
Motivation Discrete generation Perfect sampling Case Studies

Performance Evaluation : Probabilistic simulation
Stochastic Modeling of Computer Systems

MOSIG Master 2

Jean-Marc Vincent

Laboratoire LIG, projet Inria-Mescal
UniversitéJoseph Fourier

Jean-Marc.Vincent@imag.fr

2012 November 5

1 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Outline

1 Motivation
Convergence
Solving
Simulation

2 Discrete generation

3 Perfect sampling

4 Case Studies

2 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Long Run Evolution and Time Scaling

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 100 200 300 400 500 600 700 800 900 1000

State of the System

Typical trajectory

Performance of the system⇒ analysis of the steady-state

Computation of the steady-state

Main contribution
Efficient computation in finite time of stationary samples

3 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Long Run Evolution and Time Scaling

1

Probability
150100500

4

3

2

Steady-State

Statistical Synthesis

0 100 200 300 400 500 600 700 800 900 1000

State of the System
5.5

5

4.5

4

3.5

3

2.5

2

1.5

Typical trajectory

1

6

Performance of the system⇒ analysis of the steady-state

Computation of the steady-state

Main contribution
Efficient computation in finite time of stationary samples

3 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Long Run Evolution and Time Scaling

1

Probability
150100500

4

3

2

Steady-State

Statistical Synthesis

0 100 200 300 400 500 600 700 800 900 1000

State of the System
5.5

5

4.5

4

3.5

3

2.5

2

1.5

Typical trajectory

1

6

Performance of the system⇒ analysis of the steady-state

Computation of the steady-state

Main contribution
Efficient computation in finite time of stationary samples

3 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Load sharing model

Parallel independent queues

cc cc

µ1

λ1

µ2

λ2

µ3

λ3

µ4

λ4

ν1 ν2 ν3 ν4

State space: number of tasks in each queue; X1 × · · · × XK
Dynamics: events driven by Poisson process

Generation of a new task in a queue, with rate λ

Task completion, with rate µ

Control, with rate ν

Uniformization⇒ Stochastic Recurence Equation Xn+1 = Φ(Xn,En+1)

4 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Application

Push on arrival

Input Load

Hierarchical Load Sharing

Scaling Toward million of nodes

Policy: Threshold Push on Arrival with
priority list of 8 nodes

number of queues

 0.001

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000 100000 1e+06

M
ea

n
 S

am
p

li
n

g
 T

im
e

(s
)

 0.0001

The time to simulate such system is linear
with the number of nodes

[ASMTA 2010]

5 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Modeling and Analysis of Computer Systems

Complex system

System

Basic model assumptions

System :
- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

Understand “typical” states
- steady-state estimation
- ergodic simulation
- state space exploring techniques

6 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Modeling and Analysis of Computer Systems

Complex system

output

Environment

Input of the system

System

System

Basic model assumptions

System :
- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

Understand “typical” states
- steady-state estimation
- ergodic simulation
- state space exploring techniques

6 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Modeling and Analysis of Computer Systems

Complex system

output

Environment

Input of the system

System

System

Basic model assumptions

System :
- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

Understand “typical” states
- steady-state estimation
- ergodic simulation
- state space exploring techniques

6 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Modeling and Analysis of Computer Systems

Complex system

output

Environment

Input of the system

System

System

Basic model assumptions

System :
- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

Understand “typical” states
- steady-state estimation
- ergodic simulation
- state space exploring techniques

6 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Convergence In Law

Let {Xn}n∈N a homogeneous, irreducible and aperiodic Markov chain taking
values in a discrete state X then

The following limits exist (and do not depend on i)

lim
n→+∞

P(Xn = j|X0 = i) = πj ;

π is the unique probability vector invariant by P

πP = π;

The convergence is rapid (geometric); there is C > 0 and 0 < α < 1 such that

||P(Xn = j|X0 = i)− πj || 6 C.αn.

