Performance Evaluation

Visualization for Performance Debugging of Large-Scale Parallel Applications

Jean-Marc Vincent12

¹Laboratoire LIG, projet Inria-Mescal UniversitéJoseph Fourier Jean-Marc.Vincent@imag.fr ²LICIA Laboratoire International de Calcul Intensif et d'Informatique Ambiante

- SBAC-PAD 2009 Tutorial - (extended)

Co-authors : Lucas M. Schnorr (CNRS), Guillaume Huard (UJF), Benhur Stein (UFSM) Arnaud Legrand (last part)

2011 May 27

Outline

- Introduction
 - Motivations
 - Examples
- Trace Fundamentals
- Performance Analysis
- Applications
- Synthesis

Motivations

Scientific context

- Complex parallel/distributed programs
- Potentially large size parallel applications.
- Executing on large size parallel systems:
 - Distributed systems
 - Clusters and Grids
 - Desktop grids, P2P systems...

Keypoints

- Distributed heterogeneous resources
- Dynamicity of the architecture
- Scalability (huge amount of data)

General Objective

Help users find performance errors:

- Visualization of parallelism, identify synchronization overheads,
- Usage of resources, identify bottlenecks,
- Behavior analysis method.

Based on

- Execution model : user events.
- Infrastructure model : Measurement environment
- Visualisation model : graphical objects.

General Objective

Help users find performance errors:

- Visualization of parallelism, identify synchronization overheads,
- Usage of resources, identify bottlenecks,
- Behavior analysis method.

Based on:

- Execution model : user events,
- Infrastructure model: Measurement environment
- Visualisation model : graphical objects.

Visualization of parallel program execution

Who?

Program designer, Program certifier, · · ·

· · · Parallel programs vendors

Why?

- Program debugging.
- Quantitative debugging (performance evaluation),
- Dimensionning and performance tuning

How?

- Graphical representation of the parallel execution
- Interactive representation (exploration
 - zoom in and out on time, infrastructure, on objects
 - compute statistics

Visualization of parallel program execution

Who?

Program designer, Program certifier, ...

· · · Parallel programs vendors

Why?

- Program debugging,
- Quantitative debugging (performance evaluation),
- Dimensionning and performance tuning

How ?

- Graphical representation of the parallel execution
- Interactive representation (exploration)
 - zoom in and out on time, infrastructure, on objects
 - compute statistics

Visualization of parallel program execution

Who?

Program designer, Program certifier, ...

· · · Parallel programs vendors

Why?

- Program debugging,
- Quantitative debugging (performance evaluation),
- Dimensionning and performance tuning

How?

- Graphical representation of the parallel execution
- Interactive representation (exploration)
 - zoom in and out on time, infrastructure, on objects
 - compute statistics

Methodology

Execution model

- Abstraction of the parallel execution : state / event model
- Observability of states / Practical interest of states
- Quality of observation (interaction tracer/application)

Environment model

- Structured set of resources (architecture)
- Model of time: Datation model
- ⇒ Manipulation language of resources, states and events

Collaboration (a not so short story)

UFSM, UFRGS, U. of Grenoble, INRIA

Scientific	prob	lems												
Trace of parallel algorithms Multithreaded applications							Cluster control Ressource analysis							
														•
							c network tuning				Multi-agent systems			
Softwares	3													
TAPE-PVM PAJE							TRIVA MAS-PAJE							
Industria	l proj	ects			ST	Microe	lectron	ics						
		France-Telecom						Bull (middleware)						
96 97 9	98	99	00	01	02	03	04	05	06	07	08	09		

Introduction - Existing Tools/Techniques

- Statistical Techniques
 - ParaGraph (1990) bar charts, utilization Count
 - Pablo (1993) bar charts + 3D scatter plot
 - Paradyn (1995) histograms
- Behavioral Techniques
 - ParaGraph (1990) Gantt-chart
 - Vampir (1996) time-line system view
 - Jumpshot (1999), Pajé (2000) space-time
 - Virtue (1999) virtual reality to performance analysis
 - Kojak, ParaProf (2003) Call Graph
- Structural Techniques
 - ParaGraph (1990) network display / hypercube
 - Cray Apprentice (2007) tree view of imbalances

Main difficulty

Large scale systems

- Large number of objects
- Complexity of views
- Level of abstraction
- Dynamicity of the observed infrastructure

Multithreaded Applications (1999)

