Performance Evaluation : Probabilistic simulation Stochastic Modeling of Computer Systems MOSIG Master 2

Jean-Marc Vincent

Laboratoire LIG, projet Inria-Mescal UniversitéJoseph Fourier Jean-Marc.Vincent@imag.fr

2012 November 5

Motivation

- Convergence
- Solving
- Simulation
- 2 Discrete generation
- Perfect sampling
- Case Studies

Case Studies

Long Run Evolution and Time Scaling

Performance of the system \Rightarrow analysis of the steady-state

Computation of the steady-state

Main contribution Efficient computation in finite time of stationary samples

Long Run Evolution and Time Scaling

Performance of the system \Rightarrow analysis of the steady-state

Computation of the steady-state

Main contribution Efficient computation in finite time of stationary samples

Long Run Evolution and Time Scaling

Performance of the system \Rightarrow analysis of the steady-state

Computation of the steady-state

Main contribution

Efficient computation in finite time of stationary samples

Load sharing model

State space: number of tasks in each queue; $X_1 \times \cdots \times X_K$ **Dynamics**: events driven by Poisson process

- Generation of a new task in a queue, with rate λ
- Task completion, with rate μ
- Control, with rate ν

Uniformization \Rightarrow Stochastic Recurence Equation $X_{n+1} = \Phi(X_n, E_{n+1})$

Application

Scaling Toward million of nodes

Policy: Threshold Push on Arrival with priority list of 8 nodes

The time to simulate such system is linear with the number of nodes

Complex system

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time
- Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

- steady-state estimation
- ergodic simulation
- state space exploring techniques

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time
- Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

- steady-state estimation
- ergodic simulation
- state space exploring techniques

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time
- Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

- steady-state estimation
- ergodic simulation
- state space exploring techniques

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time
- Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

- steady-state estimation
- ergodic simulation
- state space exploring techniques

Convergence In Law

Let $\{X_n\}_{n\in\mathbb{N}}$ a homogeneous, irreducible and aperiodic Markov chain taking values in a discrete state \mathcal{X} then

• The following limits exist (and do not depend on *i*)

$$\lim_{n\to+\infty}\mathbb{P}(X_n=j|X_0=i)=\pi_j;$$

• π is the unique probability vector invariant by *P*

$$\pi P = \pi;$$

• The convergence is rapid (geometric); there is C > 0 and $0 < \alpha < 1$ such that

$$||\mathbb{P}(X_n = j|X_0 = i) - \pi_j|| \leq C.\alpha^n$$

Denote

$$X_n \xrightarrow{\mathcal{L}} X_\infty;$$

with X_{∞} with law π π is the **steady-state probability** associated to the chain

Case Studies

Interpretation

Equilibrium equation

Probability to enter *j* =probability to exit *j* balance equation

$$\sum_{i\neq j} \pi_i p_{i,j} = \sum_{k\neq j} \pi_j p_{j,k} = \pi_j \sum_{k\neq j} p_{j,k} = \pi_j (1 - p_{j,j})$$

 $\pi \stackrel{\text{der}}{=} \text{steady-state.}$ If $\pi_0 = \pi$ the process is stationary ($\pi_n = \tau$

Case Studies

Interpretation

Equilibrium equation

Probability to enter *j* =probability to exit *j* balance equation

$$\sum_{i\neq j} \pi_i \boldsymbol{p}_{i,j} = \sum_{k\neq j} \pi_j \boldsymbol{p}_{j,k} = \pi_j \sum_{k\neq j} \boldsymbol{p}_{j,k} = \pi_j (1 - \boldsymbol{p}_{j,j})$$

 $\pi \stackrel{\text{def}}{=}$ steady-state. If $\pi_0 = \pi$ the process is stationary (π_n

Case Studies

Interpretation

Equilibrium equation

Probability to enter *j* =probability to exit *j* balance equation

$$\sum_{i\neq j} \pi_i \boldsymbol{p}_{i,j} = \sum_{k\neq j} \pi_j \boldsymbol{p}_{j,k} = \pi_j \sum_{k\neq j} \boldsymbol{p}_{j,k} = \pi_j (1 - \boldsymbol{p}_{j,j})$$

 $\pi \stackrel{\text{def}}{=}$ steady-state. If $\pi_0 = \pi$ the process is stationary ($\pi_n = \pi$)

