Simulating continuous random variables

Florence Perronnin

Univ. Grenoble Alpes, LIG, Inria

October 18, 2018

Simulation of random variables

Uniform to uniform

3 Inversion

4 Rejection

5 Specialized methods

6 Conclusion

Simulation of random variables

Summary

Transforming random numbers

- Suppose we have a perfect uniform random number generator (PRNG) U₀₁ or random()
- Write an algorithm that uses U₀₁ as input and produces a random variate X with distribution f as output

Prove

Correctness of the transformation algorithm

Validate

at least experimentally.

2 Uniform to uniform

3 Inversior

4 Rejection

5 Specialized methods

6 Conclusion

From [0, 1] to [*a*, *b*]

Suppose you have a random generator random() providing uniform samples U_k in [0, 1]. But you need a uniform real number in [0, b] where b > 0.

 $random() \times b$

Proof. Let V be the output of the algorithm and U the result of random(). Then for any 0 < x < b:

$$\mathbb{P}[V \le x] = \mathbb{P}[\operatorname{random}() \times b \le x]$$

= $\mathbb{P}[U \times b \le x]$
= $\mathbb{P}\left[U \le \frac{x}{b}\right]$
= $\frac{x}{b}$ (uniform on $[0, b]$).

Simulation of random variables

2 Uniform to uniform

- Rejection
- 5 Specialized methods

6 Conclusion

Inverse transform method Inverse of the CDF

Suppose the CDF F is continuous and strictly monotone over the support I. Then :

- $F(\mathbb{R}) = [0, 1]$
- Any number u ∈ [0,1] is the probability that X exceeds some value c ∈ I. (Intermediate value theorem)
- That value c is unique (F strictly increasing)
- So *F* is invertible and has inverse F^{-1} .

Inverse transform method

Idea

Inverse transform

Let X be a random variable with invertible CDF F. Let U be a uniform random variable over [0, 1]. Then:

$$V = F^{-1}(U)$$

has the same distribution as X.

Proof.

$$\mathbb{P}[V \le x] = \mathbb{P}[F^{-1}(U) \le x]$$

$$= \mathbb{P}[F \circ F^{-1}(U) \le F(x)]$$

$$= \mathbb{P}[U \le F(x)]$$

$$= F(x)$$

$$U(uniform on [0, 1]).$$

Inverse transform method Algorithm

Let X be a r.v. with invertible CDF F and let $G = F^{-1}$. Then X can be sampled with the following algorithm:

Inverse transform algorithm
G(random())

Inversion

Application to uniform sampling over [a, b]

$$F_X(x) = rac{x-a}{b-a}$$
 for $x \in [a,b]$

Algorithm

 $a + random() \times (b - a)$

Application to exponential distribution $\mathcal{E}(\lambda)$

$$F_X(x) = 1 - e^{-\lambda x}, \quad \text{for } x \ge 0$$

 $-\frac{1}{\lambda}\ln(\text{random()})$

Density $f(x)$	F(x)	$X = F^{-1}(U)$	Simplified form
Exponential(λ) $\lambda e^{-\lambda x}$, $x \ge 0$	$1-e^{-\lambda x}$	$-\frac{1}{\lambda}\log(1-U)$	$-\frac{1}{\lambda}\log(U)$
$\frac{\sigma}{\pi(x^2+\sigma^2)}$	$\frac{1}{2} + \frac{1}{\pi} \arctan(\frac{x}{\sigma})$	$\sigma \tan(\pi(U-\frac{1}{2}))$	$\sigma an(\pi U)$
Rayleigh(σ) $\frac{x}{\sigma}e^{-\frac{x^2}{2\sigma^2}}, x \ge 0$	$1-e^{-\frac{x^2}{2\sigma^2}}$	$\sigma\sqrt{-\log(1-U)}$	$\sigma\sqrt{-\log(U)}$
Triangular on(0, a) $\frac{2}{a}(1-\frac{x}{a}), 0 \le x \le a$	$\frac{2}{a}(x-\frac{x^2}{2a})$	$a\left(1-\sqrt{1-U}\right)$	$a\left(1-\sqrt{U} ight)$
Tail of Rayleigh $xe^{\frac{a^2-x^2}{2}}, x \ge a > 0$	$1-e^{\frac{a^2-z^2}{2}}$	$\sqrt{a^2-2\log(1-U)}$	$\sqrt{a^2-2\log U}$
Pareto(a,b) $\frac{ab^{a}}{x^{a+1}}, x \ge b > 0$	$1-\left(\frac{b}{x}\right)^{a}$	$\frac{b}{(1-U)^{1/a}}$	$\frac{b}{U^{1/a}}$

