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Long Run Evolution and Time Scaling
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Load sharing model

Parallel independent queues

cc cc

µ1

λ1

µ2

λ2

µ3

λ3

µ4

λ4

ν1 ν2 ν3 ν4

State space: number of tasks in each queue; X1 × · · · × XK
Dynamics: events driven by Poisson process

Generation of a new task in a queue, with rate λ

Task completion, with rate µ

Control, with rate ν

Uniformization⇒ Stochastic Recurence Equation Xn+1 = Φ(Xn,En+1)
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Application

Push on arrival

Input Load

Hierarchical Load Sharing

Scaling Toward million of nodes

Policy: Threshold Push on Arrival with
priority list of 8 nodes
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The time to simulate such system is linear
with the number of nodes

[ASMTA 2010]
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Modeling and Analysis of Computer Systems

Complex system

System

Basic model assumptions

System :
- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

Understand “typical” states
- steady-state estimation
- ergodic simulation
- state space exploring techniques
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Convergence In Law

Let {Xn}n∈N a homogeneous, irreducible and aperiodic Markov chain taking
values in a discrete state X then

The following limits exist (and do not depend on i)

lim
n→+∞

P(Xn = j|X0 = i) = πj ;

π is the unique probability vector invariant by P

πP = π;

The convergence is rapid (geometric); there is C > 0 and 0 < α < 1 such that

||P(Xn = j|X0 = i)− πj || 6 C.αn.

Denote

Xn
L−→ X∞;

with X∞ with law π
π is the steady-state probability associated to the chain

7 / 44Performance Evaluation : Probabilistic simulation



Motivation Discrete generation Perfect sampling Case Studies

Interpretation

Equilibrium equation

j,j
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Probability to enter j =probability to exit j
balance equation∑

i 6=j

πipi,j =
∑
k 6=j

πjpj,k = πj

∑
k 6=j

pj,k = πj (1− pj,j )

π
def
= steady-state.

If π0 = π the process is stationary (πn = π)
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Ergodic Theorem

Let {Xn}n∈N a homogeneous aperiodic and irreducible Markov chain on X
with steady-state probability π then
- for all function f satisfying Eπ|f | < +∞

1
N

N∑
n=1

f (Xn)
P−p.s.−→ Eπf .

generalization of the strong law of large numbers
- If Eπf = 0 then there exist σ such that

1
σ
√

N

N∑
n=1

f (Xn)
L−→ N (0, 1).

generalization of the central limit theorem
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Fundamental question

Given a function f (cost, reward, performance,...) estimate

Eπf

and give the quality of this estimation.
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Solving methods

Solving π = πP

Analytical/approximation methods

Formal methods N 6 50
Maple, Sage,...

Direct numerical methods N 6 1000
Mathematica, Scilab,...

Iterative methods with preconditioning N 6 100, 000
Marca,...

Adapted methods (structured Markov chains) N 6 1, 000, 000
PEPS,...

Monte-Carlo simulation N > 107

Postprocessing of the stationary distribution

Computation of rewards (expected stationary functions)
Utilization, response time,...
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Ergodic Sampling(1)

Ergodic sampling algorithm

Representation : transition fonction

Xn+1 = Φ(Xn, en+1).

x ← x0

{choice of the initial state at time =0}
n = 0;
repeat

n ← n + 1;
e ← Random_event();
x ← Φ(x , e);
Store x
{computation of the next state Xn+1}

until some empirical criteria
return the trajectory

Problem : Stopping criteria
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Ergodic Sampling(2)

Start-up

Convergence to stationary behavior

lim
n→+∞

P(Xn = x) = πx .

Warm-up period : Avoid initial state dependence
Estimation error :

||P(Xn = x)− πx || 6 Cλn
2.

λ2 second greatest eigenvalue of the transition matrix
- bounds on C and λ2 (spectral gap)
- cut-off phenomena

λ2 and C non reachable in practice
(complexity equivalent to the computation of π)
some known results (Birth and Death processes)
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Ergodic Sampling(3)

Estimation quality

Ergodic theorem :

lim
n→+∞

1
n

n∑
i=1

f (Xi ) = Eπf .