Distributed Middleware

Distributed Middleware (2)

Distributed Middleware (3)

Distributed Middleware (4)

Distributed Middleware (5)

Consensus in ad-hoc networks

Consensus in ad-hoc networks

Coordinator Crashes

Multi-Agent Systems

Outline

- Introduction
- Trace Fundamentals
 - Fundamentals
 - Pajé
- Performance Analysis
- Applications
- Synthesis

Performance Analysis

- Collect performance data
- Process collected data
- Visualize resulting data

Performance data collection

- Sampling
 let the system run, and from time to time, take a look at the state of the system
- Event-driven get informed of interesting changes in system state

Performance data collection

Sampling

let the system run, and from time to time, take a look at the state of the system

- Event-driven get informed of interesting changes in system state
 - Counting count number of times event happened
 - Timing accumulate time passed between pairs of events
 - Tracing register events for later processing usually also registers sampling data

Some tracing problems

- Clock synchronization
- Timer resolution
- Intrusion time / memory / I-O / influence in program behaviour
- Observability level of abstraction
- Matching independently captured events different machines or abstraction levels
- Amount of data
- Bufferization
- Trace file format

Trace data processing

- Merge / reorder
- Complement information
- Filter
- Reduce
- Prepare data for visualization

Pajé

- Generalize visualization tool, remove semantics
- Trace file contains
 - hierarchy of containers
 - each can contain combination of containers and visualizable entities
- Entities can contain extra data, used for filtering and reducing; user knows semantics
- Tool keeps original data and processed data, user chooses views

Pajé

Possible entity types

- event to represent events that happen at a certain instant
- state to represent that a given container was in a certain state during a certain period
 of time
- link to represent a relation between two containers that started at a certain instant and finished at a possibly different instant
- variable used to represent the evolution in time of a certain value associated to a container

Outline

- Introduction
- Trace Fundamentals
- Performance Analysis
 - Three-Dimensional Model
 - Temporal & Spatial Aggregation Model
- 4 Applications
- Synthesis

Outline

- Introduction
 - Motivations
 - Examples
- Trace Fundamentals
 - Fundamentals
 - Pajé
- Performance Analysis
 - Three-Dimensional Mode
 - Temporal & Spatial Aggregation Model
- 4 Applications
 - Exploiting Locality
 - SuperComputing'11 demos
 - Aggregation
 - Trace Diff
- Synthesis
 - Conclusion
 - Research directions

Performance Analysis

Analysis considering network topology

- 2 Large-scale analysis
 - How to analyze thousands of processes?
 - Temporal & Spatial Aggregation
 - Treemap representation
- Execution Platform: Grid'5000
 - Distributed resources in France
 - Highly hierarchical network organization
 - Limited heterogeneity clusters

3D Model - Basics

- Structural Representation 2D
- ◆ Vertical dimension is time 1D
 - Objects' Behavior Evolution
 - States and Links
- Interaction Techniques

3D Model - Visualization

- How objects are represented in 3D
- Rendering the Network Topology + Comm. Pattern

3D Model - Visualization

- How objects are represented in 3D
- Rendering the Network Topology + Comm. Pattern

3D Visualization - Communication Patterns

Differences from the space-time diagram

- Fibonacci Application
- 26 processes, two sites, two clusters
- Lines represent steal requests
- Different number of communication between clusters
 - ullet beggining o big tasks, less communication
 - end → smaller tasks, more communication

- 60 processes, two sites, three clusters
- Total execution time of a KAAPI fibonacci application
- Observe number of requests in time

- 200 processes, 200 machines, two sites, five clusters
- Annotated manually with bandwidth limitations

• 2900 processes, four sites, thirteen clusters

Outline

- Introduction
 - Motivations
 - Examples
- Trace Fundamentals
 - Fundamentals
 - Pajé
- Performance Analysis
 - Three-Dimensional Model
 - Temporal & Spatial Aggregation Model
- 4 Applications
 - Exploiting Locality
 - SuperComputing'11 demos
 - Aggregation
 - Trace Diff
- Synthesis
 - Conclusion
 - Research directions

Temporal & Spatial Aggregation Model

- Enable large-scale trace analysis
- Visualy compare entities behavior
- Detect global and local characteristics

Steps of the Model

- Hierarchical Monitoring Data
- Temporal Aggregation
- Spatial Aggregation
- Treemap representation

Temporal Aggregation - Basics

Objective: annotate leaves of the hierarchy

- Time-slice definition
- Summary of trace events on the interval
 - States, Variables, Links, Events, ...