Limitations

- F may not be continuous (or strictly increasing)
- F^{-1} may require numerical computation (inexact methods)

Cf. [Devroye] for more details on numerical methods for inverse transform.

Uniform to uniform

Inversior

Rejection

- Rejection for bounded support and density
- Rejection with a dominating density

5 Specialized methods

Conclusion


```
Rejection for discrete r.v.
```

X discrete R.V with values in $1, \ldots, N$. Suppose the probabilities are bounded by *pmax*

```
Algorithm

repeat

generate x uniformly over 1...N

generate y uniformly over [0, pmax]

until y <= P(x)
```

- bounded support
- rejection area (large pmax) \Rightarrow cost of sampling

Rejection sampling for a continuous r.v.

Rejection sampling for Beta distribution

Limitations

- Bounded support : can't generate uniformly from an infinite interval!
- Bounded density (not for exponential r.v for instance)

Rejection for continuous r.v.

Algorithm repeat generate x uniformly over I generate y uniformly over [0,h] until y <= f(x)

Complexity

```
Let N be the number of iterations (also a random variable). \mathbb{E}\left[N
ight] = rac{1}{p_{	ext{accept}}}
```

Let X be a continuous r.v. with:

- bounded support I = [a, b]
- bounded density $f(x) \leq h$, $\forall x \in [a, b]$

Then $\mathbb{E}[N] = h(b-a)$ (grey area)

Rejection sampling : complexity

Rejection with a dominating density

Motivations:

- generalization for unbounded support
- increase sampling efficiency
- no constant bound on density sometimes

Idea

Let X and f_X be the r.v. to sample. Assume that for all x:

$$f_X(x) \leq c g(x)$$

where:

- g is a density
- random variates with density g can be easily sampled
- *c* is known

- Simulation of random variables
- 2 Uniform to uniform
- 3 Inversior
- 4 Rejection
- 5 Specialized methods
 - Conclusion

- Simulation of random variables
- Uniform to uniform
- 3 Inversion
- 4 Rejection
- 5 Specialized methods

Methods for generating continuous random variables

Generic methods

- Inverse of CDF : can be pre-computed for finite r.v. at the extra-cost of a table
- Rejection method : complexity depends on rejection probability

Specialized methods

- exploit intrinsic structure of probability laws
- composition methods

Caveats

- Validity of the transformation
- Time complexity (number of operations)
- Memory overhead

Sources

- Jean-Marc Vincent, Random generation of discrete random variables, Notes de cours, 2010.
- Jean-Marc Vincent, Générateurs de loi uniforme et de lois discrètes, Notes de cours, 2016.
- Jean Bérard, Génération de variables pseudo-aléatoires, Notes de cours, Université Claude Bernard Lyon 1.
- Luc Devroye, Non-uniform Random Variate Generation, http://www.eirene.de/Devroye.pdf
- Pierre L'Ecuyer, Random number generation, Handbook of Computational Statistics. Springer, Berlin, Heidelberg, pp. 35-71, 2012.
- Alastair Walker, An efficient method for generating discrete random variables with general distributions, ACM Transactions on Mathematical Software (TOMS) 3: 253-256, 1977.