Length of the sampling : Error control (CLT theorem)

Complexity

Complexity of the transition function evaluation (computation of Φ(x , .))
Related to the stabilization period + Estimation time
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Ergodic sampling(4)

Typical trajectory
States

0 time

Warm−up period Estimation period
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Replication Method

Typical trajectory
States

0 time
replication periods

Sample of independent states
Drawback : length of the replication period (dependence from initial state)
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Regeneration Method

Typical trajectory
States

0 time

start−up period

regeneration period

R1 R2 R3 ....

Sample of independent trajectories
Drawback : length of the regeneration period (choice of the regenerative
state)
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Event Modelling

Multidimensional state space : X = X1 × · · · × XK with Xi = {0, · · · ,Ci}.
Event e :
; transition function Φ(., e); (skip rule)
; Poisson process λe

States

Events

e1

e2

e3

e4

Time

1781-1840
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Event modelling

Uniformization

Λ =
∑

e

λe and P(event e) =
λe

Λ
;

Trajectory : {en}n∈Z i.i.d. sequence.
⇒ Homogeneous Discrete Time Markov Chain [Bremaud 99]
Xn+1 = Φ(Xn, en+1).

Generation among a small finite space E : O(1)
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Generating random objects

Denote by X the generated object ( X is a random variable)
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

Expectation (average, mean)

EX =
∑

k

k .P(X = k) =
∑

k

kpk .

Variance and standard deviation

VarX =
∑

k

(k − EX )2P(X = k) = EX 2 − (EX )2.

σ(X ) =
√
VarX .
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The random function

Random bit generator (see previous lecture)

drand48 manpage

double drand48(void) (48 bits encoded in 8 bytes)
The rand48() family of functions generates pseudo-random numbers using a
linear congruential algorithm working on integers 48 bits in size. The
particular formula employed is r(n+1) = (a * r(n) + c) mod m where the default
values are for the multiplicand a = 0xfdeece66d = 25214903917 and the
addend c = 0xb = 11. The modulo is always fixed at m = 2 ** 48. r(0) is called
the seed of the random number generator.

The sequence of returned values from a sequence of calls to the
random function is modeled by a sequence of independent random
variables uniformly distributed on the real interval [0, 1[.
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The random function

0 1

Problem

All the difficulty is to find a function (an algorithm) that transforms the [0, 1[ in
a set with a good probability conserving.

Example : flip a coin

u= r andom()
if u 6 1

2 then
return Head

else
return Tail

end if
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Practical example : Web server

Types of request

1 Professional customer, consult
2 Professional customer, purchase
3 Non professional customer,

consult
4 Non professional customer,

purchase
5 Adminstration

Build an algorithm that provides a set of requests according the observed
distribution.
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Tabulation method

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k .
Computation cost : m steps
Memory cost : m

Table construction

i=0
for k=1, k 6 K, k++ do

for j=1, j 6 mk , j++ do
T[i]= k; i=i+1;

end for
end for

Generation

Generate uniformly on the set
{0, 1, · · · ,m − 1}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

u= r andom();
i= (int) floor(u*m)
return T[i]
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Inverse of PDF
P(X 6 x)

0

1

1 2 3 K − 1 K

Cumulative distribution function

x
p1

p2

p3

· · ·

Generation

Divide [0, 1[ in intervals with length pk

Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX ) steps
Memory cost : O(1)

Inverse function algorithm

s=0; k=0;
u=random()
while u >s do

k=k+1
s=s+pk

end while
return k
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Searching optimization

Optimization methods

pre-compute the pdf in a table

rank objects by decreasing probability

use a dichotomy algorithm

use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually O(K ) could be huge
-
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Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually O(K ) could be huge
-
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Optimality

1/201/20 3/20 2/20 4/20 6/20 1/20 2/20

Number of comparisons

Binary search tree structure

EN =
K∑

k=1

pk .lk = 3, 75, Entropy =
K∑

k=1

pk (− log2 pk ) = 3.70
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Rejection technique

Base of the method

Generate uniformly on A accept when
point is in B.

