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Workload generation problem (2)

WORKLOAD GENERATOR

Load profiler

5 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

A
m

ou
nt

2 3 4

Structure profile

Types1

Load profiler

WORKLOAD GENERATOR

5 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

A
m

ou
nt

Size

Quantitative profile

Structure profile

Types

A
m

ou
nt

21 3 4

Load profiler

WORKLOAD GENERATOR

5 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

Temporal behaviour

D
is

tr
ib

ut
io

n

Elapsed time

Quantitative profile

A
m

ou
nt

Size

4

Structure profile

Types

A
m

ou
nt

1 2 3

WORKLOAD GENERATOR

Load profiler

5 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

Random Generator

Random seed

Temporal behaviour

D
is

tr
ib

ut
io

n

Elapsed time

Size

Quantitative profile

A
m

ou
nt

Types

A
m

ou
nt

1 2 3 4

Structure profile

Load profiler

WORKLOAD GENERATOR

5 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)

0110010101110...

INJECTOR

KERNEL

Random Generator

Random seed

D
is

tr
ib

ut
io

n

Temporal behaviour

Elapsed time

Size

Quantitative profile

A
m

ou
nt

1 2 3 4

Structure profile

Types

A
m

ou
nt

WORKLOAD GENERATOR

Load profiler

5 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Workload generation problem (2)
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Generating random objects
Denote by X the generated object ( X is a random variable)
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

Expectation (average, mean)

EX =
∑

k

k .P(X = k) =
∑

k

kpk .

Variance and standard deviation

VarX =
∑

k

(k − EX )2P(X = k) = EX 2 − (EX )2.

σ(X ) =
√

VarX .
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The random function

Random bit generator (see previous lecture)

drand48 manpage

double drand48(void) (48 bits encoded in 8 bytes)
The rand48() family of functions generates pseudo-random numbers
using a linear congruential algorithm working on integers 48 bits in
size. The particular formula employed is r(n+1) = (a * r(n) + c) mod m
where the default values are for the multiplicand a = 0xfdeece66d =
25214903917 and the addend c = 0xb = 11. The modulo is always
fixed at m = 2 ** 48. r(0) is called the seed of the random number
generator.

The sequence of returned values from a sequence of calls to the
random function is modeled by a sequence of independent
random variables uniformly distributed on the real interval [0, 1[.
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The random function

0 1

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[ in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

U1

0 1

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[ in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function

U2U1

0 1

Problem
All the difficulty is to find a function (an algorithm) that transforms the
[0, 1[ in a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

9 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

The random function
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Practical example : Web server

Types of request

1 Professional customer,
consult

2 Professional customer,
purchase

3 Non professional customer,
consult

4 Non professional customer,
purchase

5 Adminstration

Build an algorithm that provides a set of requests according the
observed distribution.
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Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction
i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k ; i=i+1 ;

end for
end for

Generation
Generate uniformly on the set
{0, 1, · · · , m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom() ;
i= (int) floor(u*m)
return T[i]

11 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction
i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k ; i=i+1 ;

end for
end for

Generation
Generate uniformly on the set
{0, 1, · · · , m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom() ;
i= (int) floor(u*m)
return T[i]

11 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction
i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k ; i=i+1 ;

end for
end for

Generation
Generate uniformly on the set
{0, 1, · · · , m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom() ;
i= (int) floor(u*m)
return T[i]

11 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction
i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k ; i=i+1 ;

end for
end for

Generation
Generate uniformly on the set
{0, 1, · · · , m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom() ;
i= (int) floor(u*m)
return T[i]

11 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of PDF
P(X 6 x)

0

1

1 2 3 K − 1 K

Cumulative distribution function

x
p1

p2

p3

· · ·

Generation
Divide [0, 1[ in intervals with length pk
Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX ) steps
Memory cost : O(1)

Inverse function algorithm

s=0 ; k=0 ;
u=random()
while u >s do

k=k+1
s=s+pk

end while
return k
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Searching optimization

Optimization methods

pre-compute the pdf in a table

rank objects by decreasing probability

use a dichotomy algorithm

use a tree searching algorithm (optimality = Huffmann coding tree)

Comments
- Depends on the usage of the injector (repeated use or not)
- pre-computation usually O(K ) could be huge
-
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Rejection technique

Base of the method
Generate uniformly on A accept when
point is in B.

