
Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Synthetic Load Injection

J-M Vincent

Laboratory ID-IMAG
MESCAL Project

Universities of Grenoble, France
Jean-Marc.Vincent@imag.fr

1 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Outline

1 Workload generation problem

2 Generating random objects

3 Generation of complex objects

4 Quantity generation

5 Synthesis

2 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Outline

1 Workload generation problem

2 Generating random objects

3 Generation of complex objects

4 Quantity generation

5 Synthesis

3 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem

RESULTS

EVALUATION

Simulation
control

Output analysis

Environment
description

Workload
generator

Simulation Kernel

Model description

functions,...
automata,
algorithms,

Modelling

SYSTEM

4 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem

RESULTS

EVALUATION

control
Simulation

Output analysis

Environment
description

Workload
generator

Simulation Kernel

automata,

Modelling

Model description

functions,...

algorithms,

SYSTEM

4 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

WORKLOAD GENERATOR

Load profiler

5 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

A
m

ou
nt

2 3 4

Structure profile

Types1

Load profiler

WORKLOAD GENERATOR

5 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

A
m

ou
nt

Size

Quantitative profile

Structure profile

Types

A
m

ou
nt

21 3 4

Load profiler

WORKLOAD GENERATOR

5 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

Temporal behaviour

D
is

tr
ib

ut
io

n

Elapsed time

Quantitative profile

A
m

ou
nt

Size

4

Structure profile

Types

A
m

ou
nt

1 2 3

WORKLOAD GENERATOR

Load profiler

5 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

Random Generator

Random seed

Temporal behaviour

D
is

tr
ib

ut
io

n

Elapsed time

Size

Quantitative profile

A
m

ou
nt

Types

A
m

ou
nt

1 2 3 4

Structure profile

Load profiler

WORKLOAD GENERATOR

5 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

0110010101110...

INJECTOR

KERNEL

Random Generator

Random seed

D
is

tr
ib

ut
io

n

Temporal behaviour

Elapsed time

Size

Quantitative profile

A
m

ou
nt

1 2 3 4

Structure profile

Types

A
m

ou
nt

WORKLOAD GENERATOR

Load profiler

5 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

- sequence of events
- marks on events

Generated load

THE SYSTEM
STATE OF

KERNEL

0110010101110...

INJECTOR

Random Generator

Random seed

Temporal behaviour

Elapsed time

D
is

tr
ib

ut
io

n

Quantitative profile

A
m

ou
nt

Size

3 41

A
m

ou
nt

Types

Structure profile

2

Load profiler

WORKLOAD GENERATOR

5 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Outline

1 Workload generation problem

2 Generating random objects

3 Generation of complex objects

4 Quantity generation

5 Synthesis

6 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random objects
Denote by X the generated object (X is a random variable)
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

Expectation (average, mean)

EX =
∑

k

k .P(X = k) =
∑

k

kpk .

Variance and standard deviation

VarX =
∑

k

(k − EX)2P(X = k) = EX 2 − (EX)2.

σ(X) =
√

VarX .

7 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random objects
Denote by X the generated object (X is a random variable)
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

Expectation (average, mean)

EX =
∑

k

k .P(X = k) =
∑

k

kpk .

Variance and standard deviation

VarX =
∑

k

(k − EX)2P(X = k) = EX 2 − (EX)2.

σ(X) =
√

VarX .

7 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random objects
Denote by X the generated object (X is a random variable)
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

Expectation (average, mean)

EX =
∑

k

k .P(X = k) =
∑

k

kpk .

Variance and standard deviation

VarX =
∑

k

(k − EX)2P(X = k) = EX 2 − (EX)2.

σ(X) =
√

VarX .

7 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random objects
Denote by X the generated object (X is a random variable)
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

Expectation (average, mean)

EX =
∑

k

k .P(X = k) =
∑

k

kpk .

Variance and standard deviation

VarX =
∑

k

(k − EX)2P(X = k) = EX 2 − (EX)2.

σ(X) =
√

VarX .