A

B

Rejection algorithm

repeat
x = uniform-generate(A)

until x∈ B
return x

Complexity

Acceptance probability

pa =
Size(B)

Size(A)

N number of iterations

EN =
1
pa
.
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Rejection technique

Rejection adaptation

K objects

h > max
k

pk

Generate uniformly on the surface K × h
Accept if the point is under the distribution

Rejection algorithm

repeat
k= alea(K)

until Random . h 6 pk

return k
alea(K) generate uniformly a
number in {1, · · · ,K}

Complexity

Acceptance probability pa = 1
hK

N number of iterations EN = 1
pa

= hK .
Minimal complexity for h∗ = maxk pk .
Uniform distribution⇒ no rejection
Interest : distribution near the uniform distribution
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Rejection Method Applied to Histogram

3/20 2/20 4/20 6/20 1/20 2/20 1/201/20
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Rejection Method Applied to Histogram

6/20

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Alea(8)

Random()*6/20
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Aliasing Method

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

1/8
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Aliasing technique

Combine uniform and alias value when rejection

Initialization

K objects
list L=∅,U=∅;
for k=1; k6 K; k++ do

P[k]=pk

if P[k] > 1
K then

U=U+{k};
else

L=L+{k};
end if

end for

Alias and threshold tables

while L 6= ∅ do
Extract k ∈ L
Extract i ∈ U
S[k]=P[k]
A[k]=i
P[i] = P[i] - ( 1

K -P[k])
if P[i] > 1

K then
U=U+{i};

else
L=L+{i};

end if
end while
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Aliasing technique : generation

Generation

k=alea(K)
if Random . 1

K 6 S[k] then
return k

else
return A[k]

end if

Complexity

Computation time :
- O(K ) for pre-computation
- O(1) for generation
Memory :
- threshold O(K ) (real numbers as probability)
- alias O(K ) (integers indexes in a tables)
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Perfect Sampling of Complex Markov Chains

Applications

Finite queuing networks

Call centers

Grid/cluster scheduling

Kitting systems

Rare event estimation

Statistical verification of programs

Modeling

Poisson systems [Brémaud 1999]

Discrete vector state-space X
Event based models

Xn+1 = Φ(Xn, en+1) , en ∈ E

Stochastic recurrence equation

Independent events (iid)

Provide independent samples of stationary states.

PSI2 : a Perfect Sampler

Library of monotone events

Simulation kernel

Efficient simulator : polynomial in the model dimension
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Perfect Sampling Principle

All the trajectories

Time

0

−i

−j

−τ ∗

Stationary Process

X

X

X

X

Zi

Zj

Z−τ∗ = {X0}

Z0 = X

collapse

Synchronizing pattern =⇒ finite backward scheme τ∗ <∞
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Monotone Perfect Sampling

time

X

X

−(n + 1)

−n

same convergence condition
complexity in O(Eτ∗)⇒ polynomial in model dimension

[QEST 2008]
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Panorama : Markov models

Finite Monotone Systems

- large class of models : index based routing finite queueing networks
- time complexity : polynomial in the dimension of the system

Finite non-monotone system
Transition function
- almost monotone systems : bounding process
- exhaustive : splitting
- piecewise linear transitions

State space extension

Infinite systems
Monotone transition function

Non-monotone transitions
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Envelopes Perfect Sampling

time

X

X

−(n + 1)

−n

Synchronizing pattern for envelopes
complexity unknown but practically efficient
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Envelopes and Splitting Perfect Sampling

Exhaustive state simulation

−i

−j

−τ ∗

Stationary Process

X

X

X

X

Splitting point

Envelope algorith
m

Time

0

Guarantees the convergence
complexity unknown but practically more efficient

[VALUETOOLS 2008, QEST 2010]
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Computation of Envelopes

Join the Shortest Weighted Queue State space

negative customers, fork and join, batch routing
general complexity polynomial (linear programs) but practically⇒
computable less tight bounds

[Performance Evaluation, 2012]
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