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Performance of the system =- analysis of the steady-state

Computation of the steady-state

Main contribution
Efficient computation in finite time of stationary samples
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Discrete generation Perfect sampling Case Studies
Load sharing model

Parallel independent queues
A

State space: number of tasks in each queue; Xy x --- x Xk
Dynamics: events driven by Poisson process

@ Generation of a new task in a queue, with rate A
@ Task completion, with rate p
@ Control, with rate v
Uniformization = Stochastic Recurence Equation X1 = ®(Xn, Eni1)
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Discrete generation Perfect sampling Case Studies

Application

Push on arrival Scaling Toward million of nodes

Input Load Policy: Threshold Push on Arrival with
2 priority list of 8 nodes

100 T T T T

Mean Sampling Time (s)

0.001

Hierarch

cal Load Sharing

0.0001 ; y ; .
10 100 1000 10000 100000 1e+06
number of queues

The time to simulate such system is linear
with the number of nodes

[ASMTA 2010]
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Discrete generation Perfect sampling Case Studies
Modeling and Analysis of Computer Systems

Complex system Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic

- time homogeneous

- stochastically regular

Input of the system

System
output

Environment
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Discrete generation

Perfect sampling

Modeling and Analysis of Computer Systems

Complex system

Environment

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic

- time homogeneous

- stochastically regular

Problem

Understand “typical” states

- steady-state estimation

- ergodic simulation

- state space exploring techniques

Performance Evaluation : Probabilistic simulation
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Discrete generation Perfect sampling Case Studies
Convergence In Law

Let {Xh},cy @ homogeneous, irreducible and aperiodic Markov chain taking
values in a discrete state X then
@ The following limits exist (and do not depend on i)

i B(Xy =1%o = i) = mj;
@ r is the unique probability vector invariant by P
P =m;
@ The convergence is rapid (geometric); there is C > 0 and 0 < a < 1 such that
I[P(Xn = jIX = i) — mj]| < C.a”
Denote
X -5 Xoo;

with X, with law 7
7 is the steady-state probability associated to the chain
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Equilibrium equation

Py

Probability to enter j =probability to exit j
balance equation

Z TiPij = Z TjPj.k = T Zp/-k = (1= pij)
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Discrete generation Perfect sampling Case Studies
Interpretation

Equilibrium equation

Probability to enter j =probability to exit j
balance equation

D omPi =Y mPik =7 Pik = (1~ pi)

i ki k)
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Discrete generation Perfect sampling
Interpretation

Equilibrium equation

Probability to enter j =probability to exit j
balance equation

D omPi =Y mPik =7 Pik = (1~ pi)
i K7 K7

% steady-state.

If mo = 7 the process is stationary (mp, = )

Case Studies
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Discrete generation Perfect sampling Case Studies
Ergodic Theorem

Let {Xn},cn @ homogeneous aperiodic and irreducible Markov chain on X
with steady-state probability 7 then
- for all function f satisfying E-|f| < 400

N
1N 3" 1(Xn) "B Eaf.
n=1

generalization of the strong law of large numbers
- If E-f = 0 then there exist o such that

1 N c
—_— f(Xn) — N(0,1).
D

generalization of the central limit theorem
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Discrete generation Perfect sampling Case Studies
Fundamental question

Given a function f (cost, reward, performance,...) estimate
E.f
and give the quality of this estimation.
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Discrete generation Perfect sampling Case Studies
Solving methods

Solving 7 = 7P

@ Analytical/approximation methods

@ Formal methods N < 50
Maple, Sage,...

@ Direct numerical methods N < 1000
Mathematica, Scilab,...

@ lterative methods with preconditioning N < 100, 000
Marca,...

@ Adapted methods (structured Markov chains) N < 1,000, 000
PEPS.,...

