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Introduction

Aim of this lecture

Discuss about experiments in computer science
Why experiencing ?

Advantages and drawbacks of experiments

Experiments = Modelling

Scientific method

Interactive course : discussion about your own experiments
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Why experiments ?

Design of architectures, softwares

System debugging (!!)

Validation of a proposition

Qualification of a system

Dimensioning and tuning

Comparison of systems

Many purposes⇒ different methodologies
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Experiments fundamentals

Scientific Method

Falsifiability is the logical possibility that an assertion can be shown false by
an observation or a physical experiment. [Popper 1930]

Modelling comes before experimenting

Modelling principles [J-Y LB]

(Occam:) if two models explain some observations equally well, the simplest one
is preferable

(Dijkstra:) It is when you cannot remove a single piece that your design is
complete.

(Common Sense:) Use the adequate level of sophistication.
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Design of experiments (introduction)

Formulation of the question

Give explicitly the question (specify the context of experimentation)
Identify parameters (controlled and uncontrolled)

Identify factors (set levels)

Specify the response of the experiment

Minimize the number of experiments for a maximum of accuracy
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Experimental Framework

EVALUATION

RESULTS

Experimentation
control

Output analysis

generator

Environment

Workload

description

Experimentation Environment

System adaptation

algorithms,
automata,
functions,...

System prototype

SYSTEM
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Observation technique

Integrated environment : Benchmarks

Qualification

Comparison

Standardization

No interpretation

Level of observation

Instruction level (Papi)

System level (OS probes)

Middleware level (JVMTI)

Application level (traced libraries, MPItrace)

User level (own instrumentation point)

Build a semantic on events

9 / 62Performance Evaluation



Experimentation Analysis of Experiments Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Observation technique

Integrated environment : Benchmarks

Qualification

Comparison

Standardization

No interpretation

Level of observation

Instruction level (Papi)

System level (OS probes)

Middleware level (JVMTI)

Application level (traced libraries, MPItrace)

User level (own instrumentation point)

Build a semantic on events

9 / 62Performance Evaluation



Experimentation Analysis of Experiments Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Qualification of experiments

Qualification of measurement tools

Correctness

Accuracy

Fidelity

Coherence (set of tools)

Qualification on the sequence of experiments

Reproducibility

Independence from the environment

Independence one with each others
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Control of experiments (1)
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"unifderiv.don"

Tendency analysis

non homogeneous experiment
⇒ model the evolution of experiment
estimate and compensate tendency
explain why
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Control of experiments (2)
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Periodicity analysis

periodic evolution of the experimental environment ?
⇒ model the evolution of experiment
Fourier analysis of the sample
Integration on time (sliding window analysis) Danger : size of the window
Wavelet analysis
explain why
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Control of experiments (3)
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Non significant values

extraordinary behaviour of experimental environment
rare events with different orders of magnitude
⇒ threshold by value
Danger : choice of the threshold : indicate the rejection rate
⇒ threshold by quantile
Danger : choice of the percentage : indicate the rejection value
explain why
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Control of experiments (4)
Threshold value : 10
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Control of experiments (5)
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Control of experiments (5bis)

Zooming
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Autocorrelation

Danger time correlation among samples
experiments impact on experiments
⇒ stationarity analysis
autocorrelation estimation (ARMA)
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Experimental results

Deterministic (controlled error non significant (white noise))

Statistic (the system is non deterministic)

Sample analysis

Identification of the response set

Structure of the response set (measure)
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Distribution analysis

Summarize data in a histogram

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25

Shape analysis

unimodal / multimodal

variability

symmetric / dissymmetric (skewness)

flatness (kurtosis)

=⇒ Central tendency analysis
=⇒ Variability analysis around the central tendency
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Mode value

0
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Mode

Categorical data

Most frequent value

highly unstable value

for continuous value distribution depends on the histogram step

interpretation depends on the flatness of the histogram

=⇒ Use it carefully
=⇒ Predictor function
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Median value

Median

Ordered data

Split the sample in two equal parts∑
i6Median

fi 6
1
2

6
∑

i6Median+1

fi .

more stable value

does not depends on the histogram step

difficult to combine (two samples)

=⇒ Randomized algorithms
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Mean value

Mean

Vector space

Average of values

Mean =
1

Sample_Size

∑
xi =

∑
x

x .fx .

stable value

does not depends on the histogram step

easy to combine (two samples⇒ weighted mean)