Denote

Xn
L−→ X∞;

with X∞ with law π
π is the steady-state probability associated to the chain

7 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Interpretation

Equilibrium equation

j,j

j

i1

i2

i3

i4

k1

k2

k3

p

p

p

p

p

p

p

p

i1,j

i2,j

i3,j

i4,j

j,k1

j,k2

j,k3

Probability to enter j =probability to exit j
balance equation∑

i 6=j

πipi,j =
∑
k 6=j

πjpj,k = πj

∑
k 6=j

pj,k = πj (1− pj,j)

π
def
= steady-state.

If π0 = π the process is stationary (πn = π)

8 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Interpretation

Equilibrium equation

j,j

j

i1

i2

i3

i4

k1

k2

k3

p

p

p

p

p

p

p

p

i1,j

i2,j

i3,j

i4,j

j,k1

j,k2

j,k3

Probability to enter j =probability to exit j
balance equation∑

i 6=j

πipi,j =
∑
k 6=j

πjpj,k = πj

∑
k 6=j

pj,k = πj (1− pj,j)

π
def
= steady-state.

If π0 = π the process is stationary (πn = π)

8 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Interpretation

Equilibrium equation

j,j

j

i1

i2

i3

i4

k1

k2

k3

p

p

p

p

p

p

p

p

i1,j

i2,j

i3,j

i4,j

j,k1

j,k2

j,k3

Probability to enter j =probability to exit j
balance equation∑

i 6=j

πipi,j =
∑
k 6=j

πjpj,k = πj

∑
k 6=j

pj,k = πj (1− pj,j)

π
def
= steady-state.

If π0 = π the process is stationary (πn = π)

8 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Ergodic Theorem

Let {Xn}n∈N a homogeneous aperiodic and irreducible Markov chain on X
with steady-state probability π then
- for all function f satisfying Eπ|f | < +∞

1
N

N∑
n=1

f (Xn)
P−p.s.−→ Eπf .

generalization of the strong law of large numbers
- If Eπf = 0 then there exist σ such that

1
σ
√

N

N∑
n=1

f (Xn)
L−→ N (0, 1).

generalization of the central limit theorem

9 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Fundamental question

Given a function f (cost, reward, performance,...) estimate

Eπf

and give the quality of this estimation.

10 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Solving methods

Solving π = πP

Analytical/approximation methods

Formal methods N 6 50
Maple, Sage,...

Direct numerical methods N 6 1000
Mathematica, Scilab,...

Iterative methods with preconditioning N 6 100, 000
Marca,...

Adapted methods (structured Markov chains) N 6 1, 000, 000
PEPS,...

Monte-Carlo simulation N > 107

Postprocessing of the stationary distribution

Computation of rewards (expected stationary functions)
Utilization, response time,...

11 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Ergodic Sampling(1)

Ergodic sampling algorithm

Representation : transition fonction

Xn+1 = Φ(Xn, en+1).

x ← x0

{choice of the initial state at time =0}
n = 0;
repeat

n ← n + 1;
e ← Random_event();
x ← Φ(x , e);
Store x
{computation of the next state Xn+1}

until some empirical criteria
return the trajectory

Problem : Stopping criteria

12 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Ergodic Sampling(2)

Start-up

Convergence to stationary behavior

lim
n→+∞

P(Xn = x) = πx .

Warm-up period : Avoid initial state dependence
Estimation error :

||P(Xn = x)− πx || 6 Cλn
2.

λ2 second greatest eigenvalue of the transition matrix
- bounds on C and λ2 (spectral gap)
- cut-off phenomena

λ2 and C non reachable in practice
(complexity equivalent to the computation of π)
some known results (Birth and Death processes)

13 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Ergodic Sampling(3)

Estimation quality

Ergodic theorem :

lim
n→+∞

1
n

n∑
i=1

f (Xi) = Eπf .