@ Monte-Carlo simulation N > 107

Postprocessing of the stationary distribution

Computation of rewards (expected stationary functions)
Utilization, response time,...
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Discrete generation Perfect sampling Case Studies

Ergodic Sampling(1)

Ergodic sampling algorithm
Representation : transition fonction

X1 = ¢(Xn, en+1)-

X < Xo
{choice of the initial state at time =0}
n=0;
repeat

n < n+1;

e < Random_event();

X < ®(x,e);

Store x

{computation of the next state X1}
until some empirical criteria
return the trajectory

Problem : Stopping criteria

Performance Evaluation : Probabilistic simulation
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Discrete generation Perfect sampling

Ergodic Sampling(2)

Start-up
Convergence to stationary behavior

lim P(X, = Xx) = 7x.
n——+o0o
Warm-up period : Avoid initial state dependence
Estimation error :

IP(Xn = x) — me|| < CAZ.

A2 second greatest eigenvalue of the transition matrix
- bounds on C and )\, (spectral gap)
- cut-off phenomena

X2 and C non reachable in practice
(complexity equivalent to the computation of )
some known results (Birth and Death processes)

Case Studies
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Discrete generation Perfect sampling Case Studies

Ergodic Sampling(3)

Estimation quality
Ergodic theorem :

1

im0 = et
=

Length of the sampling : Error control (CLT theorem)

Complexity

Complexity of the transition function evaluation (computation of ®(x, .))
Related to the stabilization period + Estimation time
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Discrete generation Perfect sampling Case Studies

Ergodic sampling(4)

Typical trajectory

States
0 time

‘Warm-—up period Estimation period
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Discrete generation Perfect sampling Case Studies
Replication Method

Typical trajectory

States

L

replication periods

time

Sample of independent states
Drawback : length of the replication period (dependence from initial state)
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Discrete generation Perfect sampling Case Studies

Regeneration Method

Typical trajectory

States

start—up period

R R2 R3

regeneration period s

Sample of independent trajectories
Drawback : length of the regeneration period (choice of the regenerative
state)
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Motivation Perfect sampling Case Studies
Event Modelling
Multidimensional state space : X = X x --- x Xk with X; = {0,--- , Gi}.
Event e :

~» transition function ®(., e); (skip rule)
~+ Poisson process e

States

Time
Events

RQPAR

1781-1840 %, .
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Motivation Perfect sampling Case Studies
Event modelling

A= X and P(event e) = %;
e

Trajectory : {en},,, i.i.d. sequence.
= Homogeneous Discrete Time Markov Chain [Bremaud 99]
Xnt1 = (X, €nt1).

Generation among a small finite space € : O(1)
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Motivation Perfect sampling Case Studies
Generating random objects

Denote by X the generated object ( X is a random variable)
Distribution (proportion of observations, input of the load injector)

P = P(X = k).
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Motivation Perfect sampling Case Studies
Generating random objects
Denote by X the generated object ( X is a random variable)
Distribution (proportion of observations, input of the load injector)
b = P(X = k).
Remarks :
0<pi <1, Zpk:1.
k
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P =P(X = k).
Remarks :

0<p<T; Zpk:1~
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Motivation Perfect sampling Case Studies
Generating random objects

Denote by X the generated object ( X is a random variable)
Distribution (proportion of observations, input of the load injector)

P =P(X = k).
Remarks :
0<p<T; Zpk:1~
k

Expectation (average, mean)
EX =) KkP(X=k)=>_ kpx.
k k

Variance and standard deviation
VarX = (k — EX)’P(X = k) = EX® — (EX).
k

o(X)=vVarX.
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Motivation Perfect sampling Case Studies
The random function

Random bit generator (see previous lecture)

double drand48(void) (48 bits encoded in 8 bytes)

The rand48() family of functions generates pseudo-random numbers using a
linear congruential algorithm working on integers 48 bits in size. The
particular formula employed is r(n+1) = (a * r(n) + ¢) mod m where the default
values are for the multiplicand a = Oxfdeece66d = 25214903917 and the
addend c = Oxb = 11. The modulo is always fixed at m = 2 ** 48. r(0) is called
the seed of the random number generator.
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Motivation Perfect sampling Case Studies
The random function

Random bit generator (see previous lecture)

double drand48(void) (48 bits encoded in 8 bytes)

The rand48() family of functions generates pseudo-random numbers using a
linear congruential algorithm working on integers 48 bits in size. The
particular formula employed is r(n+1) = (a * r(n) + ¢) mod m where the default
values are for the multiplicand a = Oxfdeece66d = 25214903917 and the
addend ¢ = Oxb = 11. The modulo is always fixed at m = 2 ** 48. r(0) is called
the seed of the random number generator.

