Information Theory (2) Some Applications in Computer Science

Jean-Marc Vincent

MESCAL-INRIA Project Laboratoire d'Informatique de Grenoble Universities of Grenoble, France Jean-Marc.Vincent@imag.fr LICIA - joint laboratory LIG -UFRGS

This work was partially supported by CAPES/COFECUB

Modeling Application

Workload generation problem (2)

Observations (example)

Consider a Web server, 4 types of requests A, B, C, D.

Basic Question

Build a stochastic model of the workload : Without any other assumptions, we assume the workload be: - a stochastic sequence of independent and uniformly distributed random variables on $\{A, B, C, D\}$

Some more assumptions

For each type of request

Type of request	A	В	С	D
Average processing time (s)	10	4	3	1

Observation :

The average processing time of *N* requests is *NT* with T = 6 Build a stochastic model of the workload

MaxEnt Principle

Observation

Partial information on the system state X : Function Φ and we observe

 $\mathbb{E}\phi(X).$

Examples :

- $\phi(x) = 1$ normalization;
- $\phi(x) = x$ average state;
- $\phi(x) = \log(x)$ order of magnitude;
- $\phi(x) = 1_{X > \alpha}$ threshold constraint...

The total information on the system is given by

$$C = \{(\phi_j, a_j), j = 0, 1, ..., m\},\$$

 $\mathbb{E}\phi_j(\boldsymbol{x}) = \boldsymbol{a}_j,$

Convention : $\phi_0 = 1$ and $a_0 = 1$

		-
L.	Ì	G

MaxEnt Principle

Principle

Under the set of constraints

$$C = \{(\phi_j, a_j), j = 0, 1, ..., m\},\$$

model the system by the distribution maximizing

$$\mathcal{H}(X) = \sum_{i} p_i(-log_2p_i)$$

under \mathcal{C} .

Minimize the a priori information inside the model description Uniform distribution is the 0-knowledge hypothesis Computable form of the distribution Danger : such a distribution may not exist

Application of MaxEnt Principle

Maximize entropy of the model under constraints

$$(\Phi_0) \quad p_A + p_B + p_C + p_D = 1,$$

$$(\Phi_1) \quad 10p_A + 4p_B + 3p_C + p_D = 6.$$

Using Lagrange multipliers

$$g(p, \lambda_0, \lambda_1) = \sum p_i(-\log p_i) + \lambda_0(\sum p_i - 1) + \lambda_1(\sum T_i p_i - T).$$
$$\frac{\partial g}{\partial p_i} = -\log p_i - 1 + \lambda_0 + \lambda_1 T_i,$$

and

$$p_i=2^{\lambda_0-1+\lambda_1T_i}.$$

Application of MaxEnt Principle

Using constraints

$$\frac{\sum T_i 2^{\lambda_1 T_i}}{\sum 2^{\lambda_1 T_i}} = T.$$

$\lambda_1 = 0.1712$				
Type of request	A	В	С	D
Average processing time (s)	10	4	3	1
Probability	0.44	0.22	0.19	0,15

Classical laws

Integer valued variable on $\{0, 1, 2, \cdots, n\}$

- No constraints : uniform distribution
- $\phi_1(x) = x$ average constraint

$$p_i = \frac{1-\rho}{1-\rho^{n+1}}\rho^i,$$

Geometric distribution Extends to $\ensuremath{\mathbb{N}}$

Continuous Variables

Continuous Variable Entropy

For X random variable with density f_X we define

$$\mathcal{H}(X) = \int (-\log f_X(x)) f_X(x) dx.$$

The properties of $\ensuremath{\mathcal{H}}$ are almost the same as for discrete distributions (positivity fails)

Gibbs distributions

A random variable has a Gibbs distribution when the density has the form

$$f(\mathbf{x}) = \exp\left\{\sum_{j=0}^m \lambda_j \phi_j(\mathbf{x})\right\},$$

play a central role in statistics exponential, Gaussian,... are Gibbs distributions

Optimal distributions

Gibbs densities are MaxEnt distributions

Suppose that there is a Gibbs distribution of X^* satisfying the constraints

 $C = \{(\phi_j, a_j), j = 1, ..., m\}.$

then X^* has the maximum entropy distribution under C.

- Uniform distribution is MaxEnt under constraint $X \in [a, b]$
- Exponential distribution is MaxEnt under constraint $\mathbb{E}X = m$
- Normal distribution is MaxEnt under constraint $\mathbb{E}X = m$ and $Var X = \sigma^2$
- Poisson process, Markov process, etc.

Synthesis

For modeling systems

- establish the knowledge on your system parameters (fixed or variable)
- establish what is really random
- establish the knowledge on the random part (put the constraints)
- apply the MaxEnt principle (use independence if there are no correlations)
- generate/analyse your workload

Generalization

- Combinatorial structures
- Non uniforme reference distribution (Gaussian)
- ...

References

Cover, T. and Thomas, J. (2006), *Elements of Information Theory* 2nd Edition, Wiley-Interscience

E. T. Jaynes, "Information Theory and Statistical Mechanics," Physical Review, vol. 106, no. 4, pp. 620-630; May 15, 1957.