Length of the sampling : Error control (CLT theorem)

Complexity

Complexity of the transition function evaluation (computation of Φ(x , .))
Related to the stabilization period + Estimation time

14 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Ergodic sampling(4)

Typical trajectory
States

0 time

Warm−up period Estimation period

15 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Replication Method

Typical trajectory
States

0 time
replication periods

Sample of independent states
Drawback : length of the replication period (dependence from initial state)

16 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Regeneration Method

Typical trajectory
States

0 time

start−up period

regeneration period

R1 R2 R3

Sample of independent trajectories
Drawback : length of the regeneration period (choice of the regenerative
state)

17 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Outline

1 Motivation

2 Discrete generation

3 Perfect sampling

4 Case Studies

18 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Event Modelling

Multidimensional state space : X = X1 × · · · × XK with Xi = {0, · · · ,Ci}.
Event e :
; transition function Φ(., e); (skip rule)
; Poisson process λe

States

Events

e1

e2

e3

e4

Time

1781-1840

19 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Event modelling

Uniformization

Λ =
∑

e

λe and P(event e) =
λe

Λ
;

Trajectory : {en}n∈Z i.i.d. sequence.
⇒ Homogeneous Discrete Time Markov Chain [Bremaud 99]
Xn+1 = Φ(Xn, en+1).

Generation among a small finite space E : O(1)

20 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Generating random objects

Denote by X the generated object (X is a random variable)
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

Expectation (average, mean)

EX =
∑

k

k .P(X = k) =
∑

k

kpk .

Variance and standard deviation

VarX =
∑

k

(k − EX)2P(X = k) = EX 2 − (EX)2.

σ(X) =
√
VarX .

21 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Generating random objects

Denote by X the generated object (X is a random variable)
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

Expectation (average, mean)

EX =
∑

k

k .P(X = k) =
∑

k

kpk .

Variance and standard deviation

VarX =
∑

k

(k − EX)2P(X = k) = EX 2 − (EX)2.

σ(X) =
√
VarX .

21 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Generating random objects

Denote by X the generated object (X is a random variable)
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

Expectation (average, mean)

EX =
∑

k

k .P(X = k) =
∑

k

kpk .

Variance and standard deviation

VarX =
∑

k

(k − EX)2P(X = k) = EX 2 − (EX)2.

σ(X) =
√
VarX .

21 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Generating random objects

Denote by X the generated object (X is a random variable)
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

Expectation (average, mean)

EX =
∑

k

k .P(X = k) =
∑

k

kpk .

Variance and standard deviation

VarX =
∑

k

(k − EX)2P(X = k) = EX 2 − (EX)2.

σ(X) =
√
VarX .

21 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

Random bit generator (see previous lecture)

drand48 manpage

double drand48(void) (48 bits encoded in 8 bytes)
The rand48() family of functions generates pseudo-random numbers using a
linear congruential algorithm working on integers 48 bits in size. The
particular formula employed is r(n+1) = (a * r(n) + c) mod m where the default
values are for the multiplicand a = 0xfdeece66d = 25214903917 and the
addend c = 0xb = 11. The modulo is always fixed at m = 2 ** 48. r(0) is called
the seed of the random number generator.

The sequence of returned values from a sequence of calls to the
random function is modeled by a sequence of independent random
variables uniformly distributed on the real interval [0, 1[.

22 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

Random bit generator (see previous lecture)

drand48 manpage

double drand48(void) (48 bits encoded in 8 bytes)
The rand48() family of functions generates pseudo-random numbers using a
linear congruential algorithm working on integers 48 bits in size. The
particular formula employed is r(n+1) = (a * r(n) + c) mod m where the default
values are for the multiplicand a = 0xfdeece66d = 25214903917 and the
addend c = 0xb = 11. The modulo is always fixed at m = 2 ** 48. r(0) is called
the seed of the random number generator.

The sequence of returned values from a sequence of calls to the
random function is modeled by a sequence of independent random
variables uniformly distributed on the real interval [0, 1[.