The sequence of returned values from a sequence of calls to the
random function is modeled by a sequence of independent random
variables uniformly distributed on the real interval [0, 1].
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Motivation Perfect sampling Case Studies
The random function
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Motivation Perfect sampling Case Studies
The random function

—’—_—’— P(Ue[ab])=(b—a)
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Motivation Perfect sampling Case Studies
The random function

—’—_—’— P(Uelab])=(b-a)

All the difficulty is to find a function (an algorithm) that transforms the [0, 1] in
a set with a good probability conserving.
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Motivation Perfect sampling Case Studies
The random function

—’—_—’— P(Uelab])=(b-a)

All the difficulty is to find a function (an algorithm) that transforms the [0, 1] in
a set with a good probability conserving.

u=r andom()
if u <} then
return Head
else
return Tail
end if 4
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Motivation Perfect sampling Case Studies
Practical example : Web server

Types of request

@ Professional customer,  consult
Professional customer, purchase

Non professional customer,
consult

2]
o
© Non professional customer,
purchase

o

Adminstration
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Motivation
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Perfect sampling Case Studies

Practical example : Web server

Types of request

Professional customer, consult
Professional customer, purchase

Non professional customer,
consult

Non professional customer,
purchase

Adminstration

35%

30%

25%

20%

15%

10%

5%

Repartition of requests

P+C P+B  NP+C NP+B A
Objects types
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Motivation Discrete generation

Perfect sampling

Practical example : Web server

Types of request

@ Professional customer, consult
Professional customer, purchase
Non professional customer,

(2

o
consult

o

(5}

Non professional customer,
purchase

Adminstration

35%

30%

25%

20%

15%

10%

5%

o |

Repartition of requests

P+C  P+B NP+C NP+B A

Objects types

Build an algorithm that provides a set of requests according the observed

distribution.

Performance Evaluation : Probabilistic simulation

Case Studies

24 /44



Motivation Perfect sampling Case Studies
Tabulation method

Pre-computation
m
Dk = Fk where zk:mk =m.
Create a table T with size m.
Fill T such that mx cells contains k.

Computation cost : m steps
Memory cost : m
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Motivation Perfect sampling Case Studies
Tabulation method

Pre-computation ‘Table construction

b - i=0
P = —* where ;mk = m. for k=1, k < K, k++ do

for j=1,j < my, j++ do

Create a table T with size m. Tli]= k; i=i+1;
Fill T such that my cells contains k. end for
Computation cost : m steps end for

Memory cost : m

Performance Evaluation : Probabilistic simulation | 25/ 44



Motivation Discrete generation

Perfect sampling Case Studies

Tabulation method

Pre-computation

s
= — where mk = m.

Create a table T with size m.

Fill T such that mx cells contains k.

Computation cost : m steps
Memory cost : m

Generation

Generate uniformly on the set
{0,1,--- . m—1}

Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

i=0
for k=1, k <K, k++ do
for j=1,j < my, j++ do
T[i]= k; i=i+1;
end for
end for
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Motivation Perfect sampling Case Studies
Tabulation method

Pre-computation ‘Table construction

b - i=0
P = —* where ;mk = m. for k=1, k < K, k++ do

for j=1, j < my, j++ do

Create a table T with size m. Tli]= k; i=i+1;
Fill T such that my cells contains k. end for
Computation cost : m steps end for

Memory cost : m

Generate uniformly on the set u=r andom();
{0,1,--- ,m—1} i= (int) floor(u*m)
Returns the value in the table return T[i]

Computation cost : O(1) step
Memory cost : O(m)
s

1 G
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Motivation Perfect sampling Case Studies
Inverse of PDF

P(X < x) Cumulative distribution function
1 °
._&3
P
._‘
P
o 1 2 3 - K-1 K x

Generation

Divide [0, 1] in intervals with length px
Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX) steps
Memory cost : O(1)
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Motivation Perfect sampling Case Studies
Inverse of PDF