Ergodic Theorem

Let $\{X_n\}_{n\in\mathbb{N}}$ a homogeneous aperiodic and irreducible Markov chain on \mathcal{X} with steady-state probability π then

- for all function f satisfying $\mathbb{E}_{\pi}|f| < +\infty$

$$\frac{1}{N}\sum_{n=1}^{N}f(X_n)\stackrel{P-p.s.}{\longrightarrow}\mathbb{E}_{\pi}f.$$

generalization of the strong law of large numbers

- If $\mathbb{E}_{\pi} f = 0$ then there exist σ such that

$$\frac{1}{\sigma\sqrt{N}}\sum_{n=1}^{N}f(X_n)\overset{\mathcal{L}}{\longrightarrow}\mathcal{N}(0,1).$$

generalization of the central limit theorem

Case Studies

Fundamental question

Given a function f (cost, reward, performance,...) estimate $\mathbb{E}_{\pi}f$ and give the quality of this estimation.

Solving methods

Solving $\pi = \pi P$

- Analytical/approximation methods
- Formal methods N ≤ 50 Maple, Sage,...
- Direct numerical methods N ≤ 1000 Mathematica, Scilab,...
- Iterative methods with preconditioning $N \leq 100,000$ Marca,...
- Adapted methods (structured Markov chains) $N \leq 1,000,000$ PEPS,...
- Monte-Carlo simulation $N \ge 10^7$

Postprocessing of the stationary distribution

Computation of rewards (expected stationary functions) Utilization, response time,...

Ergodic Sampling(1)

Ergodic sampling algorithm

Representation : transition fonction

$$X_{n+1} = \Phi(X_n, e_{n+1}).$$

```
x \leftarrow x_0
{choice of the initial state at time =0}
n = 0;
repeat
n \leftarrow n + 1;
e \leftarrow Random\_event();
x \leftarrow \Phi(x, e);
Store x
{computation of the next state X_{n+1}}
until some empirical criteria
return the trajectory
```

Problem : Stopping criteria

Ergodic Sampling(2)

Start-up

Convergence to stationary behavior

$$\lim_{n\to+\infty}\mathbb{P}(X_n=x)=\pi_x.$$

Warm-up period : Avoid initial state dependence Estimation error :

 $||\mathbb{P}(X_n = x) - \pi_x|| \leq C\lambda_2^n.$

 λ_2 second greatest eigenvalue of the transition matrix

- bounds on C and λ_2 (spectral gap)
- cut-off phenomena

 λ_2 and *C* non reachable in practice (complexity equivalent to the computation of π) some known results (Birth and Death processes)

Ergodic Sampling(3)

Estimation quality

Ergodic theorem :

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{i=1}^n f(X_i)=\mathbb{E}_{\pi}f.$$

Length of the sampling : Error control (CLT theorem)

Complexity

Complexity of the transition function evaluation (computation of $\Phi(x, .)$) Related to the stabilization period + Estimation time

Case Studies

Ergodic sampling(4)

Replication Method

Sample of independent states Drawback : length of the replication period (dependence from initial state)

Regeneration Method

Sample of independent trajectories Drawback : length of the regeneration period (choice of the regenerative state)

Case Studies

Event Modelling

Multidimensional state space : $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_K$ with $\mathcal{X}_i = \{0, \cdots, C_i\}$. Event e:

 \rightsquigarrow transition function $\Phi(., e)$; (skip rule)

G

Event modelling

Uniformization

$$\Lambda = \sum_{e} \lambda_{e} \text{ and } \mathbb{P}(event \ e) = rac{\lambda_{e}}{\Lambda};$$

Trajectory : $\{e_n\}_{n \in \mathbb{Z}}$ i.i.d. sequence. \Rightarrow Homogeneous Discrete Time Markov Chain [Bremaud 99] $X_{n+1} = \Phi(X_n, e_{n+1}).$

Generation among a small finite space \mathcal{E} : $\mathcal{O}(1)$

Denote by *X* the generated object (*X* is a random variable) Distribution (proportion of observations, input of the load injector)

$$p_k = \mathbb{P}(X = k).$$

Remarks :

$$0 \leqslant p_i \leqslant 1; \quad \sum_k p_k = 1.$$

Expectation (average, mean)

$$\mathbb{E} X = \sum_{k} k.\mathbb{P}(X=k) = \sum_{k} kp_{k}.$$

Variance and standard deviation

$$\mathbb{V}arX = \sum_{k} (k - \mathbb{E}X)^2 \mathbb{P}(X = k) = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

