Durée 45mn.

Documents interdits.

Barème indicatif. Une partie des points tient compte de la clarté de la rédaction et de la présentation. Chaque réponse non justifiée rapporte 0 points.

1 ABBA (13pts)

Une suite de A et de B est formée comme suit. La première lettre est choisie au hasard, $\mathbb{P}[A] = \mathbb{P}[B] = \frac{1}{2}$, ainsi que la deuxième, indépendamment de la première. Quand les (n-2) premières lettres ont été sélectionnées, la (n+1)-ème est choisie, indépendamment des lettres dans les positions $k \leq n-2$, et conditionnellement à la paire formée par les lettres en position n-1 et n, comme suit :

$$\mathbb{P}[X_{n+1} = A | X_{n-1} = A, X_n = A] = \frac{1}{2}, \quad \mathbb{P}[X_{n+1} = A | X_{n-1} = A, X_n = B] = \frac{1}{2},
\mathbb{P}[X_{n+1} = A | X_{n-1} = B, X_n = A] = \frac{1}{4}, \quad \mathbb{P}[X_{n+1} = A | X_{n-1} = B, X_n = B] = \frac{1}{4}.$$

Dans ce problème, on cherche à évaluer les proportions de A et de B au long terme. On appelle X_n la variable aléatoire représentant la n-ième lettre choisie.

Question 1.1: Markov

Le processus (X_n) est-il une chaîne de Markov? Justifiez.

On considère maintenant la variable $Z_n = (X_{n-1}, X_n)$.

Question 1.2: Markov, encore

Le processus (Z_n) est-il une chaîne de Markov? Justifiez. Quel est son espace d'états?

Question 1.3: Au commencement

Donnez sa distribution initiale π_1 (loi de (Z_1)) en précisant l'ordre choisi pour les états.

Question 1.4: Évolution

Donnez, au choix, son graphe ou sa matrice de transition P.

Question 1.5: Convergence

Le processus (Z_n) est-il ergodique?

Question 1.6 : Équilibre

Écrire et résoudre les équations d'équilibre.

Question 1.7: Conclusion

En déduire la proportion de A et de B à long terme.

2 Cours (7pts)

Question 2.1: Petite formule

Comment peut-on relier l'espérance du temps de séjour au nombre moyen de clients dans un système?

Question 2.2: Kendall

Quelles sont les caractéristiques d'une file $M/G/\infty$? Donnez un exemple typique de système que cette file peut modéliser.

Question 2.3 : Carpe Diem

Combien d'événements d'un processus de Poisson de paramètre λ peut-on observer en moyenne pendant un temps T?