7 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

Random bit generator (see previous lecture)

drand48 manpage

double drand48(void) (48 bits encoded in 8 bytes)
The rand48() family of functions generates pseudo-random numbers
using a linear congruential algorithm working on integers 48 bits in
size. The particular formula employed is r(n+1) = (a * r(n) + c) mod m
where the default values are for the multiplicand a = 0xfdeece66d =
25214903917 and the addend c = 0xb = 11. The modulo is always
fixed at m = 2 ** 48. r(0) is called the seed of the random number
generator.

The sequence of returned values from a sequence of calls to the
random function is modeled by a sequence of independent
random variables uniformly distributed on the real interval [0, 1[.

8 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

Random bit generator (see previous lecture)

drand48 manpage

double drand48(void) (48 bits encoded in 8 bytes)
The rand48() family of functions generates pseudo-random numbers
using a linear congruential algorithm working on integers 48 bits in
size. The particular formula employed is r(n+1) = (a * r(n) + c) mod m
where the default values are for the multiplicand a = 0xfdeece66d =
25214903917 and the addend c = 0xb = 11. The modulo is always
fixed at m = 2 ** 48. r(0) is called the seed of the random number
generator.

The sequence of returned values from a sequence of calls to the
random function is modeled by a sequence of independent
random variables uniformly distributed on the real interval [0, 1[.

8 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

0 1

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

U1

0 1

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

U2U1

0 1

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

U3U2U1

0 1

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

U4 U3U2U1

0 1

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

U5U4 U3U2U1

0 1

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

10 ba

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

0 1
P(U ∈ [a, b[) = (b − a)

a b

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

0 1
P(U ∈ [a, b[) = (b − a)

a b

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

0 1
P(U ∈ [a, b[) = (b − a)

a b

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Practical example : Web server

Types of request

1 Professional customer,
consult

2 Professional customer,
purchase

3 Non professional customer,
consult

4 Non professional customer,
purchase

5 Adminstration

Build an algorithm that provides a set of requests according the
observed distribution.

10 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Practical example : Web server

Types of request

1 Professional customer,
consult

2 Professional customer,
purchase

3 Non professional customer,
consult

4 Non professional customer,
purchase

5 Adminstration

Repartition of requests

Objects types

5%

10%

15%

20%

25%

30%

35%

P+C P+B NP+C NP+B A

Build an algorithm that provides a set of requests according the
observed distribution.

10 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Practical example : Web server

Types of request

1 Professional customer,
consult

2 Professional customer,
purchase

3 Non professional customer,
consult

4 Non professional customer,
purchase

5 Adminstration

Repartition of requests

Objects types

5%

10%

15%

20%

25%

30%

35%

P+C P+B NP+C NP+B A

Build an algorithm that provides a set of requests according the
observed distribution.

10 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction
i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k ; i=i+1 ;

end for
end for

Generation
Generate uniformly on the set
{0, 1, · · · , m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom() ;
i= (int) floor(u*m)
return T[i]

11 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction
i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k ; i=i+1 ;

end for
end for

Generation
Generate uniformly on the set
{0, 1, · · · , m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom() ;
i= (int) floor(u*m)
return T[i]

11 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction
i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k ; i=i+1 ;

end for
end for

Generation
Generate uniformly on the set
{0, 1, · · · , m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom() ;
i= (int) floor(u*m)
return T[i]

11 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction
i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k ; i=i+1 ;

end for
end for

Generation
Generate uniformly on the set
{0, 1, · · · , m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom() ;
i= (int) floor(u*m)
return T[i]

11 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of PDF
P(X 6 x)

0

1

1 2 3 K − 1 K

Cumulative distribution function

x
p1

p2

p3

· · ·

Generation
Divide [0, 1[in intervals with length pk
Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX) steps
Memory cost : O(1)

Inverse function algorithm

s=0 ; k=0 ;
u=random()
while u >s do

k=k+1
s=s+pk

end while
return k

12 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of PDF
P(X 6 x)

