
Introduction Typical software engineering problem Analysis of experimental data References

Performance evaluation
How to deal with experiments

Jean-Marc Vincent

MESCAL-INRIA Project
Laboratoire d’Informatique de Grenoble

Universities of Grenoble, France
{Jean-Marc.Vincent}@imag.fr

This work was partially supported by CAPES/COFECUB and STIC-AMSUD

CENTRE NATIONAL 
DE LA RECHERCHE
SCIENTIFIQUE

1 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Outline

1 Typical software engineering problem

2 Analysis of experimental data

3 References

2 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Introduction

Aim of this course

Give basic concepts of experimental design

Statistical analysis of experimental data

Modelling and parameters estimation

Measurment in distributed systems and large scale systems

Design of experiments

Interactive course : discussion about your own experiments

3 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Outline

1 Typical software engineering problem

2 Analysis of experimental data

3 References

4 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Application problems

Procedure TRC

int TRC(int *T,int p, int r)
{
int cpt=0;
int i, j,x;
if (r-p>0)
{
i=p; j=r;
while (j-i>0)
{
if (T[i] >= T[i+1]) { x=T[i]; T[i]=T[i+1]; T[i+1]=x; i++;}
else {x=T[j]; T[j]=T[i+1]; T[i+1]=x; j–;}
cpt++;
}
cpt+=TRC(T,p,i-1); cpt+=TRC(T,i+1,r);
}
return cpt;
}

5 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

First step

Specification

The procedure TRC(T,i,j) sorts in place elements of an array T from
index i to j included;

How to check it ?

Methods

Exhaustive checking : enumerate all arrays and check them one by one

Subset checking : use a representative subset of all arrays

Statistical testing : generate uniformly an arbitrary subset size of array
(confidence)

Example

6 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Second step

Specification

The procedure TRC(T,i,j) sorts in place elements of an array T from
index i to j included;

The procedure TRC(T,i,j) sorts n elements in O(n log n) comparisons

How to evaluate it ?

Methods

Exhaustive evaluation : enumerate all arrays and compute cost for each
one

Statistical evaluation : generate uniformly an arbitrary subset size of array
(confidence) compute the empirical distribution of the cost, test the
model n log n

Example

7 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Third step

Specification

The procedure TRC(T,i,j) sorts in place elements of an array T from
index i to j included;

The procedure TRC(T,i,j) sorts n elements in O(n log n) comparisons

The procedure TRC(T,i,j) sorts n elements efficiently

How to measure it ?

Methods

Put probes inside the program/system/processor...

Performance evaluation : generate uniformly an arbitrary subset size of
array (confidence) measure the execution time, compute the empirical
distribution of the execution time, fit with some models

Example

8 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Sample analysis

0

1

2

3

4

5

6

0 50 100 150 200 250 300

"unifderiv.don"

Tendency analysis

non homogeneous experiment
⇒ model the evolution of experiment
estimate and compensate tendency
explain why

9 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Sample analysis (2)

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

Periodicity analysis

periodic evolution of the experimental environment ?
⇒ model the evolution of experiment
Fourier analysis of the sample
Integration on time (sliding window analysis) Danger : size of the window
Wavelet analysis
explain why

10 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Sample analysis (3)

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000

Non significant values

extraordinary behaviour of experimental environment
rare events with different orders of magnitude
⇒ threshold by value
Danger : choice of the threshold : indicate the rejection rate
⇒ threshold by quantile
Danger : choice of the percentage : indicate the rejection value
explain why

11 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Sample analysis (4)
Threshold value : 10

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900 1000

Threshold percentage : 1%

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800 900 1000

"cauchy−seuil1pc.don"

12 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Sample analysis (5)

−0.5

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800 900 1000

looks like correct experiments
Statistically independent
Statistically homogeneous

13 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Sample analysis (5bis)

