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Simulation of random variables

Simulation of random variables
Summary

Transforming random numbers

1 Suppose we have a perfect uniform random number generator
(PRNG) U01 or random()

2 Write an algorithm that uses U01 as input and produces a random
variate X with distribution f as output

Prove

Correctness of the transformation
algorithm

Validate

at least experimentally.
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Uniform to uniform

From [0, 1] to [a, b]

Suppose you have a random generator random() providing uniform
samples Uk in [0, 1]. But you need a uniform real number in [0, b] where
b > 0.

random()×b

Proof. Let V be the output of the algorithm and U the result of
random(). Then for any 0 < x < b:

P[V ≤ x ] = P[ random()× b ≤ x ]

= P[U × b ≤ x ]

= P

[
U ≤ x

b

]
=

x

b
(uniform on [0, b]).
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Inversion

Inverse transform method
Inverse of the CDF

Suppose the CDF F is continuous and strictly monotone over the support
I . Then :

F (R) = [0, 1]

Any number u ∈ [0, 1] is the probability that X exceeds some value
c ∈ I . (Intermediate value theorem)

That value c is unique (F strictly increasing)

So F is invertible and has inverse F−1.
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Inversion

Inverse transform method
Idea

Inverse transform

Let X be a random variable with invertible CDF F . Let U be a uniform
random variable over [0, 1]. Then:

V = F−1(U)

has the same distribution as X .

Proof.

P[V ≤ x ] = P
[
F−1(U) ≤ x

]
= P

[
F ◦ F−1(U) ≤ F (x)

]
F is increasing

= P[U ≤ F (x)]

= F (x) U(uniform on [0, 1]).
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Inversion

Inverse transform method
Algorithm

Let X be a r.v. with invertible CDF F and let G = F−1. Then X can be
sampled with the following algorithm:

Inverse transform algorithm

G(random())
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Inversion

Application to uniform sampling over [a, b]

FX (x) =
x − a

b − a
for x ∈ [a, b]

Algorithm

a + random() × (b − a)
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Inversion

Application to exponential distribution E(λ)

FX (x) = 1− e−λx , for x ≥ 0

Algorithm

− 1
λ ln( random() )
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Inversion

Limitations

F may not be continuous (or strictly increasing)

F−1 may require numerical computation (inexact methods)

Cf. [Devroye] for more details on numerical methods for inverse transform.
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Rejection

Rejection for discrete r.v.
6/20

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Alea(8)

Random()*6/20
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Rejection

Rejection for discrete r.v.

X discrete R.V with values in 1, . . . ,N. Suppose the probabilities are
bounded by pmax

Algorithm
repeat

generate x uniformly over 1...N

generate y uniformly over [0, pmax]

until y <= P(x)

bounded support

rejection area (large pmax) ⇒ cost of sampling
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Rejection Rejection for bounded support and density

Rejection sampling for a continuous r.v.

●

●
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Rejection sampling for Beta distribution
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Rejection Rejection for bounded support and density

Limitations

Bounded support : can’t generate uniformly from an infinite interval!

Bounded density (not for exponential r.v for instance)
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Rejection Rejection for bounded support and density

Rejection for continuous r.v.

Algorithm
repeat

generate x uniformly over I

generate y uniformly over [0,h]

until y <= f(x)

Complexity

Let N be the number of iterations (also a random variable).
E [N] = 1

paccept
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Rejection Rejection for bounded support and density

Let X be a continuous r.v. with:

bounded support I = [a, b]
bounded density f (x) ≤ h, ∀x ∈ [a, b]

Then E [N] = h(b − a) (grey area)
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Rejection sampling : complexity
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Rejection Rejection with a dominating density

Rejection with a dominating density

Motivations:

generalization for unbounded support

increase sampling efficiency

no constant bound on density sometimes

Idea

Let X and fX be the r.v. to sample. Assume that for all x :

fX (x) ≤ c g(x)

where:

g is a density

random variates with density g can be easily sampled

c is known
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Conclusion

Methods for generating continuous random variables

Generic methods

Inverse of CDF : can be pre-computed for finite r.v. at the extra-cost
of a table

Rejection method : complexity depends on rejection probability

Specialized methods

exploit intrinsic structure of probability laws

composition methods

Caveats

Validity of the transformation

Time complexity (number of operations)

Memory overhead
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