=⇒ Additive problems (cost, durations, length,...)
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Central tendency

Moyenne 4.33Médiane 3

Mode 2
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Complementarity

Valid if the sample is "Well-formed"

Semantic of the observation

Goal of analysis

=⇒ Additive problems (cost, durations, length,...)
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Central tendency (2)

Summary of Means

Avoid means if possible
Loses information

Arithmetic mean
When sum of raw values has physical meaning
Use for summarizing times (not rates)

Harmonic mean
Use for summarizing rates (not times)

Geometric mean
Not useful when time is best measure of perf
Useful when multiplicative effects are in play
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Computational aspects

Mode : computation of the histogram steps, then computation of max O(n)
“off-line”

Median : sort the sample O(nlog(n)) or O(n) (subtile algorithm) “off-line”

Mean : sum values O(n) “on-line” computation

Is the central tendency significant ?
⇒ Explain variability.
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Variability

Categorical data (finite set)

fi : empirical frequency of element i
Empirical entropy

H(f ) =
∑

i

fi log fi .

Measure the empirical distance with the uniform distribution
H(f ) > 0

H(f ) = 0 iff the observations are reduced to a unique value

H(f ) is maximal for the uniform distribution
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Variability (2)

Ordered data

Quantiles : quartiles, deciles, etc
Sort the sample :

(x1, x2, · · · , xn) −→ (x(1), x(2), · · · , x(n));

Q1 = x(n/4); Q2 = x(n/2) = Median; Q3 = x(3n/4).

For deciles

di = argmaxi{
∑
j6i

fj 6
i

10
}.

Utilization as quantile/quantile plots to compare distributions
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Variability (3)

Vectorial data

Quadratic error for the mean

Var(X ) =
1
n

n∑
1

(xi − x̄n)2.

Properties:

Var(X ) > 0;

Var(X ) = x2 − (x̄)2, où x2 =
1
n

n∑
i=1

x2
i .

Var(X + cste) = Var(X );

Var(λX ) = λ2Var(X ).
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A simple example

Maximum value
int maximum (int * T, int n)
{T array of distinct integers,}
{n Size of T}
{
int max,i;
max= int_minimal_value;
for (i=0; i < n; i++) do

if (T[i] > max)
{
max = T[i];
Process(max); {Cost of the
algorithm}
}

end for
return(max)
}

Cost of the algorithm

Number of calls to Process
minimum : 1
example : T=[n,1,2,...,n-1]
min cases : (n − 1)!

maximum : n
example : T=[1,2,...,n]
max case : 1

Bounded by a linear function O(n)

But on average ?
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A simple example (2)

Theoretical complexity

On average the complexity of the algorithm is : ....

Build the program

Put probes on the program

Questions :

1 Given n = 1000 does the observed cost follows the theoretical value ?
2 Does the average cost follows the theoretical complexity for all n ?
3 Does the average execution time linearly depends on the average cost ?
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Modelling

Basic assumptions :
Data are considered as random variables

Mutually independent

Same probability distribution

Check Check Check
The distribution is given by

Probability density function (pdf) (asymptotic histogram)

fX (x) = P(x 6 X 6 x + dx)/dx = F ′
X (x).

Cumulative distribution function

FX (x) = P(X 6 x);

Moments : Mn = EX n, Variance
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Average convergence

Law of large numbers

Let {Xn}n∈N be a iid random sequence with finite variance, then

lim
n→+∞

1
n

n∑
i=1

Xi = EX , almost surely an in L1.

→ convergence of empirical frequencies
→ for any experience we get the same result
→ fundamental theorem of probability theory

Notation : X n =
1
n

n∑
i=1

Xi .
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Law of errors

Central limit theorem (CLT

Let {Xn}n∈N be a iid random sequence with finite variance σ2, then

lim
n→+∞

√
n
σ

(
X n − EX

)
L
= N (0, 1).

→ error law (Gaussian law, Normal distribution, Bell curve,...)
→ Normalized mean = 0, variance = 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

−4 −3 −2 −1 0 1 2 3 4

Distribution

P(X ∈ [−1, 1]) = 0.68;

P(X ∈ [−2, 2]) = 0.95;

P(X ∈ [−3, 3]) > 0.99.
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Confidence intervals

Confidence level α compute φα

P(X ∈ [−φα, φα]) = α

For n sufficiently large (n > 50)

P
(

[X n −
φασ√

n
,X n +

φασ√
n

] 3 EX
)

= α.