Zooming

−0.5

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300

Autocorrelation

Danger time correlation among samples
experiments impact on experiments
⇒ stationarity analysis
autocorrelation estimation (ARMA)

14 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Distribution analysis
Summarize data in a histogram

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25

Shape analysis

unimodal / multimodal

variability

symmetric / dissymmetric (skewness)

flatness (kurtosis)

=⇒ Central tendency analysis
=⇒ Variability analysis around the central tendency

15 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Mode value

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25

Mode

Categorical data

Most frequent value

highly unstable value

for continuous value distribution depends on the histogram step

interpretation depends on the flatness of the histogram

=⇒ Use it carefully
=⇒ Predictor function

16 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Median value

Median

Ordered data

Split the sample in two equal partsX
i6Median

fi 6
1

2
6

X
i6Median+1

fi .

more stable value

does not depends on the histogram step

difficult to combine (two samples)

=⇒ Randomized algorithms

17 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Mean value

Mean

Vector space

Average of values

Mean =
1

Sample Size

X
xi =

X
x

x .fx .

stable value

does not depends on the histogram step

easy to combine (two samples ⇒ weighted mean)

=⇒ Additive problems (cost, durations, length,...)

18 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Central tendency

Moyenne 4.33Médiane 3

Mode 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25

Complementarity

Valid if the sample is ”Well-formed”

Semantic of the observation

Goal of analysis

=⇒ Additive problems (cost, durations, length,...)

19 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Central tendency (2)

Summary of Means

Avoid means if possible
Loses information

Arithmetic mean
When sum of raw values has physical meaning
Use for summarizing times (not rates)

Harmonic mean
Use for summarizing rates (not times)

Geometric mean
Not useful when time is best measure of perf
Useful when multiplicative effects are in play

20 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Computational aspects

Mode : computation of the histogram steps, then computation of max
O(n) “off-line”

Median : sort the sample O(nlog(n)) or O(n) (subtile algorithm)
“off-line”

Mean : sum values O(n) “on-line” computation

Is the central tendency significant ?
⇒ Explain variability.

21 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Computational aspects

Mode : computation of the histogram steps, then computation of max
O(n) “off-line”

Median : sort the sample O(nlog(n)) or O(n) (subtile algorithm)
“off-line”

Mean : sum values O(n) “on-line” computation

Is the central tendency significant ?
⇒ Explain variability.

21 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Variability

Categorical data (finite set)

fi : empirical frequency of element i
Empirical entropy

H(f ) =
∑

i

fi log fi .

Measure the empirical distance with the uniform distribution

H(f ) > 0

H(f ) = 0 iff the observations are reduced to a unique value

H(f ) is maximal for the uniform distribution

22 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Variability (2)

Ordered data

Quantiles : quartiles, deciles, etc
Sort the sample :

(x1, x2, · · · , xn) −→ (x(1), x(2), · · · , x(n));

Q1 = x(n/4); Q2 = x(n/2) = Median; Q3 = x(3n/4).

For deciles

di = argmaxi{
∑
j6i

fj 6
i

10
}.

Utilization as quantile/quantile plots to compare distributions

23 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Variability (3)

Vectorial data

Quadratic error for the mean

Var(X ) =
1

n

n∑
1

(xi − x̄n)
2.

Properties:

Var(X ) > 0;

Var(X ) = x2 − (x̄)2, où x2 =
1

n

n∑
i=1

x2
i .

Var(X + cste) = Var(X );

Var(λX ) = λ2Var(X ).

24 / 25Performance evaluation



Introduction Typical software engineering problem Analysis of experimental data References

Bibliography

The Art of Computer Systems Performance Analysis : Techniques for
Experimental Design, Measurment, Simulation and Modeling. Raj
Jain Wiley 1991

Measuring Computer Performance: A Practitioner’s Guide David J.
Lilja Cambridge University Press, 2000.

25 / 25Performance evaluation


	Introduction
	Typical software engineering problem
	Analysis of experimental data
	References

