), 45(3):381–414, May 1998.

[38] P. Fernandes, J. M. Vincent, and T. Webber. Perfect Simulation of Stochastic Automata Net-

works. InProceedings of 15th International Conference on Analytical and Stochastic Modelling

Techniques and Applications (ASMTA’08), volume 5055 ofLNCS, pages 249–263. Springer-

Verlag Heidelberg, June 2008.

BIBLIOGRAPHY 83

[39] J. A. Fill and M. Machida. Stochastic Monotonicity and Realizable Monotonicity.Annals of

Probability, 29(2):938–978, 2001.

[40] J. M. Fourneau, I. Kadi, N. Pekergin, J. Vienne, and J. M.Vincent. Perfect simulation and

monotone stochastic bounds. InProceedings of the 2nd International Conference on Perfor-

mance Evaluation Methodolgies and Tools (VALUETOOLS’07), volume 321 ofACM Interna-

tional Conference Proceeding Series, pages 65–73, Brussels, Belgium, Belgium, 2007. Institute

for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST).

[41] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool toSupport a Process Algebra-based

Approach to Performance Modelling. InProceedings of the 7th international conference on

Computer Performance Evaluation : modelling techniques and tools, pages 353–368, Secaucus,

NJ, USA, 1994. Springer-Verlag New York, Inc.

[42] P. Glasserman and D. D. Yao.Monotone structure in discrete-event systems. John Wiley &

Sons, Inc., New York, NY, USA, 1994.

[43] O. Häggström.Finite Markov Chains and Algorithmic Applications. Cambridge University

Press, Cambridge, UK, 2002.

[44] J. Hillston.A compositional approach to performance modelling. Cambridge University Press,

New York, USA, 1996.

[45] J. Hillston and L. Kloul. An Efficient Kronecker Representation for PEPA models. In L. de Al-

faro and S. Gilmore, editors,Proceedings of the First joint PAPM-PROBMIV Workshop), pages

120–135. Springer-Verlag Heidelberg, September 2001.

[46] V. V. Lam, P. Buchholz, and W. H. Sanders. A Structured Path-Based Approach for Computing

Transient Rewards of Large CTMCs. InProceedings of the The Quantitative Evaluation of

Systems, First International Conference on (QEST’04), pages 136–145, Washington, DC, USA,

2004. IEEE Computer Society.

[47] V. V. Lam, P. Buchholz, and W. H. Sanders. A component-level path-based simulation approach

for efficient analysis of large Markov models. InProceedings of the 37th conference on Winter

simulation (WSC’05), pages 584–590. Winter Simulation Conference, 2005.

[48] A.M. Law and W. D. Kelton.Simulation Modeling and Analysis. MacGraw-Hill, New York,

USA, 1991.

84 BIBLIOGRAPHY

[49] L.Brenner, P.Fernandes, B.Plateau, and I.Sbeity. PEPS2007 - Stochastic Automata Networks

Software Tool. InProceedings of the 4th International Conference on Quantitative Evaluation

of Systems (QEST 2007), pages 163–164. IEEE Press, 2007.

[50] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris.Capacity of Ad Hoc Wireless

Networks. InProceedings of the 7th Annual International Conference on Mobile Computing

and Networking, pages 61–69. ACM Press, July 2001.

[51] T. Lindvall. Lectures on the Coupling Method. John Wiley & Sons, Inc., New York, USA, 1992.

[52] A. S. Miner and G. Ciardo. Efficient Reachability Set Generation and Storage Using Decision

Diagrams. InProceedings of the 20th International Conference on Applications and Theory

of Petri Nets (ICATPN’99), volume 1639 ofLNCS, pages 6–25, Williamsburg, VA, USA, June

1999. Springer-Verlag Heidelberg.

[53] L. Mokdad, J. Ben-Othman, and A. Gueroui. Quality of Service of a Rerouting Algorithm Using

Stochastic Automata Networks. InProceedings of the 6th IEEE Symposium on Computers and

Communications, pages 338–343. IEEE Computer Society, July 2001.

[54] B. Plateau. On the stochastic structure of parallelismand synchronization models for distributed

algorithms.ACM SIGMETRICS Performance Evaluation Review, 13(2):147–154, August 1985.