 $\sigma(X) = \sqrt{\mathbb{V}arX}.$

Denote by *X* the generated object (*X* is a random variable) Distribution (proportion of observations, input of the load injector)

$$p_k = \mathbb{P}(X = k).$$

Remarks :

$$0 \leqslant p_i \leqslant 1; \quad \sum_k p_k = 1.$$

Expectation (average, mean)

$$\mathbb{E} X = \sum_{k} k.\mathbb{P}(X = k) = \sum_{k} kp_{k}.$$

Variance and standard deviation

$$\mathbb{V}arX = \sum_{k} (k - \mathbb{E}X)^2 \mathbb{P}(X = k) = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

 $\sigma(X) = \sqrt{\mathbb{V}arX}.$

Denote by *X* the generated object (*X* is a random variable) Distribution (proportion of observations, input of the load injector)

$$p_k = \mathbb{P}(X = k).$$

Remarks :

$$0 \leqslant p_i \leqslant 1; \quad \sum_k p_k = 1.$$

Expectation (average, mean)

$$\mathbb{E} X = \sum_{k} k.\mathbb{P}(X = k) = \sum_{k} k p_{k}.$$

Variance and standard deviation

$$\mathbb{V}arX = \sum_{k} (k - \mathbb{E}X)^2 \mathbb{P}(X = k) = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

 $\sigma(X) = \sqrt{\mathbb{V}arX}.$

Denote by *X* the generated object (*X* is a random variable) Distribution (proportion of observations, input of the load injector)

$$p_k = \mathbb{P}(X = k).$$

Remarks :

$$0 \leqslant p_i \leqslant 1; \quad \sum_k p_k = 1.$$

Expectation (average, mean)

$$\mathbb{E} X = \sum_{k} k.\mathbb{P}(X = k) = \sum_{k} kp_{k}.$$

Variance and standard deviation

$$\mathbb{V}arX = \sum_{k} (k - \mathbb{E}X)^2 \mathbb{P}(X = k) = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

$$\sigma(X) = \sqrt{\mathbb{V}arX}.$$

Random bit generator (see previous lecture)

drand48 manpage

double drand48(void) (48 bits encoded in 8 bytes) The rand48() family of functions generates pseudo-random numbers using a linear congruential algorithm working on integers 48 bits in size. The particular formula employed is $r(n+1) = (a * r(n) + c) \mod m$ where the default values are for the multiplicand a = 0xfdeece66d = 25214903917 and the addend c = 0xb = 11. The modulo is always fixed at m = 2 * 48. r(0) is called the seed of the random number generator.

The sequence of returned values from a sequence of calls to the random function is modeled by a sequence of independent random variables uniformly distributed on the real interval [0, 1].

Random bit generator (see previous lecture)

drand48 manpage

double drand48(void) (48 bits encoded in 8 bytes) The rand48() family of functions generates pseudo-random numbers using a linear congruential algorithm working on integers 48 bits in size. The particular formula employed is $r(n+1) = (a * r(n) + c) \mod m$ where the default values are for the multiplicand a = 0xfdeece66d = 25214903917 and the addend c = 0xb = 11. The modulo is always fixed at m = 2 * 48. r(0) is called the seed of the random number generator.

The sequence of returned values from a sequence of calls to the random function is modeled by a sequence of independent random variables uniformly distributed on the real interval [0, 1[.

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom() if $u \leq \frac{1}{2}$ then return Head else return Tail end if

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom() if $u \leq \frac{1}{2}$ then return Head else return Tail end if

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom() if $u \leq \frac{1}{2}$ then return Head else return Tail end if

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom() if $u \leq \frac{1}{2}$ then return Head else return Tail end if

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom() if u ≤ ½ then return Head else return Tail end if

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom() if $u \leq \frac{1}{2}$ then return Head else return Tail end if

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in a set with a good probability conserving.

Example : flip a coin

u= r andom() if $u \leq \frac{1}{2}$ then return Head else return Tail end if

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in a set with a good probability conserving.

Example : flip a coin

```
u= r andom()

if u \leq \frac{1}{2} then

return Head

else

return Tail

end if
```


Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in a set with a good probability conserving.