Temporal Aggregation - Example

Temporal Aggregation - Example

(Blocked, Executing)

- Explore the hierarchical organization
- Create aggregated values at intermediary levels

- add, subtract, multiply, divide, max, min, median, ...
- Depends on
 - what type of value the leaves have
 - the desired statistical result

- Explore the hierarchical organization
- Create aggregated values at intermediary levels

- add, subtract, multiply, divide, max, min, median, ...
- Depends on
 - what type of value the leaves have
 - the desired statistical result

- Explore the hierarchical organization
- Create aggregated values at intermediary levels

- add, subtract, multiply, divide, max, min, median, ...
- Depends on
 - what type of value the leaves have
 - the desired statistical result

- Explore the hierarchical organization
- Create aggregated values at intermediary levels

- add, subtract, multiply, divide, max, min, median, ...
- Depends on
 - what type of value the leaves have
 - the desired statistical result

Visualization of the Approach - Treemaps

- Scalable hierarchical representation
- Top-down drawing algorithm
- For a given node, split screen space among children

Original algorithm has several evolutions

- Squarified treemap is used here
- Keeps rectangles as close to squares as possible

Treemap Visualization - Description

- Interaction Techniques: mouse wheel, mouse over
- Detailed information is available in the status bar

Treemap Visualization - KAAPI Trace

Run and RSteal states, 2900 processes, 310 processors

Treemap Visualization - Large-Scale

- Synthetic trace with 100 thousand processes
- Two states, four-level hierarchy

Treemap Visualization - KAAPI Trace

- 400 processes, 50 machines, one site
- 8 processes per machine
 - Overload of some machines with 2 CPUs
 - Unusual amount of time in Steal state
- Machines with 4 CPUs show normal behavior

Treemap Visualization - KAAPI Trace

- 188 processes, 188 machines, five sites
- Different behavior at Porto Alegre
- Probably due to the interconnection
 - Latency for Grid'5000 in France: ~10 ms
 - Latency between Porto Alegre and France: ~300 ms
- More time spent in work stealing functions

Treemap Visualization - MPI Trace

- Traces from the EP application NAS Benchmark
- 32 processes time spent in each MPI operation
- Init and Barrier views indicate a linear implementation

Outline

- Introduction
- Trace Fundamentals
- Performance Analysis
- 4 Applications
 - Exploiting Locality
 - SuperComputing'11 demos
 - Aggregation
 - Trace Diff
- 5 Synthesis

Distributed resource sharing based on Lagrangian

Setup

- 5 applications (with a specific color each) try to fairly share communication and computation resources.
- Different requirements in term of communication/computation
- Different origins
- Each resource adapts its price based on usage.
- Each application adapts its usage based on the price it has to pay.

Difficulties

- Spatial and temporal evolution
- Lots of variables/informations to visualize
- Scale issues (small/large values)

Distributed resource sharing based on Lagrangian

Setup

Difficulties

- Spatial and temporal evolution
- Lots of variables/informations to visualize
- Scale issues (small/large values)

Distributed resource sharing based on Lagrangian

Difficulties

- Spatial and temporal evolution
- Lots of variables/informations to visualize
- Scale issues (small/large values)

Studying MPI Applications with SimGrid.

NAS DT Benchmark, Class A (BH), 21 processes

Visualizing a large number of information

Visualizing a large number of information

Spatial aggregation

Studying BOINC Scheduling with SimGrid.

BOINC: 2 projects, 1000 volunteers, for 3 months

Spatial Aggregation without Treemaps ??

There is no locality, nor hierarchy in the previous example. How should we "summarize" such a platform?

Spatial Aggregation without Treemaps ??

There is no locality, nor hierarchy in the previous example. How should we "summarize" such a platform?

Trace Diff – Comparing SG with GTNetS

This is a diff from **high-level events**, which raises many time scale and synchronization issues.

From this, a finer diff could be made or maybe switching to another kind of view (e.g. a **spatial view emphasizing the diff**)?

Trace Diff – Comparing two network models

This is a diff from **high-level events**, which raises many time scale and synchronization issues.

From this, a finer diff could be made or maybe switching to another kind of view (e.g. a spatial view emphasizing the diff) ?