[55] B. Plateau and K. Atif. Stochastic Automata Networks for modelling parallel systems.IEEE

Transactions on Software Engineering, 17(10):1093–1108, October 1991.

[56] J. G. Propp and D. B. Wilson. Exact Sampling with CoupledMarkov Chains and Applications

to Statistical Mechanics.Random Structures and Algorithms, 9(1–2):223–252, 1996.

[57] W. J. Stewart R. Jungblut-Hessel, B. Plateau and B. Ycart. Fast simulation for Road Traffic

Network. RAIRO Operational Research, 35(2):229–250, June 2001.

[58] S. M. Ross.Simulation. Academic Press, Inc., Orlando, FL, USA, 2002.

[59] Y. Saad.Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston, MA,

USA, 1995.

[60] Ö. Stenflo. Ergodic Theorems for Markov chains represented by Iterated Function Systems.

Bulletin of the Polish Academy of Sciences, Mathematics, 49(1):27–43, 2001.

[61] W. J. Stewart.Introduction to the numerical solution of Markov chains. Princeton University

Press, Princeton, NJ, USA, 1994.

BIBLIOGRAPHY 85

[62] C. Tadonki and B. Philippe. Parallel Multiplication ofa Vector by a Kronecker Tensor Product

of matrices.Parallel numerical linear algebra, pages 71–89, 2000.

[63] J.-M. Vincent. Perfect simulation of monotone systemsfor rare event probability estimation. In

Proceedings of the 37th Conference on Winter Simulation, pages 528–537. Winter Simulation

Conference, 2005.

[64] J.-M. Vincent. Perfect Simulation of Queueing Networks with Blocking and Rejection. In

Proceedings of the 2005 Symposium on Applications and the Internet Workshops, pages 268–

271, Washington, DC, USA, 2005. IEEE Computer Society.

[65] J.-M. Vincent and C. Marchand. On the exact simulation of functionals of stationary Markov

chains.Linear Algebra and its Applications, 386:285–310, 2004.

[66] J.-M. Vincent and J. Vienne. Perfect simulation of index based routing queueing networks.ACM

SIGMETRICS Performance Evaluation Review, 34(2):24–25, 2006.

86 BIBLIOGRAPHY

87

Appendix A

SAN Examples

This appendix presents the following SAN models descriptions used as examples for numerical

and theoretical results. Their graphical representationsare also included here.

- a simple queueing network model (A.1);

- a resource sharing model with a pool of resources (A.2);

- thedining philosophersmodel in two versions (with and without resource reservation) (A.3);

- a model to analyze servers availability (A.4);

- a model to analyze an ad hoc wireless sensor network (A.5);

- a model to analyze a parallel implementation (A.6).

A.1 Queueing Networkmodel

We introduce this section with a queueing system conversionin a SAN model [36] whose the

translation is trivial considering the interaction among queues and the independent behavior of client

arrivals and some departures. Figure A.1 represents a simple queueing network with two queues of

capacities given byKi, the arrival rate in the system isα1, the routing rate between queues isα2 (with

loss), and departure rate of the second queue isα3.

The equivalent SAN model has two automataA(1) andA(2) representing both queues respectively,

and three events composing the setξ (sincee1 ande2 are local events, ande12 is a synchronizing

event between automata) with their constant rates. In general, each queue can be represented by an

automatonA(i) composed ofKi + 1 states representing the number of clients in the queue (i.e., the

88 APPENDIX A. SAN EXAMPLES

Queueing network model

00

α1 α2

...

Equivalent SAN model

K1

A(1)

...

A(2)

K2

e2

e2e12

e12

e1

e1

e12

e12

e12e1

α3

A(1) A(2)

K1 K2

Type Event Rate
loc e1 α1

syn e12 α2

loc e2 α3

Figure A.1: Queueing network and equivalent SAN model

state0 represents that a queue is empty, and the statesK1 or K2 represent that the queue is full). The

product state spaceX of this model is formed by(K1 + 1) × (K2 + 1) global states. All states are

reachable in this model. Despite of that, one can define a partial reachability indicating, for example,

that both queues are empty:FR∗ = (stA(1) == 0(1)) && (stA(2) == 0(2));

A.2 Resource Sharingmodel

Figure A.2 represents a classical resource sharing system with P processes sharingR resources.