22 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

0 1

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

23 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

U1

0 1

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

23 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

U2U1

0 1

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

23 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

U3U2U1

0 1

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

23 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

U4 U3U2U1

0 1

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

23 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

U5U4 U3U2U1

0 1

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

23 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

10 ba

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

23 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

0 1
P(U ∈ [a,b[) = (b − a)

a b

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

23 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

0 1
P(U ∈ [a,b[) = (b − a)

a b

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

23 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

The random function

0 1
P(U ∈ [a,b[) = (b − a)

a b

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if

23 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Practical example : Web server

Types of request

1 Professional customer, consult
2 Professional customer, purchase
3 Non professional customer,

consult
4 Non professional customer,

purchase
5 Adminstration

Build an algorithm that provides a set of requests according the observed
distribution.

24 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Practical example : Web server

Types of request

1 Professional customer, consult
2 Professional customer, purchase
3 Non professional customer,

consult
4 Non professional customer,

purchase
5 Adminstration

Repartition of requests

Objects types

5%

10%

15%

20%

25%

30%

35%

P+C P+B NP+C NP+B A

Build an algorithm that provides a set of requests according the observed
distribution.

24 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Practical example : Web server

Types of request

1 Professional customer, consult
2 Professional customer, purchase
3 Non professional customer,

consult
4 Non professional customer,

purchase
5 Adminstration

Repartition of requests

Objects types

5%

10%

15%

20%

25%

30%

35%

P+C P+B NP+C NP+B A

Build an algorithm that provides a set of requests according the observed
distribution.

24 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction

i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k; i=i+1;

end for
end for

Generation

Generate uniformly on the set
{0, 1, · · · ,m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom();
i= (int) floor(u*m)
return T[i]

25 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction

i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k; i=i+1;

end for
end for

Generation

Generate uniformly on the set
{0, 1, · · · ,m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom();
i= (int) floor(u*m)
return T[i]

25 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction

i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k; i=i+1;

end for
end for

Generation

Generate uniformly on the set
{0, 1, · · · ,m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom();
i= (int) floor(u*m)
return T[i]

25 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction

i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k; i=i+1;

end for
end for

Generation

Generate uniformly on the set
{0, 1, · · · ,m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom();
i= (int) floor(u*m)
return T[i]

25 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Inverse of PDF
P(X 6 x)

0

1

1 2 3 K − 1 K

Cumulative distribution function

x
p1

p2

p3

· · ·

Generation

Divide [0, 1[in intervals with length pk

Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX) steps
Memory cost : O(1)

Inverse function algorithm

s=0; k=0;
u=random()
while u >s do

k=k+1
s=s+pk

end while
return k

26 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Inverse of PDF
P(X 6 x)

0

1

1 2 3 K − 1 K

Cumulative distribution function

x
p1

p2

p3

· · ·

Generation

Divide [0, 1[in intervals with length pk

Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX) steps
Memory cost : O(1)

Inverse function algorithm

s=0; k=0;
u=random()
while u >s do

k=k+1
s=s+pk

end while
return k

26 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Searching optimization

Optimization methods

pre-compute the pdf in a table

rank objects by decreasing probability

use a dichotomy algorithm

use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually O(K) could be huge
-

27 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Searching optimization

Optimization methods

pre-compute the pdf in a table

rank objects by decreasing probability

Random()

2/20 1/20

13/20 15/20 17/20 18/20

4/20 1/20

19/20 20/2010/206/20

2/206/20 3/20 1/20

use a dichotomy algorithm

use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually O(K) could be huge
-

27 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Searching optimization

Optimization methods

pre-compute the pdf in a table

rank objects by decreasing probability

Random()

2/20 1/20

13/20 15/20 17/20 18/20

4/20 1/20

19/20 20/2010/206/20

2/206/20 3/20 1/20

use a dichotomy algorithm

use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually O(K) could be huge
-