Outline

- Introduction
- 2 Trace Fundamentals
- Performance Analysis
- Applications
- Synthesis
 - Conclusion
 - Research directions

Conclusion

Concepts

- Trace of parallel/distributed applications
- Multi-level trace
- Structural informations

Algorithmic solutions

- Trace collection (quality of tracers, time estimation...)
- Simulation engine based on the state/event model
- Visualization engine (interactivity, extensibility, scalability)

Case studies

- Parallel systems (MPI, Kaapi,...) Distributed middlewares, Wireless networks, Multi-agent systems....
- Industrial application: Embedded systems. Jboss analysis, resilient protoco

Conclusion

Concepts

- Trace of parallel/distributed applications
- Multi-level trace
- Structural informations

Algorithmic solutions

- Trace collection (quality of tracers, time estimation...)
- Simulation engine based on the state/event model
- Visualization engine (interactivity, extensibility, scalability)

Case studies

- Parallel systems (MPI, Kaapi,...) Distributed middlewares, Wireless networks, Multi-agent systems....
- Industrial application :Embedded systems, Jboss analysis, resilient protocols

Conclusion

Concepts

- Trace of parallel/distributed applications
- Multi-level trace
- Structural informations

Algorithmic solutions

- Trace collection (quality of tracers, time estimation...)
- Simulation engine based on the state/event model
- Visualization engine (interactivity, extensibility, scalability)

Case studies

- Parallel systems (MPI, Kaapi,...) Distributed middlewares, Wireless networks, Multi-agent systems,...
- Industrial application :Embedded systems, Jboss analysis, resilient protocols

Research directions

Scalability

- Aggregation : in time, space, structure (level, operators,...)
- Clustering : criteria of clustering

User capabilities

- Observation environment : instrumentation, information synthesis
- Visualization environment: visual objects manipulation (time, objects, or structure selection), coherent multiple views

Global properties and trace mining

- Query language for traces (filtering/aggregation/selection)
- Automatic data mining in the trace (patterns, properties

Research directions

Scalability

- Aggregation: in time, space, structure (level, operators,...)
- Clustering : criteria of clustering

User capabilities

- Observation environment : instrumentation, information synthesis
- Visualization environment: visual objects manipulation (time, objects, or structure selection), coherent multiple views

Global properties and trace mining

- Query language for traces (filtering/aggregation/selection)
- Automatic data mining in the trace (patterns, properties)

Research directions

Scalability

- Aggregation: in time, space, structure (level, operators,...)
- Clustering : criteria of clustering

User capabilities

- Observation environment : instrumentation, information synthesis
- Visualization environment: visual objects manipulation (time, objects, or structure selection), coherent multiple views

Global properties and trace mining

- Query language for traces (filtering/aggregation/selection)
- Automatic data mining in the trace (patterns, properties)

Bibliography

Main papers in the domain

- Performance Measurement Intrusion and Perturbation Analysis, Malony, A. D., Reed, A., and Wijshoff, H.A.G., IEEE TPDS 3(4) 1992
- What to Draw? When to Draw? An Essay on Parallel Program Visualization, Miller, B.P., JPDC, 18, 1993
- SvPablo: A Multi-Language Architecture-Independent Performance Analysis System DeRose, L. and Reed, D.A.,ICPP 1999
- VAMPIR: Visualization and Analysis of MPI Resources Nagel, W.E., Arnold, A. Weber, M., Hoppe, H-C., and Solchenbach, K. Supercomputer 1996

Some of our papers

- Monitoring Parallel Programs for Performance Tuning in Cluster Environments Chassin de Kergommeaux, J. and Maillet, E. and Vincent, J.-M., chap 6 in book Parallel Program Development for Cluster Computing: Methodology, Tools and Integrated Environments, Nova Science, 2001
- Visualisation interactive et extensible de programmes parallèles à base de processus légers Benhur de Oliveira Stein PhD 1999
- Observations et analyses quantitatives multi-niveaux d'applications à objets réparties François-Gael Ottogalli 2001

Thanks for your attention The slides of the tutorial will be at http://www.inf.ufrgs.br/~lmschnorr

```
Pajé - http://forge.ow2.org/projects/paje/
Triva - http://triva.gforge.inria.fr/
```

Thanks to: Brazil/France collaboration projects, CAPES, CNPq, COFECUB, CNRS, INRIA, UFSM, UFRGS, UJF, Grenoble INP, and many colleagues providing nice ideas, improving the code and sharing drinks with us