0

1

1 2 3 K − 1 K

Cumulative distribution function

x
p1

p2

p3

· · ·

Generation
Divide [0, 1[in intervals with length pk
Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX) steps
Memory cost : O(1)

Inverse function algorithm

s=0 ; k=0 ;
u=random()
while u >s do

k=k+1
s=s+pk

end while
return k

12 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Searching optimization

Optimization methods

pre-compute the pdf in a table

rank objects by decreasing probability

use a dichotomy algorithm

use a tree searching algorithm (optimality = Huffmann coding tree)

Comments
- Depends on the usage of the injector (repeated use or not)
- pre-computation usually O(K) could be huge
-

13 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Searching optimization

Optimization methods

pre-compute the pdf in a table

rank objects by decreasing probability

use a dichotomy algorithm

use a tree searching algorithm (optimality = Huffmann coding tree)

Comments
- Depends on the usage of the injector (repeated use or not)
- pre-computation usually O(K) could be huge
-

13 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Base of the method
Generate uniformly on A accept when
point is in B.

A

B

Rejection algorithm
repeat

x = uniform-generate(A)
until x∈ B
return x

Complexity
Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa

.

14 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Base of the method
Generate uniformly on A accept when
point is in B.

A

B

U1

Rejection algorithm
repeat

x = uniform-generate(A)
until x∈ B
return x

Complexity
Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa

.

14 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Base of the method
Generate uniformly on A accept when
point is in B.

A

B

U1

Rejection algorithm
repeat

x = uniform-generate(A)
until x∈ B
return x

Complexity
Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa

.

14 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Base of the method
Generate uniformly on A accept when
point is in B.

A

B

U1
U2

Rejection algorithm
repeat

x = uniform-generate(A)
until x∈ B
return x

Complexity
Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa

.

14 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Base of the method
Generate uniformly on A accept when
point is in B.

A

B

U1
U2

Rejection algorithm
repeat

x = uniform-generate(A)
until x∈ B
return x

Complexity
Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa

.

14 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Base of the method
Generate uniformly on A accept when
point is in B.

A

B

U1
U2

accept

U3

Rejection algorithm
repeat

x = uniform-generate(A)
until x∈ B
return x

Complexity
Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa

.

14 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Base of the method
Generate uniformly on A accept when
point is in B.

A

B

U1
U2

accept

U3

Rejection algorithm
repeat

x = uniform-generate(A)
until x∈ B
return x

Complexity
Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa

.

14 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Base of the method
Generate uniformly on A accept when
point is in B.

A

B

U1
U2

accept

U3

Rejection algorithm
repeat

x = uniform-generate(A)
until x∈ B
return x

Complexity
Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa

.

14 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Rejection adaptation
K objects

h > max
k

pk

Generate uniformly on the surface
K × h
Accept if the point is under the
distribution

Rejection algorithm
repeat

k= alea(K)
until Random . h 6 pk
return k

alea(K) generate uniformly a
number in {1, · · · , K}

Complexity

Acceptance probability pa = 1
hK

N number of iterations EN = 1
pa

= hK .

Minimal complexity for h∗ = maxk pk .
Uniform distribution ⇒ no rejection
Interest : distribution near the uniform distribution

15 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Rejection adaptation
K objects

h > max
k

pk

Generate uniformly on the surface
K × h
Accept if the point is under the
distribution

Rejection algorithm
repeat

k= alea(K)
until Random . h 6 pk
return k

alea(K) generate uniformly a
number in {1, · · · , K}

Complexity

Acceptance probability pa = 1
hK

N number of iterations EN = 1
pa

= hK .

Minimal complexity for h∗ = maxk pk .
Uniform distribution ⇒ no rejection
Interest : distribution near the uniform distribution

15 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection technique

Rejection adaptation
K objects

h > max
k

pk

Generate uniformly on the surface
K × h
Accept if the point is under the
distribution

Rejection algorithm
repeat

k= alea(K)
until Random . h 6 pk
return k

alea(K) generate uniformly a
number in {1, · · · , K}

Complexity

Acceptance probability pa = 1
hK

N number of iterations EN = 1
pa

= hK .