27 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Optimality

1/201/20 3/20 2/20 4/20 6/20 1/20 2/20

Number of comparisons

Binary search tree structure

EN =
K∑

k=1

pk .lk = 3, 75, Entropy =
K∑

k=1

pk (− log2 pk) = 3.70

28 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Optimality

1/20

10/20

11/20

14/20

8/20

4/20

2/20

1/20

6/20

3/20

4/20

2/20

2/20 1/201/20

2/20 1/201/206/204/202/203/201/20

Number of comparisons

Binary search tree structure

EN =
K∑

k=1

pk .lk = 3, 75, Entropy =
K∑

k=1

pk (− log2 pk) = 3.70

28 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Optimality

1/20

10/20

11/20

14/20

8/20

4/20

2/20

1/20

6/20

3/20

4/20

2/20

2/20 1/201/20

2/20 1/201/206/204/202/203/201/20

Number of comparisons

Binary search tree structure

EN =
K∑

k=1

pk .lk = 3, 75, Entropy =
K∑

k=1

pk (− log2 pk) = 3.70

28 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Base of the method

Generate uniformly on A accept when
point is in B.

A

B

Rejection algorithm

repeat
x = uniform-generate(A)

until x∈ B
return x

Complexity

Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa
.

29 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Base of the method

Generate uniformly on A accept when
point is in B.

A

B

U1

Rejection algorithm

repeat
x = uniform-generate(A)

until x∈ B
return x

Complexity

Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa
.

29 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Base of the method

Generate uniformly on A accept when
point is in B.

A

B

U1

Rejection algorithm

repeat
x = uniform-generate(A)

until x∈ B
return x

Complexity

Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa
.

29 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Base of the method

Generate uniformly on A accept when
point is in B.

A

B

U1
U2

Rejection algorithm

repeat
x = uniform-generate(A)

until x∈ B
return x

Complexity

Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa
.

29 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Base of the method

Generate uniformly on A accept when
point is in B.

A

B

U1
U2

Rejection algorithm

repeat
x = uniform-generate(A)

until x∈ B
return x

Complexity

Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa
.

29 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Base of the method

Generate uniformly on A accept when
point is in B.

A

B

U1
U2

accept

U3

Rejection algorithm

repeat
x = uniform-generate(A)

until x∈ B
return x

Complexity

Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa
.

29 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Base of the method

Generate uniformly on A accept when
point is in B.

A

B

U1
U2

accept

U3

Rejection algorithm

repeat
x = uniform-generate(A)

until x∈ B
return x

Complexity

Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa
.

29 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Base of the method

Generate uniformly on A accept when
point is in B.

A

B

U1
U2

accept

U3

Rejection algorithm

repeat
x = uniform-generate(A)

until x∈ B
return x

Complexity

Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa
.

29 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Rejection adaptation

K objects

h > max
k

pk

Generate uniformly on the surface K × h
Accept if the point is under the distribution

Rejection algorithm

repeat
k= alea(K)

until Random . h 6 pk

return k
alea(K) generate uniformly a
number in {1, · · · ,K}

Complexity

Acceptance probability pa = 1
hK

N number of iterations EN = 1
pa

= hK .
Minimal complexity for h∗ = maxk pk .
Uniform distribution⇒ no rejection
Interest : distribution near the uniform distribution

30 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Rejection adaptation

K objects

h > max
k

pk

Generate uniformly on the surface K × h
Accept if the point is under the distribution

Rejection algorithm

repeat
k= alea(K)

until Random . h 6 pk

return k
alea(K) generate uniformly a
number in {1, · · · ,K}

Complexity

Acceptance probability pa = 1
hK

N number of iterations EN = 1
pa

= hK .
Minimal complexity for h∗ = maxk pk .
Uniform distribution⇒ no rejection
Interest : distribution near the uniform distribution

30 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection technique

Rejection adaptation

K objects

h > max
k

pk

Generate uniformly on the surface K × h
Accept if the point is under the distribution

Rejection algorithm

repeat
k= alea(K)

until Random . h 6 pk

return k
alea(K) generate uniformly a
number in {1, · · · ,K}

Complexity

Acceptance probability pa = 1
hK

N number of iterations EN = 1
pa

= hK .
Minimal complexity for h∗ = maxk pk .
Uniform distribution⇒ no rejection
Interest : distribution near the uniform distribution

30 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection Method Applied to Histogram

3/20 2/20 4/20 6/20 1/20 2/20 1/201/20

31 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection Method Applied to Histogram