Valeur réelle (inconnue)

Valeur estimée
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Confidence intervals (2)

Need an estimator of the variance

σ̂2
n =

1
n − 1

n∑
i=1

(
Xi − X n

)2
.

Danger n too small→ with a normal hypothesis take Student statistic
Three step method

1 In a first set of experiments check that the hypothesis is valid
2 Estimate roughly the variance
3 Estimate the mean and control the number of experiment by a confidence interval
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Architecture comparison

Performance characterization

Distributed protocol (consensus)
List of benchmarks (with some parameters)

Several types of architecture

Problem: decide which architecture is the best one
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Comparison of results

Decision problem

Two hypothesis :
- H0 : (null hypothesis) A is equivalent to B
- H1 : (alternative hypothesis) A is better than B
Decision error:
type 1 error : reject H0 when H0 is true
type 2 error : accept H0 when H1 is true.

According the observation find the decision function minimizing some risk
criteria
Rejection region : if (x1, · · · , xn) ∈ C reject H0

Danger : errors are not symmetric
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Testing Normal Distributed Variables

Observations : N (m0, σ
2
0)) under hypothesis H0 and N (m1, σ

2
1)) under

hypothesis H1 with m1 > m0

Rejection region C =

{
1
n

(x1 + · · ·+ xn) > K
}
.

Computation of the rejection region type 1 error : choose α

α = PH0 (
1
n

(X1 + · · ·+ Xn) > Kα)

= PH0

(
(

√
n
σ

(
1
n

(X1 + · · ·+ Xn)−m0) >

√
n
σ

(Kα −m0)

)
= P(Y >

√
n
σ

(Kα −m0)) with Y ∼ N (0, 1).

Φα =

√
n
σ

(Kα −m0) then Kα = m0 +
σ√
n

Φα.
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Numerical example

α = 0.05 (a priori confidence)
Φα = 1.64 (read on the table of the Normal distribution)

Under H0, m0 = 6 and σ0 = 2
Sample size n = 100

Kα = 6 +
2

10
1.64 = 6.33.

If 1
n (x1 + · · ·+ xn) > 6.33 reject H0 (accept H1), else accept H0

Type 2 error: Depends on the alternative hypothesis

m1 = m′ (known) σ1 known

β = PH1 (
1
n

(X1 + · · ·+ Xn) 6 Kα) = P(Y 6

√
n

σ1
(Kα −m1)).

m1 > m0 or m1 6= m0 : cannot compute
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Application example (1)

Test if algorithm 1 is better than algorithm 0
Generate n random inputs i1, · · · , in
Compute A0(ik ) A1(ik )

xk = A1(ik )− A0(ik )

Reject the hypothesis m = 0 if 1
n (x1 + · · ·+ xn) > Kα
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Application example (2)

Test if system 1 is better than system 0
Generate n0 random inputs i1, · · · , in0

Compute S0(ik )

Generate n1 random inputs i1, · · · , in1

ComputeS1(ik )

Compute the mean difference

Compute the standard deviation of the difference

Reject the hypothesis m = 0 if x̄1 − x̄0 > Kα
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Experiment with one factor

Evaluate complexity as a function of the size of data
Response time as function of the message sizes
Load of a web server function of the number of connexion
etc

Observations

Couple (x , y) paired observations
x predictor variable (known without error or noise)

y response variable
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Methodology

1 Plot data and analyse separately x and y (histogram, central tendency,...)
2 Plot the cloud of points (x , y)

3 Analyse the shape of the cloud
4 Propose a dependence function (fix the parameters y = ax + b, y = beax ,...)
5 Give the semantic of the function
6 Give an error criteria with its semantic
7 Compute the parameters minimizing a criteria
8 Compute the confidence intervals on parameters (precision of the prediction)
9 Explain the unpredicted variance (ANOVA)

10 Analyse the result
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Linear regression

Theoretical model

(X ,Y ) follows a correlation model

Y = αX + β + ε;

with ε a white noise ε ∼ N (0, .)

Objective function

Find estimator (â, b̂) minimizing the SSE (sum of square errors)
n∑

i=1

(yi − axi − b)2 =
n∑

i=1

e2
i .

ei = yi − axi − b is the error prediction when the coefficients are a and b
(â, b̂) is the estimator of (α, β) minimizing SSE
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Coefficients estimation

Statistics

Empirical mean of x : x = 1
n
∑n

i=1 xi .

Empirical mean of y : y = 1
n
∑n

i=1 yi .