Minimal complexity for h∗ = maxk pk .
Uniform distribution ⇒ no rejection
Interest : distribution near the uniform distribution

15 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Aliasing technique

Combine uniform and alias value when rejection

Initialization
K objects

list L=∅,U=∅ ;
for k=1 ; k6 K ; k++ do

P[k]=pk
if P[k] > 1

K then
U=U+{k} ;

else
L=L+{k} ;

end if
end for

Alias and threshold tables
while L 6= ∅ do

Extract k ∈ L
Extract i ∈ U
S[k]=P[k]
A[k]=i
P[i] = P[i] - (1

K -P[k])
if P[i] > 1

K then
U=U+{i} ;

else
L=L+{i} ;

end if
end while

16 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Aliasing technique

Combine uniform and alias value when rejection

Initialization
K objects

list L=∅,U=∅ ;
for k=1 ; k6 K ; k++ do

P[k]=pk
if P[k] > 1

K then
U=U+{k} ;

else
L=L+{k} ;

end if
end for

Alias and threshold tables
while L 6= ∅ do

Extract k ∈ L
Extract i ∈ U
S[k]=P[k]
A[k]=i
P[i] = P[i] - (1

K -P[k])
if P[i] > 1

K then
U=U+{i} ;

else
L=L+{i} ;

end if
end while

16 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Aliasing technique : generation

Generation
k=alea(K)
if Random . 1

K 6 S[k] then
return k

else
return A[k]

end if

Complexity

Computation time :
- O(K) for pre-computation
- O(1) for generation
Memory :
- threshold O(K) (real numbers as probability)
- alias O(K) (integers indexes in a tables)

17 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Aliasing technique : generation

Generation
k=alea(K)
if Random . 1

K 6 S[k] then
return k

else
return A[k]

end if

Complexity

Computation time :
- O(K) for pre-computation
- O(1) for generation
Memory :
- threshold O(K) (real numbers as probability)
- alias O(K) (integers indexes in a tables)

17 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Outline

1 Workload generation problem

2 Generating random objects

3 Generation of complex objects

4 Quantity generation

5 Synthesis

18 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generation of complex objects

Structured workload

task graph

sequence of pages

route to destination

...

Structured environment

Interconnection graph

memory configuration

repartition of sites on an area...

...

Generate uniformly a set of k positions among n possibilities

19 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generation of complex objects

Structured workload

task graph

sequence of pages

route to destination

...

Structured environment

Interconnection graph

memory configuration

repartition of sites on an area...

...

Generate uniformly a set of k positions among n possibilities

19 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generation of complex objects

Structured workload

task graph

sequence of pages

route to destination

...

Structured environment

Interconnection graph

memory configuration

repartition of sites on an area...

...

Generate uniformly a set of k positions among n possibilities

19 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Route generation

Given a feed-forward communication network, generate uniformly a
route between two nodes

Manhattan topology General topology

20 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Route generation

Given a feed-forward communication network, generate uniformly a
route between two nodes

Manhattan topology
B

A

General topology

20 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Route generation

Given a feed-forward communication network, generate uniformly a
route between two nodes

Manhattan topology
B

A

General topology

BA

20 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Permutation generation

Given a size N of an array generate a uniform permutation of its
elements.

Based on position

for i=1 ; i6 N-1 ; i++ do
j=alea(N-i)
{Generate uniformly on
{0, 1, · · · , N − i} }
Exchange(i,i+j)

end for

Based on value
Generate_Permutation(N-1)
j=alea(N)
{Generate uniformly on
{1, · · · , N} }
for i=N ; i>j ; j- - do

Exchange(i,i-i)
end for
T[j]=N

21 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Permutation generation

Given a size N of an array generate a uniform permutation of its
elements.

Based on position

for i=1 ; i6 N-1 ; i++ do
j=alea(N-i)
{Generate uniformly on
{0, 1, · · · , N − i} }
Exchange(i,i+j)

end for

Based on value
Generate_Permutation(N-1)
j=alea(N)
{Generate uniformly on
{1, · · · , N} }
for i=N ; i>j ; j- - do

Exchange(i,i-i)
end for
T[j]=N

21 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Permutation generation

Given a size N of an array generate a uniform permutation of its
elements.