6/20

2/203/20 2/20 4/20 6/201/20 1/20 1/20

31 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection Method Applied to Histogram

6/20

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Alea(8)

31 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Rejection Method Applied to Histogram

6/20

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Alea(8)

Random()*6/20

31 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing Method

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

1/8

32 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing Method

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

1/8

32 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing Method

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

1/8

32 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing Method

1/8

32 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing Method

1/8

32 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing Method

1/8

32 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing Method

1/8

32 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing technique

Combine uniform and alias value when rejection

Initialization

K objects
list L=∅,U=∅;
for k=1; k6 K; k++ do

P[k]=pk

if P[k] > 1
K then

U=U+{k};
else

L=L+{k};
end if

end for

Alias and threshold tables

while L 6= ∅ do
Extract k ∈ L
Extract i ∈ U
S[k]=P[k]
A[k]=i
P[i] = P[i] - (1

K -P[k])
if P[i] > 1

K then
U=U+{i};

else
L=L+{i};

end if
end while

33 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing technique

Combine uniform and alias value when rejection

Initialization

K objects
list L=∅,U=∅;
for k=1; k6 K; k++ do

P[k]=pk

if P[k] > 1
K then

U=U+{k};
else

L=L+{k};
end if

end for

Alias and threshold tables

while L 6= ∅ do
Extract k ∈ L
Extract i ∈ U
S[k]=P[k]
A[k]=i
P[i] = P[i] - (1

K -P[k])
if P[i] > 1

K then
U=U+{i};

else
L=L+{i};

end if
end while

33 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing technique : generation

Generation

k=alea(K)
if Random . 1

K 6 S[k] then
return k

else
return A[k]

end if

Complexity

Computation time :
- O(K) for pre-computation
- O(1) for generation
Memory :
- threshold O(K) (real numbers as probability)
- alias O(K) (integers indexes in a tables)

34 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Aliasing technique : generation

Generation

k=alea(K)
if Random . 1

K 6 S[k] then
return k

else
return A[k]

end if

Complexity

Computation time :
- O(K) for pre-computation
- O(1) for generation
Memory :
- threshold O(K) (real numbers as probability)
- alias O(K) (integers indexes in a tables)

34 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Outline

1 Motivation

2 Discrete generation

3 Perfect sampling

4 Case Studies

35 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Perfect Sampling of Complex Markov Chains

Applications

Finite queuing networks

Call centers

Grid/cluster scheduling

Kitting systems

Rare event estimation

Statistical verification of programs

Modeling

Poisson systems [Brémaud 1999]

Discrete vector state-space X
Event based models

Xn+1 = Φ(Xn, en+1) , en ∈ E

Stochastic recurrence equation

Independent events (iid)

Provide independent samples of stationary states.

PSI2 : a Perfect Sampler

Library of monotone events

Simulation kernel

Efficient simulator : polynomial in the model dimension

36 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Perfect Sampling of Complex Markov Chains

Applications

Finite queuing networks

Call centers

Grid/cluster scheduling

Kitting systems

Rare event estimation

Statistical verification of programs

Modeling

Poisson systems [Brémaud 1999]

Discrete vector state-space X
Event based models

Xn+1 = Φ(Xn, en+1) , en ∈ E

Stochastic recurrence equation

Independent events (iid)

Provide independent samples of stationary states.

PSI2 : a Perfect Sampler

Library of monotone events

Simulation kernel

Efficient simulator : polynomial in the model dimension

36 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Perfect Sampling of Complex Markov Chains

Applications

Finite queuing networks

Call centers

Grid/cluster scheduling

Kitting systems

Rare event estimation

Statistical verification of programs

Modeling

Poisson systems [Brémaud 1999]

Discrete vector state-space X
Event based models

Xn+1 = Φ(Xn, en+1) , en ∈ E

Stochastic recurrence equation

Independent events (iid)

Provide independent samples of stationary states.

