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Simulation of random variables

Simulation of random variables

Summary

Transforming random numbers

@ Suppose we have a perfect uniform random number generator
(PRNG) Up1 or random()

@ Write an algorithm that uses Up; as input and produces a random
variate X with distribution f as output

Prove Validate
Correctness of the transformation at least experimentally.

algorithm
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From [0, 1] to [a, b]

Suppose you have a random generator random() providing uniform

samples Uy in [0, 1]. But you need a uniform real number in [0, b] where
b>0.

random() x b )

Proof. Let V be the output of the algorithm and U the result of
random(). Then for any 0 < x < b:

P[V <x] = P[random() X b < x|
= P[Ux b <x]

X

= Plu<g]
X

= 5 (uniform on [0, b]).
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Inversion

Inverse transform method
Inverse of the CDF

Suppose the CDF F is continuous and strictly monotone over the support
I. Then :
e F(R)=10,1]
@ Any number u € [0, 1] is the probability that X exceeds some value
c € I. (Intermediate value theorem)
e That value c is unique (F strictly increasing)

So F is invertible and has inverse F~1.
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Inversion

Inverse transform method
Idea

Inverse transform

Let X be a random variable with invertible CDF F. Let U be a uniform
random variable over [0, 1]. Then:

V=F1U)

has the same distribution as X.

Proof.

P[V <x] = P[F(U)<x]

= P[FoF }U) < F(x)] F is increasing
= PU < F(x)]
= F(x) U(uniform on [0, 1]).

Florence Perronnin (UGA) Simulating continuous random variables October 18, 2018 8 /25



Inversion

Inverse transform method
Algorithm

Let X be a r.v. with invertible CDF F and let G = F~1. Then X can be
sampled with the following algorithm:

Inverse transform algorithm
G(random()) J
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Inversion

Application to uniform sampling over [a, b]

for x € [a, b]

Algorithm
a+ random() X (b—a) J
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Application to exponential distribution £(\)

Fx(x)=1—e ™, for x >0

Algorithm J

—2 In( random() )
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Inversion

Limitations

@ F may not be continuous (or strictly increasing)

e F~! may require numerical computation (inexact methods)

Cf. [Devroye] for more details on numerical methods for inverse transform.
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@ Rejection
@ Rejection for bounded support and density
@ Rejection with a dominating density
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Rejection for discrete r.v.

6/20

Random()*6,/20

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Alea(8)
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Rejection for discrete r.v.

X discrete R.V with values in 1,..., N. Suppose the probabilities are
bounded by pmax

Algorithm
repeat
generate x uniformly over 1...N

generate y uniformly over [0, pmax]
until y <= P(x)

@ bounded support

@ rejection area (large pmax) = cost of sampling
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s e el ppa end sy

Rejection sampling for a continuous r.v.

Rejection sampling for Beta distribution
2.5~

2.0-

Reject
15-

fx(w)

1.0-

0.5- Accept

0.0—1

0.0 0.5 1.0 15
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s e el ppa end sy

Limitations

@ Bounded support : can’t generate uniformly from an infinite interval!

@ Bounded density (not for exponential r.v for instance)
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s e el ppa end sy

Rejection for continuous r.v.

Algorithm
repeat
generate x uniformly over I

generate y uniformly over [0,h]
until y <= f(x)

Complexity

Let N be the number of iterations (also a random variable).
E[N] = L

Paccept

Florence Perronnin (UGA) Simulating continuous random variables October 18, 2018 19 /25



Rejection for bounded support and density
Let X be a continuous r.v. with:
@ bounded support | = [a, b]
e bounded density f(x) < h, Vx € [a, b]
Then E [N] = h(b — a) (grey area)

Rejection sampling : complexity

Reject

Accept

October 18, 2018
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Reectiten wiidh @ RIMITEERG ity
Rejection with a dominating density

Motivations:
@ generalization for unbounded support
@ increase sampling efficiency

@ no constant bound on density sometimes

Idea
Let X and fx be the r.v. to sample. Assume that for all x:

fx(x) < cg(x)

where:
@ g is a density
@ random variates with density g can be easily sampled
@ cis known
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Conclusion

Methods for generating continuous random variables

Generic methods

@ Inverse of CDF : can be pre-computed for finite r.v. at the extra-cost
of a table

@ Rejection method : complexity depends on rejection probability

Specialized methods
@ exploit intrinsic structure of probability laws

@ composition methods

Caveats
@ Validity of the transformation

e Time complexity (number of operations)

@ Memory overhead
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