Based on position

for i=1 ; i6 N-1 ; i++ do
j=alea(N-i)
{Generate uniformly on
{0, 1, · · · , N − i} }
Exchange(i,i+j)

end for

Based on value
Generate_Permutation(N-1)
j=alea(N)
{Generate uniformly on
{1, · · · , N} }
for i=N ; i>j ; j- - do

Exchange(i,i-i)
end for
T[j]=N

21 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Binary tree generation

Given a size N generate a binary tree uniformly on the set of trees
with N nodes

Uniform node decomposition
Recursive algorithm

tree Generate_tree(integer N)
if N=0 then

return empty_tree
else

q=alea(0,N-1)
TL=Generate_tree(q)
TR=Generate_tree(N-1-q)
T=Join(TL,TR)
return T

end if

Non uniform

22 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Binary tree generation

Given a size N generate a binary tree uniformly on the set of trees
with N nodes

Uniform node decomposition
Recursive algorithm

tree Generate_tree(integer N)
if N=0 then

return empty_tree
else

q=alea(0,N-1)
TL=Generate_tree(q)
TR=Generate_tree(N-1-q)
T=Join(TL,TR)
return T

end if

Non uniform

22 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Binary tree generation

Given a size N generate a binary tree uniformly on the set of trees
with N nodes

Uniform node decomposition
Recursive algorithm

tree Generate_tree(integer N)
if N=0 then

return empty_tree
else

q=alea(0,N-1)
TL=Generate_tree(q)
TR=Generate_tree(N-1-q)
T=Join(TL,TR)
return T

end if

Non uniform

1
24

1
8

1
24

1
24

1
8

1
12

1
24

1
24

1
8

1
24

1
24

1
8

1
12

1
24

1
6

1
6

1
6

1
6

1
3

1
2

1
2

1

22 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Uniform binary tree generation

Catalan’s numbers
Recursion equation

C0 = C1 = 1;

CN =
N−1∑
q=0

CqCN−1−q .

Then

1 =
N−1∑
q=0

CqCN−1−q

CN
=

N−1∑
q=0

pN,q .

CN =
1

N + 1

(
2N
N

)

Uniform generation

tree Generate_tree(integer N)
if N=0 then

return empty_tree
else

q=Generate(pN,0, · · · , pN,N−1)
TL=Generate_tree(q)
TR=Generate_tree(N-1-q)
T=Join(TL,TR)
return T

end if
Pre-computation of the pN,q

23 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Uniform binary tree generation

Catalan’s numbers
Recursion equation

C0 = C1 = 1;

CN =
N−1∑
q=0

CqCN−1−q .

Then

1 =
N−1∑
q=0

CqCN−1−q

CN
=

N−1∑
q=0

pN,q .

CN =
1

N + 1

(
2N
N

)

Uniform generation

tree Generate_tree(integer N)
if N=0 then

return empty_tree
else

q=Generate(pN,0, · · · , pN,N−1)
TL=Generate_tree(q)
TR=Generate_tree(N-1-q)
T=Join(TL,TR)
return T

end if
Pre-computation of the pN,q

23 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Outline

1 Workload generation problem

2 Generating random objects

3 Generation of complex objects

4 Quantity generation

5 Synthesis

24 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generation of length, duration,...

The workload is defined by :
- type
- structure
- amount of work
- time distribution

service duration

communication time

size of messages

...

Generation of continuous variates
From a probability density, generate samples of variates in a
continuous state space.

25 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generation of length, duration,...

The workload is defined by :
- type
- structure
- amount of work
- time distribution

service duration

communication time

size of messages

...

Generation of continuous variates
From a probability density, generate samples of variates in a
continuous state space.

25 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generation of length, duration,...

The workload is defined by :
- type
- structure
- amount of work
- time distribution

service duration

communication time

size of messages

...

Generation of continuous variates
From a probability density, generate samples of variates in a
continuous state space.