Example : flip a coin

```
u= r andom()

if u \leq \frac{1}{2} then

return Head

else

return Tail

end if
```


Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[in a set with a good probability conserving.

Example : flip a coin

 $\begin{array}{l} u=r \; andom() \\ \text{if} \; u \leqslant \frac{1}{2} \; \text{then} \\ \text{return Head} \\ \text{else} \\ \text{return Tail} \\ \text{end if} \end{array}$

Practical example : Web server

Types of request

- Professional customer, consult
- Professional customer, purchase
- Non professional customer, consult
- Non professional customer, purchase
- 6 Adminstration

Build an algorithm that provides a set of requests according the observed distribution.

Practical example : Web server

Types of request

- Professional customer, consult
- Professional customer, purchase
- Non professional customer, consult
- Non professional customer, purchase
- Adminstration

Build an algorithm that provides a set of requests according the observed distribution.

Practical example : Web server

Types of request

- Professional customer, consult
- Professional customer, purchase
- Non professional customer, consult
- Non professional customer, purchase
- Adminstration

Build an algorithm that provides a set of requests according the observed distribution.

Case Studies

Tabulation method

Pre-computation

$$p_k = \frac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table *T* with size *m*. Fill *T* such that m_k cells contains *k*. Computation cost : *m* steps Memory cost : *m*

Table construction

```
i=0
for k=1, k \leq K, k++ do
for j=1, j \leq m<sub>k</sub>, j++ do
T[i]= k; i=i+1;
end for
end for
```

Generation

Generate uniformly on the set $\{0, 1, \dots, m-1\}$ Returns the value in the table Computation cost : $\mathcal{O}(1)$ step Memory cost : $\mathcal{O}(m)$

Generation algorithm

u= r andom(); i= (int) floor(u*m) r**eturn T**[i]

Tabulation method

Pre-computation

$$p_k = \frac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table *T* with size *m*. Fill *T* such that m_k cells contains *k*. Computation cost : *m* steps Memory cost : *m*

Table construction

 $\label{eq:states} \begin{array}{l} i{=}0\\ \text{for }k{=}1,\,k\leqslant K,\,k{+}{+}\;\text{do}\\ \text{for }j{=}1,\,j\leqslant m_k,\,j{+}{+}\;\text{do}\\ T[i]{=}\;k;\,i{=}i{+}1;\\ \text{end for}\\ \text{end for} \end{array}$

Generation

Generate uniformly on the set $\{0, 1, \dots, m-1\}$ Returns the value in the table Computation cost : $\mathcal{O}(1)$ step Memory cost : $\mathcal{O}(m)$

Generation algorithm

u= r andom(); i= (int) floor(u*m) r**eturn** T[i]

Tabulation method

Pre-computation

$$p_k = \frac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table *T* with size *m*. Fill *T* such that m_k cells contains *k*. Computation cost : *m* steps Memory cost : *m*

Table construction

i=0 for k=1, k \leq K, k++ do for j=1, j \leq m_k, j++ do T[i]= k; i=i+1; end for end for

Generation

Generate uniformly on the set $\{0, 1, \dots, m-1\}$ Returns the value in the table Computation cost : $\mathcal{O}(1)$ step Memory cost : $\mathcal{O}(m)$

Generation algorithm

u= r andom(); = (int) floor(u*m) r**eturn** T[i]

Tabulation method

Pre-computation

$$p_k = \frac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table *T* with size *m*. Fill *T* such that m_k cells contains *k*. Computation cost : *m* steps Memory cost : *m*

Table construction

```
i=0
for k=1, k \leq K, k++ do
for j=1, j \leq m<sub>k</sub>, j++ do
T[i]= k; i=i+1;
end for
end for
```

Generation

Generate uniformly on the set $\{0, 1, \dots, m-1\}$ Returns the value in the table Computation cost : $\mathcal{O}(1)$ step Memory cost : $\mathcal{O}(m)$

Generation algorithm

u= r andom(); i= (int) floor(u*m) **return** T[i]

Inverse of PDF

Generation

Divide [0, 1] in intervals with length p_k Find the interval in which *Random* falls Returns the index of the interval Computation cost : $\mathcal{O}(\mathbb{E}X)$ steps Memory cost : $\mathcal{O}(1)$