Each process is represented by an automatonA(i) (i = 1 . . . P) composed of two states:s(i) (sleeping)

andu(i) (using). A resource pool is represented by the automatonA(P+1) and it hasR + 1 states

indicating the number of resources in use.

The model presents only synchronizing events composing thesetξ, since the eventseai represent

the acquiring of a resource with constant rateλi, and the eventseri represent the release of a resource

with constant rateµi. The product state spaceX of this model is formed by2P×(R+1) global states.

One can define a partial reachability function indicating, for example, that the number of automata in

the sleeping states(i) is equal toP , i.e.all processes are sleeping:FR∗ = (nbA(i) [s(i)]) == P ;

A.3. DINING PHILOSOPHERSMODEL 89

... ...

...
...

...

...
...

...

...

...

ea1

eaP erP

er1

ea1

eaP

ea1

eaP

ea1

eaP

erP

er1

erP

er1

erP

er1

ea1 er1 eaP erP

A(1) A(P) A(P+1)

Event Rate Event Rate
ea1 λ1 er1 µ1

ea2 λ2 er2 µ2

ea3 λ3 er3 µ3
...

eaP λP erP µP

s(1)

u(1)

s(P)

u(P)

0(P+1)

1(P+1)

R-1(P+1)

R
(P+1)

Figure A.2: Classical resource sharing SAN model

A.3 Dining Philosophersmodel

This section presents another classical performance modelto analyze mutual exclusion in resource

sharing. The modeling abstraction is called thedining philosophers problemand is summarized asK

philosophers sitting at a table doing one of two things - eating or thinking.

P3

P2
P1

...

F3

F4

F2

F1

PK−1

PK FK

FK−1

Figure A.3: Dining Philosophers table configuration

The philosophers sit at a circular table (Figure A.3) with a large bowl of food in the center. A fork

Fk is placed between each philosopherPk, and as such, each philosopher has one fork to his left and

one fork to his right. The philosopher must have two forks (atthe same time) to eat.

90 APPENDIX A. SAN EXAMPLES

A.3.1 Dining Philosophersmodel (with resource reservation)

The SAN model in Figure A.4 hasK automataPh(k) representing the philosophers, each one

with three states:Th(k) (thinking), Lf (k) (taking left fork), Rf (k) (taking right fork). The model

allows one fork reservation to after acquiring the second fork.

rl2
lrK

tr1 lt1

rl1

lrK

tri

rli

lti

i = 2 . . . (K − 2)

Ph(1)

Ph(i)

lrK

rl0

tlKrtK

ltK−1

rlK−1

trK−2
tlK

trK−1

trK−2

Ph(K)

Ph(K−1)

Th(0)

Th(i) Th(K−1)

Lf (K−1)Rf (K−1)Lf (i)Rf (i)

tri−1
rli+1

trK−1
rl0

Rf (0) Lf (0) Rf (K) Lf (K)

Th(K)

Type Event Rate
loc lti µi

syn tri λi

syn rli λi

loc rtK µK

syn tlK λK

syn lrK λK

tri−1

Figure A.4: Dining Philosophers SAN model with reservation

The philosopher can reserve the fork on his immediate left orright waiting for eating with two

available forks. To avoid deadlock is established an ordering to get the forks in the table, for each

philosopher in the model. Then the model presents synchronizing events with constant rates for taking

the right and left forks (tri, rli, tlK andlrK) and local events (lti andrtK) representing the release

of forks. The product state spaceX of this model is formed by3K states. The partial reachability

function can be defined, for example, indicating that all philosophers are thinking, so the number of

automata in the thinking stateTh(k) is equal toK: FR∗ = (nbPh(k) [Th(k)]) == K;

A.3.2 Dining Philosophersmodel (without resource reservation)

The SAN model in Figure A.5 hasK automataP (k) representing the philosophers, each one with

two states:T (k) (thinking) andE(k) (eating). The stateE(k) supposes the philosopher required both

forks at the same time to eat, without reserving earlier the first fork to then take the second.