25 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random quantities
Denote by X the object size (X is a real valued random variable)
Distribution density

f (x)dx = P(X ∈ [x , x + dx [).

Remarks :

0 6 f (x);

∫
f (x)dx = 1.

Expectation (average, mean)

EX =

∫
xf (x)dx .

Variance and standard deviation

VarX =

∫
(x − EX)2f (x)dx = EX 2 − (EX)2.

σ(X) =
√

VarX .

26 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random quantities
Denote by X the object size (X is a real valued random variable)
Distribution density

f (x)dx = P(X ∈ [x , x + dx [).

Remarks :

0 6 f (x);

∫
f (x)dx = 1.

Expectation (average, mean)

EX =

∫
xf (x)dx .

Variance and standard deviation

VarX =

∫
(x − EX)2f (x)dx = EX 2 − (EX)2.

σ(X) =
√

VarX .

26 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random quantities
Denote by X the object size (X is a real valued random variable)
Distribution density

f (x)dx = P(X ∈ [x , x + dx [).

Remarks :

0 6 f (x);

∫
f (x)dx = 1.

Expectation (average, mean)

EX =

∫
xf (x)dx .

Variance and standard deviation

VarX =

∫
(x − EX)2f (x)dx = EX 2 − (EX)2.

σ(X) =
√

VarX .

26 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random quantities
Denote by X the object size (X is a real valued random variable)
Distribution density

f (x)dx = P(X ∈ [x , x + dx [).

Remarks :

0 6 f (x);

∫
f (x)dx = 1.

Expectation (average, mean)

EX =

∫
xf (x)dx .

Variance and standard deviation

VarX =

∫
(x − EX)2f (x)dx = EX 2 − (EX)2.

σ(X) =
√

VarX .

26 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of CDF
P(X 6 x) Cumulative distribution function

x0

1

Let X = F−1(U)

P(X 6 x) = P(F−1(U) 6 x) = P(U 6 F (x)) = F (x).

Classic distribution

Uniform on [a, b] : F−1(u) = a + (b − a).u

Exponential, rate λ : F−1(u) = 1
λ

log(1− u)

Pareto, Weibul,...

27 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of CDF

0

1
Cumulative distribution function

x

P(X 6 x)

U

F−1(U)

Let X = F−1(U)

P(X 6 x) = P(F−1(U) 6 x) = P(U 6 F (x)) = F (x).

Classic distribution

Uniform on [a, b] : F−1(u) = a + (b − a).u

Exponential, rate λ : F−1(u) = 1
λ

log(1− u)

Pareto, Weibul,...

27 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of CDF

0

1
Cumulative distribution function

x

P(X 6 x)

U

F−1(U) x

F(x)

Let X = F−1(U)

P(X 6 x) = P(F−1(U) 6 x) = P(U 6 F (x)) = F (x).

Classic distribution

Uniform on [a, b] : F−1(u) = a + (b − a).u

Exponential, rate λ : F−1(u) = 1
λ

log(1− u)

Pareto, Weibul,...

27 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of CDF

0

1
Cumulative distribution function

x

P(X 6 x)

U

F−1(U) x

F(x)

Let X = F−1(U)

P(X 6 x) = P(F−1(U) 6 x) = P(U 6 F (x)) = F (x).

Classic distribution

Uniform on [a, b] : F−1(u) = a + (b − a).u

Exponential, rate λ : F−1(u) = 1
λ

log(1− u)

Pareto, Weibul,...

27 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of CDF

0

1
Cumulative distribution function

x

P(X 6 x)

U

F−1(U) x

F(x)

Let X = F−1(U)

P(X 6 x) = P(F−1(U) 6 x) = P(U 6 F (x)) = F (x).

Classic distribution

Uniform on [a, b] : F−1(u) = a + (b − a).u

Exponential, rate λ : F−1(u) = 1
λ

log(1− u)

Pareto, Weibul,...