A

B

Rejection algorithm
repeat

x = uniform-generate(A)
until x∈ B
return x

Complexity
Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa

.
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Rejection technique

Rejection adaptation
K objects

h > max
k

pk

Generate uniformly on the surface
K × h
Accept if the point is under the
distribution

Rejection algorithm
repeat

k= alea(K)
until Random . h 6 pk
return k

alea(K) generate uniformly a
number in {1, · · · , K}

Complexity

Acceptance probability pa = 1
hK

N number of iterations EN = 1
pa

= hK .

Minimal complexity for h∗ = maxk pk .
Uniform distribution ⇒ no rejection
Interest : distribution near the uniform distribution
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Aliasing technique

Combine uniform and alias value when rejection

Initialization
K objects

list L=∅,U=∅ ;
for k=1 ; k6 K ; k++ do

P[k]=pk
if P[k] > 1

K then
U=U+{k} ;

else
L=L+{k} ;

end if
end for

Alias and threshold tables
while L 6= ∅ do

Extract k ∈ L
Extract i ∈ U
S[k]=P[k]
A[k]=i
P[i] = P[i] - ( 1

K -P[k])
if P[i] > 1

K then
U=U+{i} ;

else
L=L+{i} ;

end if
end while
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Aliasing technique : generation

Generation
k=alea(K)
if Random . 1

K 6 S[k] then
return k

else
return A[k]

end if

Complexity

Computation time :
- O(K ) for pre-computation
- O(1) for generation
Memory :
- threshold O(K ) (real numbers as probability)
- alias O(K ) (integers indexes in a tables)
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Generation of complex objects

Structured workload

task graph

sequence of pages

route to destination

...

Structured environment

Interconnection graph

memory configuration

repartition of sites on an area...

...

Generate uniformly a set of k positions among n possibilities
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Route generation

Given a feed-forward communication network, generate uniformly a
route between two nodes

Manhattan topology General topology
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Permutation generation

Given a size N of an array generate a uniform permutation of its
elements.

Based on position

for i=1 ; i6 N-1 ; i++ do
j=alea(N-i)
{Generate uniformly on
{0, 1, · · · , N − i} }
Exchange(i,i+j)

end for

Based on value
Generate_Permutation(N-1)
j=alea(N)
{Generate uniformly on
{1, · · · , N} }
for i=N ; i>j ; j- - do

Exchange(i,i-i)
end for
T[j]=N

21 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Permutation generation

Given a size N of an array generate a uniform permutation of its
elements.

Based on position

for i=1 ; i6 N-1 ; i++ do
j=alea(N-i)
{Generate uniformly on
{0, 1, · · · , N − i} }
Exchange(i,i+j)

end for

Based on value
Generate_Permutation(N-1)
j=alea(N)
{Generate uniformly on
{1, · · · , N} }
for i=N ; i>j ; j- - do

Exchange(i,i-i)
end for
T[j]=N

21 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Permutation generation

Given a size N of an array generate a uniform permutation of its
elements.

Based on position

for i=1 ; i6 N-1 ; i++ do
j=alea(N-i)
{Generate uniformly on
{0, 1, · · · , N − i} }
Exchange(i,i+j)

end for

Based on value
Generate_Permutation(N-1)
j=alea(N)
{Generate uniformly on
{1, · · · , N} }
for i=N ; i>j ; j- - do

Exchange(i,i-i)
end for
T[j]=N

21 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Binary tree generation

Given a size N generate a binary tree uniformly on the set of trees
with N nodes

Uniform node decomposition
Recursive algorithm

tree Generate_tree(integer N)
if N=0 then

return empty_tree
else

q=alea(0,N-1)
TL=Generate_tree(q)
TR=Generate_tree(N-1-q)
T=Join(TL,TR)
return T

end if

Non uniform
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Uniform binary tree generation

Catalan’s numbers
Recursion equation

C0 = C1 = 1;

CN =
N−1∑
q=0

CqCN−1−q .

Then

1 =
N−1∑
q=0

CqCN−1−q

CN
=

N−1∑
q=0

pN,q .