A.4. FIRST AVAILABLE SERVERMODEL 91

...
teieti teKetK

T (K)
teK

te2

et1 te1

T (1)
teK

te2

et1 te1

T (1)

Ph(1) Ph(i) Ph(K)

tei−1
tei+1 teK−1

te1

i = 2 . . . k − 1

T (i)

E(1) E(i) E(K)

Type Event Rate
loc etk µk

syn tek λk

Figure A.5: Dining Philosophers SAN model without reservation

Then the model presents synchronizing events with constantrates for eating (teK) and local events

(etK) representing the release of forks returning to thinking. The product state spaceX of this model

is formed by2K states. The partial reachability function can be defined, for example, indicating that

all philosophers are thinking, so the number of automata in the thinking stateT (k) is equal toK:

FR∗ = (nbPh(k) [T (k)]) == K;

A.4 First Available Servermodel

This section presents a model to analyze server availability consideringN servers. Each server

A(i) has two states:I(i) (idle) andB(i) (busy). In this example, packages arriving at aservers switch

block, depart through the first output port (or server) that is not busy, as long as at least one server is

not blocked.

A(i)

eri eai

A(N)

erN eaNea1

A(1)

er1 . . .

ea2..eaN

. . .

B(1) B(i) B(N)

eai+1..eaN

I(1) I(i) I(N)
Type Event Rate
loc ea1 λ
loc er1 µ
syn ea2 λ
loc er2 µ
...

...
...

syn eaN λ
loc erN µ

Figure A.6: First available server SAN model

The SAN model in Figure A.6 can be viewed as a framework for analysis of different queueing

systems (e.g.call centers lines occupation). Each package in the queue can advance as soon as possible

to the first available server without preferring one over another (i.e., the priority of servers is given by

themselves).

92 APPENDIX A. SAN EXAMPLES

The model has synchronizing eventseai (i = 2 . . .N) turning the servers busy. The local events

are: ea1 (package arrival) anderi (to turn the servers idle). All events present constant rates. The

product state spaceX of this model is formed by2N states. The partial reachability function can be

defined, for example, indicating that all servers are idle:FR∗ = (nbA(i) [I(i)]) == N ;

A.5 Ad Hoc Wireless Sensor Networkmodel

The SAN model in the Figure A.7 represents a chain of four mobile nodes in a Wireless Sensor

Network (Ad Hoc WSN model) running over the802.11 standard for ad hoc networks. This model

[34] resembles the ad hoc forwarding experiment presented in [50] using SAN. The chain can be

generically modeled withN nodes, where the first nodeMN (1) (Sourceautomaton) generates the

packets as fast as the standard allows. The packets are forwarded through the chain by theRelay

automata calledMN (i), where the variablei is among the value2 and(N − 1), until the last node

MN (N) (Sinkautomaton).

I(1)

T (1)

I(2)

T (2)R(2)

I(3)

T (3)R(3)

I(4)

R(4)

MN (2) MN (3)

t1

g23 g34

g12

t2 t3g12
g23

g34

t3

g12

MN (1) MN (4)

g23

g12
g23

g34

g34

Type Event Rate Type Event Rate
loc t1 µ1 syn g12 λ12

loc t2 µ2 syn g23 λ23

syn t3 µ3 syn g34 λ34

Figure A.7: Ad hoc wireless sensor network SAN model (4 nodes)

Generically, the model has local eventsti (i = 1 . . .N − 2) and a synchronizing eventtN−1

representing the end of the packets transmission. The synchronizing eventsg12, g23 and g34 are

activating the packets forwarding process. All events present constant rates. The product state space

X of this model is formed by22 × 3N−2 states. The partial reachability function can be defined

indicating that theSourceautomatonMN (1) is in the idle state:FR∗ = (stMN (1) == I(1));

A.6. MASTER-SLAVE PARALLEL ALGORITHM MODEL 93

A.6 Master-Slave Parallel Algorithmmodel

Figure A.8 refers to an evaluation of the master-slave parallel implementation of the Propagation

algorithm considering asynchronous communication [3], indicating to parallel program developers

what are the possible execution bottlenecks before the implementation. This SAN model contains

oneMasterautomaton, one hugeBuffer automaton, andN automataSlave(i), wherei = 1 . . . N .

TheMasterautomaton presents three states:Tx (transmitting),Rx (receiving) andITx (idle). The

Bufferautomaton hasK positions (states) plus an empty state0. TheSlave(i) automata presents three

states:I (idle), Pr (processing) andTx (transmitting).

Buffer

...