Inverse function algorithm

s=0; k=0; u=random() while u >s do k=k+1 s=s+*p*_k end while return k

Inverse of PDF

Generation

Divide [0, 1[in intervals with length p_k Find the interval in which *Random* falls Returns the index of the interval Computation cost : $\mathcal{O}(\mathbb{E}X)$ steps Memory cost : $\mathcal{O}(1)$

Inverse function algorithm

s=0; k=0; u=random() while u >s do k=k+1 s=s+p_k end while return k

Searching optimization

Optimization methods

- pre-compute the pdf in a table
- rank objects by decreasing probability
- use a dichotomy algorithm
- use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually $\mathcal{O}(K)$ could be huge

Searching optimization

Optimization methods

- pre-compute the pdf in a table
- rank objects by decreasing probability

- use a dichotomy algorithm
- use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually $\mathcal{O}(K)$ could be huge

Searching optimization

Optimization methods

- pre-compute the pdf in a table
- rank objects by decreasing probability

- use a dichotomy algorithm
- use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually $\mathcal{O}(K)$ could be huge

Number of comparisons

Binary search tree structure

$$\mathbb{E}N = \sum_{k=1}^{K} p_k l_k = 3,75, \text{ Entropy} = \sum_{k=1}^{K} p_k (-\log_2 p_k) = 3.70$$

Optimality

Number of comparisons

Binary search tree structure

$$\mathbb{E}N = \sum_{k=1}^{K} p_k . l_k = 3,75, \text{ Entropy} = \sum_{k=1}^{K} p_k (-\log_2 p_k) = 3.70$$

Optimality

Number of comparisons

Binary search tree structure

$$\mathbb{E}N = \sum_{k=1}^{K} p_k . l_k = 3,75, \text{ Entropy} = \sum_{k=1}^{K} p_k (-\log_2 p_k) = 3.70$$

ĒG

Rejection technique

Base of the method

Generate uniformly on \mathcal{A} accept when point is in \mathcal{B} .

light algorithm

repeat x = uniform-generate(A)until $x \in B$ return x

Complexity

Acceptance probability

 $p_a = rac{Size(\mathcal{B})}{Size(\mathcal{A})}$

ĒG

Rejection technique

Base of the method

Generate uniformly on \mathcal{A} accept when point is in \mathcal{B} .

light algorithm

```
repeat

x = uniform-generate(A)

until x \in B

return x
```

Complexity

Acceptance probability

 $\mathcal{D}_{a} = rac{\textit{Size}(\mathcal{B})}{\textit{Size}(\mathcal{A})}$

ĒG

Rejection technique

Base of the method

Generate uniformly on \mathcal{A} accept when point is in \mathcal{B} .

lejection algorithm

repeat x = uniform-generate(A)until $x \in B$ return x

Complexity

Acceptance probability

$$p_a = rac{Size(\mathcal{B})}{Size(\mathcal{A})}$$

Rejection technique

Base of the method

Generate uniformly on \mathcal{A} accept when point is in \mathcal{B} .

Rejection algorithm

repeat x = uniform-generate(A)until $x \in B$ return x

Complexity

Acceptance probability

 $\mathsf{p}_{\mathsf{a}} = rac{\textit{Size}(\mathcal{B})}{\textit{Size}(\mathcal{A})}$

Case Studies

Rejection technique

Base of the method

Generate uniformly on \mathcal{A} accept when point is in \mathcal{B} .

Rejection algorithm

repeat x = uniform-generate(A) until x∈ Breturn x

Complexity

Acceptance probability

$$p_a = rac{Size(\mathcal{B})}{Size(\mathcal{A})}$$

Case Studies

G

Rejection technique

Base of the method

Generate uniformly on \mathcal{A} accept when point is in \mathcal{B} .

Rejection algorithm

repeat x = uniform-generate(A)until $x \in B$ return x

Complexity

Acceptance probability

$$p_a = rac{Size(\mathcal{B})}{Size(\mathcal{A})}$$

G

Rejection technique

Base of the method

Generate uniformly on \mathcal{A} accept when point is in \mathcal{B} .

Rejection algorithm

repeat

 $\begin{array}{l} x = uniform\text{-}generate(\mathcal{A}) \\ \textbf{until} \ x \in \mathcal{B} \\ \textbf{return} \ x \end{array}$

Complexity

Acceptance probability

$$p_a = rac{Size(\mathcal{B})}{Size(\mathcal{A})}$$

G

Rejection technique

Base of the method

Generate uniformly on \mathcal{A} accept when point is in \mathcal{B} .