CN =
1

N + 1

(
2N
N

)

Uniform generation

tree Generate_tree(integer N)
if N=0 then

return empty_tree
else

q=Generate(pN,0, · · · , pN,N−1)
TL=Generate_tree(q)
TR=Generate_tree(N-1-q)
T=Join(TL,TR)
return T

end if
Pre-computation of the pN,q
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Outline

1 Workload generation problem

2 Generating random objects

3 Generation of complex objects

4 Quantity generation

5 Synthesis
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Generation of length, duration,...

The workload is defined by :
- type
- structure
- amount of work
- time distribution

service duration

communication time

size of messages

...

Generation of continuous variates
From a probability density, generate samples of variates in a
continuous state space.
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Generating random quantities
Denote by X the object size ( X is a real valued random variable)
Distribution density

f (x)dx = P(X ∈ [x , x + dx [).

Remarks :

0 6 f (x);

∫
f (x)dx = 1.

Expectation (average, mean)

EX =

∫
xf (x)dx .

Variance and standard deviation

VarX =

∫
(x − EX )2f (x)dx = EX 2 − (EX )2.

σ(X ) =
√

VarX .

26 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random quantities
Denote by X the object size ( X is a real valued random variable)
Distribution density

f (x)dx = P(X ∈ [x , x + dx [).

Remarks :

0 6 f (x);

∫
f (x)dx = 1.

Expectation (average, mean)

EX =

∫
xf (x)dx .

Variance and standard deviation

VarX =

∫
(x − EX )2f (x)dx = EX 2 − (EX )2.

σ(X ) =
√

VarX .

26 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random quantities
Denote by X the object size ( X is a real valued random variable)
Distribution density

f (x)dx = P(X ∈ [x , x + dx [).

Remarks :

0 6 f (x);

∫
f (x)dx = 1.

Expectation (average, mean)

EX =

∫
xf (x)dx .

Variance and standard deviation

VarX =

∫
(x − EX )2f (x)dx = EX 2 − (EX )2.

σ(X ) =
√

VarX .

26 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Generating random quantities
Denote by X the object size ( X is a real valued random variable)
Distribution density

f (x)dx = P(X ∈ [x , x + dx [).

Remarks :

0 6 f (x);

∫
f (x)dx = 1.

Expectation (average, mean)

EX =

∫
xf (x)dx .

Variance and standard deviation

VarX =

∫
(x − EX )2f (x)dx = EX 2 − (EX )2.

σ(X ) =
√

VarX .

26 / 32Synthetic Load Injection



Workload generation problem Generating random objects Generation of complex objects Quantity generation Synthesis

Inverse of CDF
P(X 6 x) Cumulative distribution function

x0

1

Let X = F−1(U)

P(X 6 x) = P(F−1(U) 6 x) = P(U 6 F (x)) = F (x).

Classic distribution

Uniform on [a, b] : F−1(u) = a + (b − a).u

Exponential, rate λ : F−1(u) = 1
λ

log(1− u)

Pareto, Weibul,...
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Inverse of CDF : empirical data

0

1
Cumulative distribution function

x

P(X 6 x)

x4 x5 x6 x7x2x1 x3

Set of observed values (sorted) x1, · · · , xN , x0 fixed by hand

j=alea(1,N)
x=xj−1 + (xj − xj−1).random
return x

Linear interpolation Extensions : fit with middle of intervals,
polynomial interpolation
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Rejection
Bounded density on a bounded interval

x

Density function
f (x)

h

a b
0

The rejection algorithm
repeat

x= Uniform(a,b)
y= Uniform(0,h)

until y 6 f(x)
return x

Complexity

Acceptance probability pa = 1
h.(b−a)

Mean number of iterations :
EN = h.(b − a)
Optimality : h∗ = max f (x)
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Rejection : unbounded case
f (x) 6 c.g(x) and there is a generator for g density

c.g(x)

x

Density function
f (x)

a b
0

The rejection algorithm
repeat

x= Generate according g
y= Uniform(0,c.g(x))

until y 6 f(x)
return x

Complexity

Acceptance probability pa = 1
c

Mean number of iterations :
EN = c
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Outline

1 Workload generation problem

2 Generating random objects

3 Generation of complex objects

4 Quantity generation

5 Synthesis
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Synthesis

Characterization of the load :

1 Types
2 Structure
3 Quantificaton

Statistical description :

empirical data : histograms, samples

models (law of probability, classical distributions : uniform, exponential,
erlang,...)

bootstrapping

Validation of the workload generator : samples + statistical tests
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