K − 1

0

K

Master

Rx

ITx

Tx

Pr

Tx

I

down

ci

ci

down

up

r1..rN

r1..rN

r1..rN

s1..sN

down

down

down
ci

pi

si

up

down
ri(1− π)

down

down

ri(π)

Type Event Rate
syn up λ
syn down µ
syn ci σ
syn si δ
syn ri α
loc pi γ

Slave(i=1..N)

c1..cN

c0

Figure A.8: Master-slave parallel algorithm SAN model

The model has synchronizing events related to theMasterandSlave(i) activities controlling also

the Buffer: up, down, ci and si. The Buffer is accessed by the slaves using synchronizing event

ri. TheMasteralso fills the buffer with the synchronizing eventci. The slaves start transmissions

with a local eventpi. This model can vary defining different numbers of slaves andsizes for the

buffer. The product state spaceX of this model is given by3N+1 × (K + 1) states. The partial

reachability function can be defined indicating that theMasterautomaton is in the idle state:FR∗ =

(st Master == ITx);

94 APPENDIX A. SAN EXAMPLES

95

Appendix B

Kronecker Algebra

Kronecker (tensor) algebra is an algebra defined on matriceswith a product operator and a sum

operator [2, 26]. The classical tensor algebra (CTA) consider that the matrices elements are constant

values. This appendix addresses properties and characteristics of these matrix operators (
⊗

and
⊕

).

B.1 Kronecker (tensor) product

In general, to define the tensor product of two matrices,Q(1) of dimensions (ρ1 × γ1) andQ(2) of

dimensions (ρ2 × γ2), we haveQ = (Q(1) ⊗Q(2)) as a matrix with dimensions (ρ1ρ2 × γ1γ2).

However, the tensorQ is a four dimension tensor, which can be flattened (i.e. put in a two-

dimension format) in a single matrixQ consisting ofρ1γ1 blocks each having dimensions (ρ2γ2).

To specify a particular element, it suffices to specify the block in which the element occurs and the

position within that block of the element under consideration. Thus, the matrixQ elementq36 (which

corresponds to tensorQ elementQ[1,0][1,2] is in the(1, 1) block and at position(0, 2) of that block and

has the numeric valueq(1)
11 ; q

(2)
02). Algebraically, the tensorQ elements are defined by:

q[ik][jl] = q
(1)
ij q

(2)
kl

Defining two matricesQ(1) andQ(2) as follows:

Q(1) =







q
(1)
00 q

(1)
01 q

(1)
02 q

(1)
03

q
(1)
10 q

(1)
11 q

(1)
12 q

(1)
13

q
(1)
20 q

(1)
21 q

(1)
22 q

(1)
23






Q(2) =

(

q
(2)
00 q

(2)
01

q
(2)
10 q

(2)
11

)

96 APPENDIX B. KRONECKER ALGEBRA

Thetensor productQ = Q(1) ⊗Q(2) is therefore given by

Q =







q
(1)
00 Q

(2) q
(1)
01 Q

(2) q
(1)
02 Q

(2) q
(1)
03 Q

(2)

q
(1)
10 Q

(2) q
(1)
11 Q

(2) q
(1)
12 Q

(2) q
(1)
13 Q

(2)

q
(1)
20 Q

(2) q
(1)
21 Q

(2) q
(1)
22 Q

(2) q
(1)
23 Q

(2)







A particularly important type of tensor product is the tensor product where one of the matrices is

an identity matrix of ordern (In). These particular tensor products are callednormal factorsand they

can be composed by matrices only on diagonal blocks:

I3 ⊗Q
(2) =























q
(2)
00 q

(2)
01 0 0 0 0

q
(2)
10 q

(2)
11 0 0 0 0

0 0 q
(2)
00 q

(2)
01 0 0

0 0 q
(2)
10 q

(2)
11 0 0

0 0 0 0 q
(2)
00 q

(2)
01

0 0 0 0 q
(2)
10 q

(2)
11























or diagonal matrices in every block:

Q(2) ⊗ I3 =























q
(2)
00 0 0 q

(2)
01 0 0

0 q
(2)
00 0 0 q

(2)
01 0

0 0 q
(2)
00 0 0 q

(2)
01

q
(2)
10 0 0 q

(2)
11 0 0

0 q
(2)
10 0 0 q

(2)
11 0

0 0 q
(2)
10 0 0 q

(2)
11























B.2 Kronecker (tensor) sum

Thetensor sumof two square matricesQ(1) andQ(2) is defined in terms of tensor products as the

sum of normal factors of matricesQ(1) andQ(2), i.e.:

Q(1) ⊕Q(2) = Q(1) ⊗ In
Q(2)

+ In
Q(1)
⊗Q(2)

wherenQ(1) andnQ(2) are respectively the orders of the matricesQ(1) andQ(2). Since both sides of the

usual matrix addition operation must have identical dimensions, it follows that tensor sum is defined

for square matrices only. The algebraic definition of the tensor sumQ = Q(1) ⊕Q(2) are defined as:

Q[ik][jl] = q
(1)
ij δkl + q

(2)
kl δij ,

B.3. CLASSICAL KRONECKER PROPERTIES 97

whereδij is the element of the rowi and the columnj of an identity matrix, obviously defined as:

δij =







1 if i = j

0 if i 6= j

B.3 Classical Kronecker properties

Some important properties of the classical tensor product and sum operations are [2, 26]:

• Associativity:

Q(1) ⊗ (Q(2) ⊗Q(3)) = (Q(1) ⊗Q(2))⊗Q(3) and

Q(1) ⊕ (Q(2) ⊕Q(3)) = (Q(1) ⊕Q(2))⊕Q(3)

• Distributivity over (ordinary matrix) addition:

(Q(1) +Q(2))⊗ (Q(3) +Q(4)) =

(Q(1) ⊗Q(3)) + (Q(2) ⊗Q(3)) + (Q(1) ⊗Q(4)) + (Q(2) ⊗Q(4))

• Compatibility with (ordinary matrix) multiplication:

(Q(1) ×Q(2))⊗ (Q(3) ×Q(4)) = (Q(1) ⊗Q(3))× (Q(2) ⊗Q(4))

• Compatibility over multiplication:

Q(1) ⊗Q(2) = (Q(1) ⊗ I
n

(2)
Q

)× (I
n

(1)
Q

⊗Q(2))

• Commutativity of normal factors∗:

(Q(1) ⊗ In
Q(2)

)× (In
Q(1)
⊗Q(2)) = (In

Q(1)
⊗Q(2))× (Q(1) ⊗ In

Q(2)
)

Due to the Associativity property, the normal factor definition may be generalized to a tensor

product of a suite of matrices, where all matrices but one areidentities. This very useful normal

factor definition can be applied to express more general forms of:

• Tensor sum definition as the sum of normal factors for all matrices:
Q(1) ⊕Q(2) ⊕Q(3) =

(

Q(1) ⊗ In
Q(2)
⊗ In

Q(3)

)

+
(

In
Q(1)
⊗Q(2) ⊗ In

Q(3)

)

+
(

In
Q(1)
⊗ In

Q(2)
⊗Q(3)

)

∗Although this property could be inferred from theCompatibility with (ordinary matrix) multiplication, it was defined
by Fernandes, Plateau and Stewart [37].

98 APPENDIX B. KRONECKER ALGEBRA

• Compatibility over multiplication property as the productof normal factors for all matrices:

Q(1) ⊗Q(2) ⊗Q(3) =
(

Q(1) ⊗ In
Q(2)
⊗ In

Q(3)

)

×
(

In
Q(1)
⊗Q(2) ⊗ In

Q(3)

)

×
(

In
Q(1)
⊗ In

Q(2)
⊗Q(3)

)

The classical tensor algebra principles are applied since the first definitions of Stochastic Au-

tomata Networks (SAN). A SAN model is described as a sum of tensor products, following an

algebraic formula calleddescriptor[55].

99

Appendix C

Notation

C.1 Stochastic Automata Networks

C.1.1 Basic Concepts and Definitions (Section 2.1)

✍ Let be

A(k) thekth stochastic automata in a network ofK automata;

s(i) theith local state in an automaton;

δ(k) the set of local states in an automaton;

nk number of local states in an automaton,i.e. the cardinality ofδ(k);

ep an event ofξ;

λp the rate associated to the occurrence of an eventep;

ξ a set ofP events,i.e.all events in the network of automata;

X the model state space; for structured models we denote it theproduct state space,

whose the cardinality is given by
∏K

k=1 nk;