P(X < x) Cumulative distribution function
1 °
s 3

‘ Ps
pe

._‘

P
o 1 2 3 - K-1 K x

Gensraton Inverse function algorthm

Divide [0, 1] in intervals with length py s=0; k=0;
Find the interval in which Random falls u=randomy()
Returns the index of the interval while u >s do
Computation cost : O(EX) steps k=k+1
Memory cost : O(1) S=S+Pk
end while
return k

Performance Evaluation : Probabilistic simulation | 26 / 44



Motivation Perfect sampling Case Studies
Searching optimization

Optimization methods

@ pre-compute the pdf in a table
@ rank objects by decreasing probability
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Searching optimization

Optimization methods

@ pre-compute the pdf in a table
@ rank objects by decreasing probability

@ use a dichotomy algorithm
@ use a tree searching algorithm (optimality = Huffmann coding tree)
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Motivation Perfect sampling Case Studies
Searching optimization

Optimization methods

@ pre-compute the pdf in a table
@ rank objects by decreasing probability

@ use a dichotomy algorithm
@ use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually O(K) could be huge
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Motivation Perfect sampling Case Studies

Optimality

JdL
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Optimality

120 120 220 1720

Jily

1200 320 220 420 620 120 220 1120

| g

L1 G

Performance Evaluation : Probabilistic simulation | 28 /44



Motivation Perfect sampling Case Studies
Optimality

120 120 220 1720 I

1200 320 220 420 620 120 220 1120

Binary search tree structure

K K
EN = pi.k = 3,75, Entropy = > _ px(—log, p) = 3.70 y
k=1 k=1 L1 a
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Motivation Perfect sampling Case Studies
Rejection technique

Base of the method

Generate uniformly on .4 accept when
point is in B.
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Rejection technique

Base of the method

Generate uniformly on .4 accept when
point is in B.
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Motivation Discrete generation

Perfect sampling Case Studies

Rejection technique

Base of the method

Generate uniformly on .4 accept when
pointis in .

4 ¥

accept

repeat

X = uniform-generate(.A)
until xe B
return x
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Motivation Perfect sampling Case Studies
Rejection technique

Base of the method ‘Rejection algorithm

Generate uniformly on A accept when repeat
pointis in . x = uniform-generate(.A)
until xe B

return x

4 ¥
y Complexty

accept -
Acceptance probability

( _ Size(B)

A P2 = Size(A)

N number of iterations
1

EN = —.
Pa

,_
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Motivation Perfect sampling Case Studies
Rejection technique

Rejection adaptation
K objects

h> mfxpk

Generate uniformly on the surface K x h
Accept if the point is under the distribution
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Motivation Perfect sampling Case Studies
Rejection technique

Refection adaptaton Rejectionalgorithm

K objects repeat
k= alea(K)
hz M i until Random . h < py
! return k
Generate uniformly on the surface K x h alea(K) generate uniformly a

Accept if the point is under the distribution numberin {1,--- , K}
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Motivation Perfect sampling Case Studies
Rejection technique

K objects repeat
k= alea(K)
hz M i until Random . h < py
return k

Generate uniformly on the surface K x h

; — ST alea(K) generate uniformly a
Accept if the point is under the distribution

number in {1,--- K}

Acceptance probability p, = /717

N number of iterations EN = p‘—a = hK.

Minimal complexity for h* = max px.

Uniform distribution = no rejection

Interest : distribution near the uniform distribution
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Motivation Perfect sampling Case Studies
Rejection Method Applied to Histogram
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Rejection Method Applied to Histogram

6/20

Random()*6/20

120 320 220 420 6/20 1/20 220 1/20

Alea(8)
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Motivation Perfect sampling Case Studies
Aliasing Method
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Aliasing Method
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|
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Aliasing Method

1/8

I

| g

L1 G

Performance Evaluation : Probabilistic simulation | 32 /44



Motivation Perfect sampling Case Studies
Aliasing Method

1/8

| g

L1 G

Performance Evaluation : Probabilistic simulation | 32 /44



Motivation Perfect sampling Case Studies

Aliasing Method
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Aliasing Method