PSI2 : a Perfect Sampler

Library of monotone events

Simulation kernel

Efficient simulator : polynomial in the model dimension

36 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Perfect Sampling of Complex Markov Chains

Applications

Finite queuing networks

Call centers

Grid/cluster scheduling

Kitting systems

Rare event estimation

Statistical verification of programs

Modeling

Poisson systems [Brémaud 1999]

Discrete vector state-space X
Event based models

Xn+1 = Φ(Xn, en+1) , en ∈ E

Stochastic recurrence equation

Independent events (iid)

Provide independent samples of stationary states.

PSI2 : a Perfect Sampler

Library of monotone events

Simulation kernel

Efficient simulator : polynomial in the model dimension

36 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Perfect Sampling Principle

All the trajectories

Time

0

−i

−j

−τ ∗

Stationary Process

X

X

X

X

Zi

Zj

Z−τ∗ = {X0}

Z0 = X

collapse

Synchronizing pattern =⇒ finite backward scheme τ∗ <∞

37 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Perfect Sampling Principle

All the trajectories

Time

0

−i

−j

−τ ∗

Stationary Process

X

X

X

X

Zi

Zj

Z−τ∗ = {X0}

Z0 = X

collapse

Synchronizing pattern =⇒ finite backward scheme τ∗ <∞

37 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Monotone Perfect Sampling

time

X

X

−(n + 1)

−n

same convergence condition
complexity in O(Eτ∗)⇒ polynomial in model dimension

[QEST 2008]

38 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Monotone Perfect Sampling

X

X

−(n + 1)

−n
time

same convergence condition
complexity in O(Eτ∗)⇒ polynomial in model dimension

[QEST 2008]

38 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Monotone Perfect Sampling

X

X

time
−n

−(n + 1)

m′M

m

M ′

same convergence condition
complexity in O(Eτ∗)⇒ polynomial in model dimension

[QEST 2008]

38 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Monotone Perfect Sampling

−(n + 1)

X

X

time
−n

m′M

m

M ′

same convergence condition
complexity in O(Eτ∗)⇒ polynomial in model dimension

[QEST 2008]

38 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Panorama : Markov models

Finite Monotone Systems

- large class of models : index based routing finite queueing networks
- time complexity : polynomial in the dimension of the system

Finite non-monotone system
Transition function
- almost monotone systems : bounding process
- exhaustive : splitting
- piecewise linear transitions

State space extension

Infinite systems
Monotone transition function

Non-monotone transitions

39 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Envelopes Perfect Sampling

time

X

X

−(n + 1)

−n

Synchronizing pattern for envelopes
complexity unknown but practically efficient

40 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Envelopes Perfect Sampling

X

X

−n
time

−(n + 1)

Synchronizing pattern for envelopes
complexity unknown but practically efficient

40 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Envelopes Perfect Sampling

X

X

−(n + 1)

−n
time

m′

M ′

Synchronizing pattern for envelopes
complexity unknown but practically efficient

40 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Envelopes Perfect Sampling

time

X

X

−(n + 1)

−n

m′

M ′

Synchronizing pattern for envelopes
complexity unknown but practically efficient

40 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Envelopes and Splitting Perfect Sampling

Exhaustive state simulation

−i

−j

−τ ∗

Stationary Process

X

X

X

X

Splitting point

Envelope algorith
m

Time

0

Guarantees the convergence
complexity unknown but practically more efficient

[VALUETOOLS 2008, QEST 2010]

41 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Computation of Envelopes

Join the Shortest Weighted Queue State space

negative customers, fork and join, batch routing
general complexity polynomial (linear programs) but practically⇒
computable less tight bounds

[Performance Evaluation, 2012]

42 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Outline

1 Motivation

2 Discrete generation

3 Perfect sampling

4 Case Studies

43 / 44Performance Evaluation : Probabilistic simulation

Motivation Discrete generation Perfect sampling Case Studies

Case Studies

44 / 44Performance Evaluation : Probabilistic simulation

	Motivation
	Convergence
	Solving
	Simulation

	Discrete generation
	Perfect sampling
	Case Studies