XR the model reachable state space, also denoted byXR
s̃0

, whereXR ⊆ X ;

s̃ a global state inside the state spaceX , i.e.a composition of local states of automata

wheres̃ = {s(1); . . . ; s(K)};

FR the reachability function of a model;

100 APPENDIX C. NOTATION

C.1.2 Graphical Representation and Primitives (Section 2.2)

✍ Let be

αi a constant rate associated to the occurrence of an eventep ∈ ξ;

πi a probability associated to the occurrence of an eventep ∈ ξ;

fi a functional rate associated to the occurrence of an eventep ∈ ξ;

FR∗ a partial reachability function of a model;

C.1.3 Structural Representation (Section 2.3.1)

✍ Let be

Q(k) thekth matrix in a tensor product ofK matrices;

Q(k)
j thekth matrix in the tensor productj of K matrices;

Q(k)
l thekth matrix containing the local transitions rates and the diagonal adjustment in

a tensor suml of K matrices;

Q(k)
ep

+ thekth matrix containing the synchronizing event rate ofep in a tensor productep
+

of K matrices;

Q(k)
ep

− thekth matrix containing the diagonal adjustment for the synchronizing eventep

in a tensor productep
− of K matrices;

IQ(k) an identity matrix of ordernk, i.e.with the same dimension of the matrixQ(k);

e+ a positive tensor product terme+ =
⊗K

k=1Q
(k)

e+
p

;

e− a negative (diagonal adjustment) tensor product terme− =
⊗K

k=1Q
(k)

e−p
;

E the number of synchronizing events in the model;

C.2. KRONECKER-BASED DESCRIPTOR SOLUTION 101

C.1.4 Structural Representation (Section 2.3.2)

✍ Let be

s̃ a global state insideXR;

r̃ a global state insideXR;

Φ a transition function associated to events changing globalstates;

Φ(s̃, ep) = r̃ the functionΦ operation with a global statẽs and an eventep as input, and a global

stater̃ as output;

s̃0 initial global state of a trajectory generated byΦ successive applications consider-

ing a sequence of eventse = {ep}p∈N ;

̟(ep) function to obtain the automata related to an eventep;

αp rate of an eventep ∈ ξ;

C.2 Kronecker-based Descriptor Solution

C.2.1 Vector-Descriptor Product (Section 3.1)

✍ Let be

υ a probability vector of dimension given by the cardinality of X ;

Q adescriptorwith a Kronecker representation;

⊗K

k=1Q
(k)
j a tensor product term composed of matricesQ(k)

j ;

C.2.2 Sparsesolution techniques (Section 3.1.1)

✍ Let be

T a tensor product term ofK matricesQ(k). It can be also seen as a huge matrix of

dimension
∏K

k=1 nk;

nk dimension of the matrixQ(k);

102 APPENDIX C. NOTATION

nzk number of nonzero elements of the matrixQ(k);

θ(1...K) the set of all possible combinations of nonzero elements of the K matrices in a

tensor product term;

a the scalar element generated through the combination of nonzero elements on a

tensor product;

nrightk the size of the state space corresponding to all matrices after thekth matrix of the

tensor product (special casenrightK = 1);

nleftk the size of the state space corresponding to all matrices before thekth matrix of

the tensor product(special casenleft1 = 1);

π a probability vector of dimension given by the cardinality of X . In the numerical

methods is used as the stationary probability vector;

C.2.3 The memory-efficientShuffle algorithm (Section 3.1.2)

✍ Let be

T a tensor product term ofK matricesQ(k). It can be also the tensor product term

decomposed in normal factors (see Section B.1);

Inrightk an identity matrix with dimension related to the size of the state space correspond-

ing to all matrices at right of a given matrixQ(k) in the tensor product;

Inleftk an identity matrix with dimension related to the size of the state space correspond-

ing to all matrices at left of a given matrixQ(k) in the tensor product;

zin an auxiliary probability vector;

zout an auxiliary probability vector;

υ a probability vector of dimension given by the cardinality of X ;

π a probability vector of dimension given by the cardinality of X . In the numerical

methods is used as the stationary probability vector;

C.2. KRONECKER-BASED DESCRIPTOR SOLUTION 103

C.2.4 The Hybrid Split Algorithm (Section 3.2)

✍ Let be

ik the correspondent line in the matrixk;

jk the correspondent column in the matrixk;

