Performance evaluation

How to deal with experiments

Jean-Marc Vincent

MESCAL-INRIA Project Laboratoire d'Informatique de Grenoble Universities of Grenoble, France {Jean-Marc.Vincent}@imag.fr

This work was partially supported by CAPES/COFECUB and STIC-AMSUD Grenoble

1 Typical software engineering problem

2 Analysis of experimental data

Introduction

Aim of this course

Give basic concepts of experimental design

- Statistical analysis of experimental data
- Modelling and parameters estimation
- Measurment in distributed systems and large scale systems
- Design of experiments

Interactive course : discussion about your own experiments

1 Typical software engineering problem

2 Analysis of experimental data

Application problems

Procedure TRC

```
int TRC(int *T, int p, int r)
int cpt=0;
int i, j,x;
if (r-p>0)
i=p; i=r;
while (i-i>0)
if (T[i] \ge T[i+1]) \{ x=T[i]; T[i]=T[i+1]; T[i+1]=x; i++; \}
else {x=T[i]; T[i]=T[i+1]; T[i+1]=x; i-; }
cpt++:
cpt+=TRC(T,p,i-1); cpt+=TRC(T,i+1,r);
return cpt;
```


First step

Specification

 The procedure TRC(T,i,j) sorts in place elements of an array T from index i to j included;

How to check it ?

Methods

- Exhaustive checking : enumerate all arrays and check them one by one
- Subset checking : use a representative subset of all arrays
- Statistical testing : generate uniformly an arbitrary subset size of array (confidence)

Example

Second step

Specification

- The procedure TRC(T,i,j) sorts in place elements of an array T from index i to j included;
- The procedure TRC(T,i,j) sorts *n* elements in $O(n \log n)$ comparisons

How to evaluate it ?

Methods

- Exhaustive evaluation : enumerate all arrays and compute cost for each one
- Statistical evaluation : generate uniformly an arbitrary subset size of array (confidence) compute the empirical distribution of the cost, test the model *n* log *n*

Example

Third step

Specification

- The procedure TRC(T,i,j) sorts in place elements of an array T from index i to j included;
- The procedure TRC(T,i,j) sorts *n* elements in $O(n \log n)$ comparisons
- The procedure TRC(T,i,j) sorts *n* elements efficiently

How to measure it ?

Methods

- Put probes inside the program/system/processor...
- Performance evaluation : generate uniformly an arbitrary subset size of array (confidence) measure the execution time, compute the empirical distribution of the execution time, fit with some models

Example

Sample analysis

Tendency analysis

non homogeneous experiment ⇒ model the evolution of experiment estimate and compensate tendency explain why

Sample analysis (2)

Periodicity analysis

periodic evolution of the experimental environment ?

⇒ model the evolution of experiment
 Fourier analysis of the sample
 Integration on time (sliding window analysis) Danger : size of the window
 Wavelet analysis
 explain why

Sample analysis (3)

Non significant values

extraordinary behaviour of experimental environment

rare events with different orders of magnitude

 \Rightarrow threshold by value

Danger : choice of the threshold : indicate the rejection rate

 \Rightarrow threshold by quantile

Danger : choice of the percentage : indicate the rejection value **explain why**

References

Sample analysis (4)

Threshold value : 10

Threshold percentage : 1%

Sample analysis (5)

looks like correct experiments Statistically independent Statistically homogeneous

Sample analysis (5bis)

Zooming

Autocorrelation

Danger time correlation among samples experiments impact on experiments ⇒ stationarity analysis autocorrelation estimation (ARMA)

Distribution analysis

Summarize data in a histogram

Shape analysis

- unimodal / multimodal
- variability
- symmetric / dissymmetric (skewness)
- flatness (kurtosis)
- ⇒ Central tendency analysis
- \Longrightarrow Variability analysis around the central tendency

Mode value

Mode

- Categorical data
- Most frequent value
- highly unstable value
- for continuous value distribution depends on the histogram step
- interpretation depends on the flatness of the histogram
- \implies Use it carefully
- \implies Predictor function

Median value

Median

- Ordered data
- Split the sample in two equal parts

$$\sum_{i \leqslant Median} f_i \leqslant rac{1}{2} \leqslant \sum_{i \leqslant Median+1} f_i$$
 .

- more stable value
- does not depends on the histogram step
- difficult to combine (two samples)
- ⇒ Randomized algorithms

Mean

- Vector space
- Average of values

$$Mean = \frac{1}{Sample_Size} \sum x_i = \sum_x x_i f_x.$$

- stable value
- does not depends on the histogram step
- easy to combine (two samples \Rightarrow weighted mean)
- \implies Additive problems (cost, durations, length,...)

Central tendency

Complementarity

- Valid if the sample is "Well-formed"
- Semantic of the observation
- Goal of analysis
- \implies Additive problems (cost, durations, length,...)

Central tendency (2)

Summary of Means

- Avoid means if possible Loses information
- Arithmetic mean

When sum of raw values has physical meaning Use for summarizing times (not rates)

- Harmonic mean Use for summarizing rates (not times)
- Geometric mean

Not useful when time is best measure of perf Useful when multiplicative effects are in play

Computational aspects

- Mode : computation of the histogram steps, then computation of max O(n) "off-line"
- Median : sort the sample O(nlog(n)) or O(n) (subtile algorithm) "off-line"
- Mean : sum values O(n) "on-line" computation

Is the central tendency significant ? \Rightarrow Explain variability.

Computational aspects

- Mode : computation of the histogram steps, then computation of max O(n) "off-line"
- Median : sort the sample O(nlog(n)) or O(n) (subtile algorithm) "off-line"
- Mean : sum values O(n) "on-line" computation

Is the central tendency significant ? \Rightarrow Explain variability.

Categorical data (finite set)

 f_i : empirical frequency of element *i* Empirical entropy

$$H(f) = \sum_i f_i \log f_i.$$

Measure the empirical distance with the uniform distribution

- $H(f) \ge 0$
- H(f) = 0 iff the observations are reduced to a unique value
- H(f) is maximal for the uniform distribution

Ordered data

Quantiles : quartiles, deciles, etc Sort the sample :

$$(x_1, x_2, \cdots, x_n) \longrightarrow (x_{(1)}, x_{(2)}, \cdots, x_{(n)});$$

$$Q_1 = x_{(n/4)}; \ Q_2 = x_{(n/2)} = Median; \ Q_3 = x_{(3n/4)}.$$

For deciles

$$d_i = \operatorname{argmax}_i \{ \sum_{j \leqslant i} f_j \leqslant rac{i}{10} \}.$$

Utilization as quantile/quantile plots to compare distributions

Vectorial data

Quadratic error for the mean

$$Var(X) = \frac{1}{n} \sum_{1}^{n} (x_i - \bar{x}_n)^2.$$

Properties:

$$Var(X) \ge 0;$$

$$Var(X) = \overline{x^2} - (\overline{x})^2, \text{ où } \overline{x^2} = \frac{1}{n} \sum_{i=1}^n x_i^2.$$

$$Var(X + cste) = Var(X);$$

$$Var(\lambda X) = \lambda^2 Var(X).$$

- The Art of Computer Systems Performance Analysis : Techniques for Experimental Design, Measurment, Simulation and Modeling. Raj Jain *Wiley 1991*
- Measuring Computer Performance: A Practitioner's Guide David J. Lilja Cambridge University Press, 2000.