Rejection algorithm

repeat

 $\begin{array}{l} x = uniform\text{-}generate(\mathcal{A}) \\ \textbf{until} \ x \in \mathcal{B} \\ \textbf{return} \ x \end{array}$

Complexity

Acceptance probability

$$p_a = rac{Size(\mathcal{B})}{Size(\mathcal{A})}$$

$$\mathbb{E}N = \frac{1}{p_a}$$

Case Studies

Rejection technique

Rejection adaptation

K objects

 $h \ge \max_k p_k$

Generate uniformly on the surface $K \times h$ Accept if the point is under the distribution

Rejection algorithm

```
repeatk= alea(K)until Random . h \leq p_kreturn kalea(K) generate uniformly anumber in \{1, \dots, K\}
```

Complexity

Acceptance probability $p_a = \frac{1}{hK}$ N number of iterations $\mathbb{E}N = \frac{1}{p_a} = hK$. Minimal complexity for $h^* = \max_k p_k$. Uniform distribution \Rightarrow no rejection Interest : distribution near the uniform distribution

Rejection technique

Rejection adaptation

K objects

 $h \ge \max_k p_k$

Generate uniformly on the surface $K \times h$ Accept if the point is under the distribution

Rejection algorithm

repeatk= alea(K)until Random . h $\leq p_k$ return kalea(K) generate uniformly anumber in $\{1, \dots, K\}$

Complexity

Acceptance probability $p_a = \frac{1}{hK}$ N number of iterations $\mathbb{E}N = \frac{1}{p_a} = hK$. Minimal complexity for $h^* = \max_k p_k$. Uniform distribution \Rightarrow no rejection Interest : distribution near the uniform distribution

Case Studies

Rejection technique

Rejection adaptation

K objects

 $h \ge \max_k p_k$

Generate uniformly on the surface $K \times h$ Accept if the point is under the distribution

Rejection algorithm

repeatk= alea(K)until Random . h $\leq p_k$ return kalea(K) generate uniformly anumber in $\{1, \dots, K\}$

Complexity

Acceptance probability $p_a = \frac{1}{hK}$ *N* number of iterations $\mathbb{E}N = \frac{1}{p_a} = hK$. Minimal complexity for $h^* = \max_k p_k$. Uniform distribution \Rightarrow no rejection Interest : distribution near the uniform distribution

Rejection Method Applied to Histogram

Rejection Method Applied to Histogram

Rejection Method Applied to Histogram

Rejection Method Applied to Histogram

Aliasing technique

Combine uniform and alias value when rejection

Initialization

```
\begin{array}{l} \mathcal{K} \text{ objects} \\ \text{list } L=\emptyset, U=\emptyset; \\ \text{for } k=1; \ k \leqslant K; \ k++ \ \text{do} \\ P[k]=p_k \\ \text{ if } P[k] \geqslant \frac{1}{K} \ \text{then} \\ U=U+\{k\}; \\ \text{ else} \\ L=L+\{k\}; \\ \text{ end if} \\ \text{ end for} \end{array}
```

```
Alias and threshold tables
```

```
while L \neq \emptyset do

Extract k \in L

Extract i \in U

S[k]=P[k]

A[k]=i

P[i] = P[i] - (\frac{1}{K}-P[k

if P[i] \geqslant \frac{1}{K} then

U=U+\{i\};

else

L=L+\{i\};

end if

end while
```


Aliasing technique

Combine uniform and alias value when rejection

Initialization

```
\begin{array}{l} \mathcal{K} \text{ objects} \\ \text{list } L=\emptyset, U=\emptyset; \\ \text{for } k=1; \ k \leqslant K; \ k++ \ \text{do} \\ P[k]=\rho_k \\ \text{if } P[k] \geqslant \frac{1}{K} \ \text{then} \\ U=U+\{k\}; \\ \text{else} \\ L=L+\{k\}; \\ \text{end if} \\ \text{end for} \end{array}
```

```
Alias and threshold tables
  while L \neq \emptyset do
     Extract k \in L
     Extract i \in U
     S[k]=P[k]
     A[k]=i
     P[i] = P[i] - (\frac{1}{K} - P[k])
     if P[i] \ge \frac{1}{K} then
        U=U+{i};
     else
        L=L+{i};
     end if
  end while
```