θ(1...K) the set of all possible combinations of nonzero elements of the K matrices in a

tensor product term;

T a tensor product term ofK matricesQ(k). It can be also the tensor product term de-

composed into an ordinary sum of matrices composed by one single nonzero element

insideθ(1...K);

q̂
(k)
(i,j) a matrix of ordernk in which the element in rowi and columnj is q

(k)
i,j ;

q̂(i1,...,iK−1,j1,...,jK) the matrix of order
∏K

i=1 ni composed by only one nonzero element, which is

in the positioni1, . . . , iK , j1, . . . , jK ;

σ a cut-parameterof a given tensor product term. It is a division point for splitting

a tensor product term in two separated parts (σ = 1 . . .K);

nzi number of nonzero elements of the matrixQ(i);

∏σ

i=1 nzi total number of AUNF for a givencut-parameterσ;

a a scalar element generated through the combination of nonzero elements of matri-

ces in a tensor product term. It is the scalar inside an additive unitary normal factor

(AUNF);

nrightσ the size of the state space corresponding to all matrices afterσ in a tensor product

term;

nleftσ the size of the state space corresponding to all matrices beforeσ in a tensor product

term;

υin an auxiliary probability vector of dimension given bynrightσ;

υi an auxiliary probability vector;

υ a probability vector of dimension given by the cardinality of X ;

104 APPENDIX C. NOTATION

π a probability vector of dimension given by the cardinality of X . In the numerical

methods is used as the stationary probability vector;

C.2.5 Practical contributions ofSplit (Section 3.2.2)

✍ Let be

T a tensor product term which hasσ = 0 . . .K as possibles division points;

ν number of samples or execution times collected from a given tensor product term,

for each possiblecut-parameterσ;

tσ execution timet related to thecut-parameterσ of a tensor product term;

σT the assignedcut-parameterσ for a tensor product termT ;

C.3 Event-based Descriptor Solution

C.3.1 Forward Simulation (Section 4.1)

✍ Let be

s̃ a state in a system;

s̃n thenth observed state of the system;

XR the set of states considered in the system;

Φ(s̃, ei) = r̃ the functionΦ operation with a statẽs and an eventei as input, and a statẽr as

output;

s̃0 an initial state of a trajectory generated byΦ successive applications considering

a sequence of eventse = {ei}i∈N ;

τ ∗ thewarm-upperiod,transientperiod orburn-in time;

π the stationary distribution;

ν number of samples or states generated;

Cs the simulation complexity cost;

cΦ the complexity cost related to the functionΦ;

C.3. EVENT-BASED DESCRIPTOR SOLUTION 105

C.3.2 Backward Coupling Simulation (Section 4.2)

✍ Let be

s̃ a state in a system;

XR the set of states considered in the system;

τ the coupling time;

Eτ the expected coupling time;

−t a given time in backward steps;

Cs the simulation complexity cost;

cΦ the complexity cost related to the functionΦ;

C.3.3 SAN perfect sampling (Section 4.2.1)

✍ Let be

XR the set of reachable states in the model;

s̃ a global state in a model;

e an event generated;

Φ(s̃, e) the transition functionΦ operating with a statẽs and an evente;

φ(s(k), e) a transition function application in the local states(k) of thekth automaton operat-

ing an evente;

ω a state vector to update the trajectories afterΦ applications, initially filled with the

states inXR;

ω̃ a backup of the state vectorω;

106 APPENDIX C. NOTATION

C.3.4 Monotone Backward Coupling Simulation (Section 4.3 and 4.3.1)

✍ Let be

s̃max a maximal global state;

s̃min a minimal global state;

XM the set of extremal states of the model,i.e. a set composed by maximal and

minimal states in a partially orderedX ;

Cs the simulation complexity cost;

cΦ the complexity cost related to the functionΦ;

Eτ the expected coupling time;

E an array that stores a backward sequence of events;

C.3.5 Extremal global states extraction (Section 4.3.2)

✍ Let be

M a list of accessed states in theXR, initially storing the statẽsmin;

M [i] the ith position in the listM of accessed states;

nState a new state generated;

cState the current state;

ep an event inξ to be fired over the current observed state cState;

Φ(cState ,ep) the transition functionΦ operating with the current state cState and an eventep;