Empirical variance of x : S2
X = 1

n
∑n

i=1(xi − x)2 = x2 − x2.

Empirical variance of y : S2
Y = 1

n
∑n

i=1(yi − y)2 = y2 − y2.

Empirical Covariance of (x , y): SXY = 1
n
∑n

i=1(xi − x)(yi − y) = x · y − x · y .

Estimators

yi =
SXY

S2
X

(xi − x) + y

â =
SXY

S2
X

and b̂ = y − x · SXY

S2
X

= y − â · x
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Coefficients estimation

Statistics

Empirical mean of x : x = 1
n
∑n

i=1 xi .

Empirical mean of y : y = 1
n
∑n

i=1 yi .

Empirical variance of x : S2
X = 1

n
∑n

i=1(xi − x)2 = x2 − x2.

Empirical variance of y : S2
Y = 1

n
∑n

i=1(yi − y)2 = y2 − y2.

Empirical Covariance of (x , y): SXY = 1
n
∑n

i=1(xi − x)(yi − y) = x · y − x · y .

Estimators

yi =
SXY

S2
X

(xi − x) + y

â =
SXY

S2
X

and b̂ = y − x · SXY

S2
X

= y − â · x
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Error analysis
Total error :

SST =
n∑

i=1

(yi − y)2 =
n∑

i=1

y2
i − ny2 = SSY − SS0.

Prediction error:

SSE =
n∑

i=1

(yi − âxi − b̂)2 = n(y2 − b̂y − âx · y

Residual error (that has not been predicted): SSR = SST − SSE
Determination coefficient:

R2 =
SSR
SST

Prediction quality

R2 = 1 perfect fit

R2 = 0 no fit

Usually we accept the model when R2 > 0.8
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Planning experiments

One factor :
⇒ estimate residuals

Check homoskedasticity of data (homogeneous variance)

Explain trends

Replicate sample with x to reduce variance

Optimize the experiment such that for each estimation we get the same
variance
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Outline
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Time dimensioning problems

Time out estimation

Distributed protocol (consensus)
Crash of processes

Variable communications (wireless network)

Failure detection mechanism (parametrized)

Factors

Crash of processes

Variable communications (wireless network)

Failure detection mechanism (parametrized)

⇒ Evaluation of the latency
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Latency estimation

PDA→ PDA communication (ping)
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Distribution of latency

saving enery disabled

saving energy enabled
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Factors Analysis

Factors (a priori)

Distance

Number of obstacles

Number of nodes

Network load

Sender type

Receiver type

Saving energy

Tagushi analysis
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Factors Analysis

Significant factors

Distance

Number of obstacles

Number of nodes

Network load (2)

Sender type (4)

Receiver type (1)

Saving energy (3)

Tagushi analysis

54 / 62Performance Evaluation



Experimentation Analysis of Experiments Comparison of Systems One Factor Factor Selection Trace Analysis Conclusion

Time out estimation

Laptop→ PDA
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Trace analysis example

Presentation of the paper available on http://fta.inria.fr

Mining for Statistical Models of Availability in
Large-Scale Distributed Systems:

An Empirical Study of SETI@home

Bahman Javadi1, Derrick Kondo1, Jean-Marc Vincent1,2,
David P. Anderson3

1Laboratoire d’Informatique de Grenoble, MESCAL team, INRIA, France
2University of Joseph Fourier, France

3UC Berkeley, USA

IEEE/ACM International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Systems

(MASCOTS 2009)

B. Javadi (INRIA) Statistical Models of Availability MASCOTS 2009 1 / 34
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Synthesis : principles

1 Formulate the hypothesis
2 Design the experiment to validate the hypothesis
3 Check the validity of the experience
4 Analyse the experiments to validate or invalidate the hypothesis
5 Report the arguments in a convincing form
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Synthesis : Steps for a Performance Evaluation Study
[Jain]

1 State the goals of the study and define system boundaries.
2 List system services and possible outcomes.
3 Select performance metrics.
4 List system and workload parameters
5 Select factors and their values.
6 Select evaluation techniques.
7 Select the workload.
8 Design the experiments.
9 Analyze and interpret the data.

10 Present the results. Start over, if necessary.
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Common mistakes in experimentation [Jain]

1 The variation due to experimental error is ignored
2 Important parameters are not controlled
3 Simple one-factor-at-a-time designs are used
4 Interactions are ignored
5 Too many experiments are conducted
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