Aliasing technique : generation

Generation

Complexity

Computation time :

- $\mathcal{O}(K)$ for pre-computation
- $\mathcal{O}(1)$ for generation

Memory :

- threshold $\mathcal{O}(K)$ (real numbers as probability)
- alias $\mathcal{O}(K)$ (integers indexes in a tables)

Aliasing technique : generation

Generation

 $\begin{array}{l} k=alea(K)\\ \text{if } Random \ . \ \frac{1}{K}\leqslant S[k] \ \text{then}\\ \text{return } k\\ \text{else}\\ \text{return } A[k]\\ \text{end if} \end{array}$

Complexity

Computation time :

- $\mathcal{O}(K)$ for pre-computation
- $\mathcal{O}(1)$ for generation

Memory :

- threshold $\mathcal{O}(K)$ (real numbers as probability)
- alias $\mathcal{O}(K)$ (integers indexes in a tables)

Applications

- Finite queuing networks
- Call centers
- Grid/cluster scheduling
- Kitting systems
- Rare event estimation
- Statistical verification of programs

Modeling

- Poisson systems [Brémaud 1999]
- Discrete vector state-space X
- Event based models

 $X_{n+1} = \Phi(X_n, e_{n+1}), e_n \in \mathcal{E}$

Stochastic recurrence equation

• Independent events (iid)

Provide independent samples of stationary states.

- Library of monotone events
- Simulation kernel
- Efficient simulator : polynomial in the model dimension

Applications

- Finite queuing networks
- Call centers
- Grid/cluster scheduling
- Kitting systems
- Rare event estimation
- Statistical verification of programs

Modeling

- Poisson systems [Brémaud 1999]
- Discrete vector state-space X
- Event based models

 $X_{n+1} = \Phi(X_n, e_{n+1}), e_n \in \mathcal{E}$

Stochastic recurrence equation

• Independent events (iid)

Provide independent samples of stationary states.

- Library of monotone events
- Simulation kernel
- Efficient simulator : polynomial in the model dimension

Applications

- Finite queuing networks
- Call centers
- Grid/cluster scheduling
- Kitting systems
- Rare event estimation
- Statistical verification of programs

Modeling

- Poisson systems [Brémaud 1999]
- Discrete vector state-space X
- Event based models

 $X_{n+1} = \Phi(X_n, e_{n+1}), e_n \in \mathcal{E}$

Stochastic recurrence equation

Independent events (iid)

Provide independent samples of stationary states.

- Library of monotone events
- Simulation kernel
- Efficient simulator : polynomial in the model dimension

Applications

- Finite queuing networks
- Call centers
- Grid/cluster scheduling
- Kitting systems
- Rare event estimation
- Statistical verification of programs

Modeling

- Poisson systems [Brémaud 1999]
- Discrete vector state-space X
- Event based models

 $X_{n+1} = \Phi(X_n, e_{n+1}), e_n \in \mathcal{E}$

Stochastic recurrence equation

Independent events (iid)

Provide independent samples of stationary states.

- Library of monotone events
- Simulation kernel
- Efficient simulator : polynomial in the model dimension

Perfect Sampling Principle

Synchronizing pattern \Longrightarrow finite backward scheme $au^* < \infty$

Perfect Sampling Principle

Synchronizing pattern \Longrightarrow finite backward scheme $\tau^* < \infty$

Panorama : Markov models

Finite Monotone Systems

- large class of models : index based routing finite queueing networks
- time complexity : **polynomial** in the dimension of the system

Finite non-monotone system

- Transition function
 - almost monotone systems : bounding process
 - exhaustive : splitting
 - piecewise linear transitions
- State space extension

Infinite systems

- Monotone transition function
- Non-monotone transitions

Envelopes and Splitting Perfect Sampling

Guarantees the convergence complexity unknown but practically more efficient

[VALUETOOLS 2008, QEST 2010]

Perfect sampling)

Computation of Envelopes

negative customers, fork and join, batch routing general complexity polynomial (linear programs) but practically \Rightarrow computable less tight bounds

[Performance Evaluation, 2012]

- 2 Discrete generation
- Perfect sampling

Perfect sampling