1/8

| g

L1 G

Performance Evaluation : Probabilistic simulation | 32 /44



Motivation Perfect sampling Case Studies
Aliasing technique

Combine uniform and alias value when rejection

K objects
list L=0,U=0;
for k=1; k< K; k++ do
PlK]=p«
if P[k] > 17 then
U=U+{k};
else
L=L+{k};
end if
end for

Performance Evaluation : Probabilistic simulation | 33 /44



Motivation Perfect sampling Case Studies
Aliasing technique

Combine uniform and alias value when rejection

K objects while L # () do
list L=0,U=0; Extract k € L
for k=1; k< K; k++ do Extract i € U

PlK]=p« S[k]=P[K]
if P[k] > 17 then AlK]=i
U=U+{k}; P[i] = P[i] - (%-PIK])
else if P[i] > ~ then
L=L+{k}; U=U+{i};
end if else
end for L=L+{i};
end if
end while

Performance Evaluation : Probabilistic simulation | 33 /44



Motivation Perfect sampling Case Studies
Aliasing technique : generation

k=alea(K)

if Random . % < S[k] then
return k

else
return A[K]

end if
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Motivation Perfect sampling Case Studies
Aliasing technique : generation

k=alea(K)

if Random . + < S[k] then
return k

else
return A[K]

end if

Computation time :

- O(K) for pre-computation

- O(1) for generation

Memory :

- threshold O(K) (real numbers as probability)
- alias O(K) (integers indexes in a tables)

Performance Evaluation : Probabilistic simulation 34 /44
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Motivation Discrete generation Case Studies
Perfect Sampling of Complex Markov Chains

Applications

@ Finite queuing networks
Call centers
Grid/cluster scheduling

-}

-}

@ Kitting systems
@ Rare event estimation
o

Statistical verification of programs
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Applications Modeling
@ Finite queuing networks @ Poisson systems [Brémaud 1999]
@ Call centers @ Discrete vector state-space X
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Discrete generation Perfect sampling Case Studies

Perfect Sampling of Complex Markov Chains

Applications Modeling
@ Finite queuing networks @ Poisson systems [Brémaud 1999]
@ Call centers @ Discrete vector state-space X
@ Grid/cluster scheduling @ Event based models
@ Kitting systems Xnp1 = ®(Xn, enp1) ,en €&
@ Rare event estimation Stochastic recurrence equation
@ Statistical verification of programs @ Independent events (iid)

Provide independent samples of stationary states.

@ Library of monotone events

@ Simulation kernel

Efficient simulator : polynomial in the model dimension

Performance Evaluation : Probabilistic simulation
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Motivation Discrete generation Perfect sampling Case Studies

Perfect Sampling Principle

All the trajectories
collapse
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Motivation Discrete generation Case Studies
Perfect Sampling Principle

All the trajectories
collapse

Synchronizing pattern — finite backward scheme 7" < oo
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Motivation Discrete generation Case Studies
Monotone Perfect Sampling
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Motivation Discrete generation Case Studies
Monotone Perfect Sampling

>

=(n+1)

same convergence condition
complexity in O(E7") = polynomial in model dimension o
[QEST2008] | |, &
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Motivation Discrete generation Case Studies
Panorama : Markov models

Finite Monotone Systems

- large class of models : index based routing finite queueing networks
- time complexity : polynomial in the dimension of the system

Finite non-monotone system

@ Transition function
- almost monotone systems : bounding process
- exhaustive : splitting
- piecewise linear transitions

@ State space extension

Infinite systems
@ Monotone transition function
@ Non-monotone transitions
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Envelopes Perfect Sampling
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Envelopes Perfect Sampling
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Synchronizing pattern for envelopes
complexity unknown but practically efficient ¥
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Envelopes and Splitting Perfect Sampling

Guarantees the convergence
complexity unknown but practically more efficient
[VALUETOOLS 2008, QEST 2010]
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Computation of Envelopes

Join the Shortest Weighted Queue State space

Queue 2
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negative customers, fork and join, batch routing
general complexity polynomial (linear programs) but practically =
computable less tight bounds

[Performance Evaluation, 2012]
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