Binomial and other coefficients

Mathematics for Computer Science

Jean-Marc Vincent ${ }^{1}$
${ }^{1}$ Laboratoire LIG
Equipe-Projet MESCAL
Jean-Marc.Vincent@imag.fr

These notes are only the sketch of the lecture : the aim is to apply the basic counting techniques to the binomial coefficients and establish combinatorial equalities.
References: Concrete Mathematics: A Foundation for Computer Science Ronald L. Graham, Donald E. Knuth and Oren Patashnik Addison-Wesley 1989 (chapter 5)

Definition

$\binom{n}{k}$ is the number of ways to choose k elements among n elements

http://www-history.mcs.st-and.ac.uk/Biographies/Pascal.html
For all integers $0 \leq k \leq n$

$$
\begin{equation*}
\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!} \tag{1}
\end{equation*}
$$

Hint : Prove it by a combinatorial argument Hint : the number of sequences of k different elements among n is $n(n-1) \cdots(n-k+1)$ and the number of orderings of a set of size k is k !.

Basic properties

$$
\begin{equation*}
\binom{n}{k}=\frac{n!}{k!(n-k)!} \tag{2}
\end{equation*}
$$

Prove it directly from Equation 1
For all integers $0 \leq k \leq n$

$$
\begin{equation*}
\binom{n}{k}=\binom{n}{n-k} \tag{3}
\end{equation*}
$$

Prove it directly from 2
Prove it by a combinatorial argument Hint : bijection between the set of subsets of size k and ???.

Exercise

Give a combinatorial argument to prove that for all integers $0 \leq k \leq n$:

$$
\begin{equation*}
k\binom{n}{k}=n\binom{n-1}{k-1} \tag{4}
\end{equation*}
$$

Pascal's triangle

Recurrence equation

The binomial coefficients satisfy

$$
\begin{equation*}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \tag{5}
\end{equation*}
$$

Prove it directly from Equation 1
Prove it by a combinatorial argument Hint : partition in two parts the set of subsets of size k; those containing a given element and those not.

The binomial theorem

For all integer n and a formal parameter X

$$
\begin{equation*}
(1+X)^{n}=\sum_{k=0}^{n}\binom{n}{k} X^{k}(\text { Newton } 1666) \tag{6}
\end{equation*}
$$

Prove it by a combinatorial argument Hint : write
$(1+X)^{n}=\underbrace{(1+X)(1+X) \cdots(1+X)}_{n \text { terms }}$ in each term chose 1 or X, what is the coefficient of X^{k} in the result (think "vector of n bits").

Exercises

Use a combinatorial argument to prove :

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Use the binomial theorem to prove (give also a combinatorial argument)

$$
\sum_{k=0 \text { kodd }}^{n}\binom{n}{k}=\sum_{k=0}^{n}\binom{n}{k}=2^{n-1}
$$

Summations and Decompositions

The Vandermonde Convolution

For all integers m, n, k

$$
\begin{equation*}
\sum_{j=0}^{k}\binom{m}{j}\binom{n}{k-j}=\binom{m+n}{k} \tag{7}
\end{equation*}
$$

Prove it by a combinatorial argument Hint : choose k elements in two sets one of size m and the other n.

Exercise

Prove that

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n} \tag{8}
\end{equation*}
$$

Hint : Specify Equation 7

Summations and Decompositions (2)

Upper summation

For all integers $p \leq n$

$$
\begin{equation*}
\sum_{k=p}^{n}\binom{k}{p}=\binom{n+1}{p+1} \tag{9}
\end{equation*}
$$

Exercises

Establish the so classical result

$$
\sum_{k=1}^{n}\binom{k}{1}
$$

Compute

$$
\sum_{k=2}^{n}\binom{k}{2}
$$

and deduce the value of $\sum_{k=1}^{n} k^{2}$

The main rules in combinatorics (l)

Bijection rule

Let A and B be two finite sets if there exists a bijection between A and B then

$$
|A|=|B| .
$$

Summation rule

Let A and B be two disjoint finite sets then

$$
|A \cup B|=|A|+|B| .
$$

Moreover if $\left\{A_{1}, \cdots A_{n}\right\}$ is a partition of A (for all $i \neq j, A_{i} \cap A_{j}=\emptyset$ and $\bigcup_{i=0}^{n} A_{i}=A$)

$$
|A|=\sum_{i=0}^{n}\left|A_{i}\right|
$$

The main rules in combinatorics (II)

Product rule

Let A and B be two finite sets then

$$
|A \times B|=|A| .|B| .
$$

Inclusion/Exclusion principle

Let $A_{1}, A_{2}, \cdots A_{n}$ be sets

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k} \sum_{S \subset\{1, \cdots, n\},|S|=k}\left|\bigcap_{i \in S} A_{i}\right| .
$$

Exercises

Illustrate these rules by the previous examples, giving the sets on which the rule apply.

Derangement

Definition

A derangement of a set S is a bijection on S without fixed point. Number of derangements $!n \stackrel{\text { def }}{=} d_{n}$

Inclusion/Exclusion principle

$$
\begin{aligned}
!n & =n!-\binom{n}{1}(n-1)!+\binom{n}{2}(n-2)!-\cdots+(-1)^{n}\binom{n}{n}(n-n)! \\
& =n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!} \stackrel{n \rightarrow \infty}{\sim} n!\frac{1}{e}
\end{aligned}
$$

Recurrence relation

Show that

$$
d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right)=n d_{n-1}+(-1)^{n}
$$

Pigeons and holes

Principle

If you have more pigeons than pigeonholes
Then some hole must have at least two pigeons

Generalization

If there are n pigeons and t holes, then there will be at least one hole with at least
$\left\lceil\frac{n}{t}\right\rceil$ pigeons

History
 Johann Peter Gustav Lejeune Dirichlet (1805-1859)
 Principle of socks and drawers

 http://www-history.mcs.st-and.ac.uk/Biographies/Dirichlet.html

Irrational approximation

Friends

Let α be a non-rational number and N a positive integer, then there is a rational $\frac{p}{q}$ satisfying

$$
1 \leq q \leq N \text { and }\left|\alpha \frac{p}{q}\right| \leq \frac{1}{q N}
$$

Hint : divide [0, 1 [in N intervals, and decimal part of $0, \alpha, 2 \alpha, \cdots, N \alpha$

Sums and others

(1) Choose 10 numbers between 1 and 100 then there exist two disjoint subsets with the same sum.
(2) For an integer N, there is a multiple of N which is written with only figures 0 and 1

Geometry

(1) In a convex polyhedra there are two faces with the same number of edges
(2) Put 5 points inside a equilateral triangle with sides 1 . At least two of them are at a distance less than 1
(3) For 5 point chosen on a square lattice, there are two point such that the middle is

Graphs

Friends

Six people
Every two are either friends or strangers
Then there must be a set of 3 mutual friends or 3 mutual strangers

Guess the number

Player 1 : pick a number 1 to 1 Million
Player 2 Can ask Yes/No questions
How many questions do I need to be guaranteed to correctly identify the number?

Sorting