27 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of CDF : empirical data

0

1
Cumulative distribution function

x

P(X 6 x)

x4 x5 x6 x7x2x1 x3

Set of observed values (sorted) x1, · · · , xN , x0 fixed by hand

j=alea(1,N)
x=xj−1 + (xj − xj−1).random
return x

Linear interpolation Extensions : fit with middle of intervals,
polynomial interpolation

28 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of CDF : empirical data

0

1
Cumulative distribution function

x

P(X 6 x)

x4 x5 x6 x7x2x1 x3

Set of observed values (sorted) x1, · · · , xN , x0 fixed by hand

j=alea(1,N)
x=xj−1 + (xj − xj−1).random
return x

Linear interpolation Extensions : fit with middle of intervals,
polynomial interpolation

28 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection
Bounded density on a bounded interval

x

Density function
f (x)

h

a b
0

The rejection algorithm
repeat

x= Uniform(a,b)
y= Uniform(0,h)

until y 6 f(x)
return x

Complexity

Acceptance probability pa = 1
h.(b−a)

Mean number of iterations :
EN = h.(b − a)
Optimality : h∗ = max f (x)

29 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection
Bounded density on a bounded interval

x

Density function
f (x)

h

a b
0

The rejection algorithm
repeat

x= Uniform(a,b)
y= Uniform(0,h)

until y 6 f(x)
return x

Complexity

Acceptance probability pa = 1
h.(b−a)

Mean number of iterations :
EN = h.(b − a)
Optimality : h∗ = max f (x)

29 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection
Bounded density on a bounded interval

x

Density function
f (x)

h

a b
0

The rejection algorithm
repeat

x= Uniform(a,b)
y= Uniform(0,h)

until y 6 f(x)
return x

Complexity

Acceptance probability pa = 1
h.(b−a)

Mean number of iterations :
EN = h.(b − a)
Optimality : h∗ = max f (x)

29 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection : unbounded case
f (x) 6 c.g(x) and there is a generator for g density

c.g(x)

x

Density function
f (x)

a b
0

The rejection algorithm
repeat

x= Generate according g
y= Uniform(0,c.g(x))

until y 6 f(x)
return x

Complexity

Acceptance probability pa = 1
c

Mean number of iterations :
EN = c

30 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection : unbounded case
f (x) 6 c.g(x) and there is a generator for g density

c.g(x)

x

Density function
f (x)

a b
0

The rejection algorithm
repeat

x= Generate according g
y= Uniform(0,c.g(x))

until y 6 f(x)
return x

Complexity

Acceptance probability pa = 1
c

Mean number of iterations :
EN = c

30 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Rejection : unbounded case
f (x) 6 c.g(x) and there is a generator for g density

c.g(x)

x

Density function
f (x)

a b
0

The rejection algorithm
repeat

x= Generate according g
y= Uniform(0,c.g(x))

until y 6 f(x)
return x

Complexity

Acceptance probability pa = 1
c

Mean number of iterations :
EN = c

30 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Outline

1 Workload generation problem

2 Generating random objects

3 Generation of complex objects

4 Quantity generation

5 Synthesis

31 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Synthesis

Characterization of the load :

1 Types
2 Structure
3 Quantificaton

Statistical description :

empirical data : histograms, samples

models (law of probability, classical distributions : uniform, exponential,
erlang,...)

bootstrapping

Validation of the workload generator : samples + statistical tests

32 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Synthesis

Characterization of the load :

1 Types
2 Structure
3 Quantificaton

Statistical description :

empirical data : histograms, samples

models (law of probability, classical distributions : uniform, exponential,
erlang,...)

bootstrapping

Validation of the workload generator : samples + statistical tests

32 / 32Synthetic Load Injection

Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Synthesis

Characterization of the load :

1 Types
2 Structure
3 Quantificaton

Statistical description :

empirical data : histograms, samples

models (law of probability, classical distributions : uniform, exponential,
erlang,...)

bootstrapping

Validation of the workload generator : samples + statistical tests

32 / 32Synthetic Load Injection

	Workload generation problem
	Generating random objects
	Generation of complex objects
	Quantity generation
	Synthesis

