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Motivation 1/2 

•  Numerical simulations: 
– 3D objects: meshes, particles 
– Spatial and temporal coherency 

•  Computer memories: 1D 



Motivation 2/2 
Today’s machines: 

 -> complex memory hierarchies 
 
 
 
Access by blocks of continuous data (memory 
pages, cache lines, read/write coalescing) 
 
Need to carefully consider data access 
schemes and memory layouts 



Spatial Coherency 

(3D) Neighbor data tend to be accessed 
together 

 -> Mesh topology, Atoms, etc. 
 
Try to keep this 3D locality when projecting the 
data in the 1D memory: 
 

 Goal: Access n neighbor data by  
  n/B memory block transfers (B-size) 



Memory Hierarchy 
Cache RAM 

CPU Disk 
Block transfers 

100ns 106ns 102ns Access times 



Disk Access Model (DAM) 

Cache 

CPU 

Disk 

Size M 
M/B blocks 

Block transfers 

Infinite size Size B 

[Aggarwal and Vitter 1988] 

W: #operations CPU 
 
Q: #block transfers 

or external memory 
    out-of-core 
    cache-aware 
    I/O model 



•  Simple: only two levels 

•  Good when the bottleneck is between 
two specific levels 

Advantages of the DAM model 

CPU Disk 

Cache 

RAM 



•  Internal efficiency: work is comparable to 
the best internal memory algorithms 

•  Spatial locality: a block should contain as 
much useful data as possible 

•  Temporal locality: as much useful work as 
possible before the block is ejected 

Principles of external-memory 
algorithm design 



Scanning in the DAM model 
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Read an N-elements array: the naive algorithm is optimal 

this bound is optimal 
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Searching in the DAM model 

)(lgNO

Searching a key in an N-nodes balanced binary tree 
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: naive doesn’t work 



Searching in the DAM model 

Θ(B) 
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Θ(B) 
)(log NO B

)()(log.lg)( gNONOBNW B l==

[Bayer and McCreight 1972] Searching a key in an N-elements B-tree 
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Multiplying in the DAM model 

N 
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NxN matrices in row-major order 
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Using the naive N3 algorithm: 

Memory accesses in B are suboptimal: 

: naive doesn’t work 



Multiplying in the DAM model 

N 

N 

3/M

3/M
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NxN matrices in submatrices 

2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 



Multiplying in the DAM model 
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Sorting in the DAM model 
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cache 

•  Cut into M/B sublists 
•  Recursively sort them 
•  Merge using a heap of size 

M/B 



•  B and M are needed to design the algorithm 

•  Only two levels of the hierarchy 

•  B and M can vary 
–  e.g. multi-process scheduling 

•  Block transfer cost is not uniform 
–  disk seek time 

Limitations of the DAM model 

DAM Based Algorithms  are said to be “cache-aware “ 



Cache-Oblivious Model (CO) 

Cache 

CPU 

Disk 

Unknown size M 

Block transfers 

Infinite size Unknown size B 

Optimal replacement 
strategy (FIF) 

[Frigo et al 1999] 



Parameters are unknown when writing the algorithm 
(block and cache size): 
 
•  Machine-independent 

•  Efficient with all levels of the memory hierarchy 

Advantages of the CO Model 



• Optimal replacement 

• Only two levels of memory 

•  Full associativity 

•  Tall-cache assumption 

  

Assumptions 
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Scanning in the CO model 
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Alignement issue 



Spatial Coherency 

(3D) Neighbor data tend to be accessed 
together 

 -> Mesh topology, Atoms, etc. 
 
Try to keep this 3D locality when projecting the 
data in the 1D memory: 
 

 Goal: Access n neighbor data by  
  n/B memory block transfers (B-size) 



Space-filling Curves 

(x,y,z) -> Z-index by bit switches 

Hilbert Curve Morton Curve 

Examples in 2D, but extends to higher dimensions 



Morton Curve 

Morton Curve 

Memory Layout  



Morton Curve: 
Cache Oblivious Data Layouts 

query slice 

loaded block unloaded block 

Memory Layout  

The layout is computed 
independently from a given M  
and B 

Spatially coherent accesses will  
show a good cache behavior 

See [Pascucci, Siggraph-2005]  
or [Tchiboukdjian, TVCG 2010]  
for mesh specific CO layouts 



Morton Curve Indexing  

Z-index obtained 
by Interleaving the 
binary coordinates 
of x and y 

Z-index 

Z-curves are used  by some databases data structures (trees, hash 
tables), or for data partitioning in numerical simulations. 



Morton Curve Based CO 
layout  and Parallelism 

•  How would you manage such CO layout on a 
NUMA node ?  

•  How would you implement parallel element 
searches ? 

•  What are the benefits of this CO layout (on a 
NUMA node) ?  

 



•  Map data blocks to  
memory banks  
according to CO 
layout 

•  Make sure threads 
access local banks 
first 

 
What about GPUs ?  
 

Morton Curve Based CO 
layout  and Parallelism 



Packed Memory Array 

A Cache Oblivious data structure for 
dynamics data.  



Cache Oblivious Data Structure for Moving Particles

particles

simulation

short-range
interaction

movement
~a = 1

m

P ~F
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Spatial Locality Preserving Memory Layout

3D Space

0 0 0 0 0 0 0 0 0 0

cache lines

0 0 0 0 0 0 0 0 0 0

1D memory
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Spatial Locality Preserving Memory Layout

3D Space

0 0 0 0 0 0 0 0 0 0

cache lines

0 0 0 0 0 0 0 0 0 0

Group particles by cell.

1D memory
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Spatial Locality Preserving Memory Layout

3D Space

0 0 0 0 0 0 0 0 0 0

cache lines

0 0 0 0 0 0 0 0 0 0

Cell index sorting: Z-order

1D memory
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Related Data Structures

Classical approaches:

Z-index sorting

Compact (spatial) hashing

Periodically (1/100):

sort particles data array

[Ihmsen et al., 2011]
0 0 0 0 0 0 0 0 0 0

particles data

0 3 1 4 5 9 2 8 7 6

particles indices

cell 0 cell 1 cell 2 cell 3

cell indices
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Idea

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
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Idea

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
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Packed Memory Array (PMA)

K elements in an array of
size N (N � K gaps)

Segments of size logN

#segments: power of 2

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

0 6 0 0 7 11 12 0 12 12 0 0 13 14 0 0

a segment

a window of 2 segments

h

[Bender et al. (2000, 2005)]
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Packed Memory Array (PMA)

Densities min ⇢, max ⌧

⇢0 < ... < ⇢
h
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a segment a window of 2 segments
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[Bender et al. (2000, 2005)]
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How Does the Original PMA Work ?

⇢
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h

15

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 00 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0
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0 6 7 0 9 11 0 0 12 12 0 0 13 14 15 00 6 7 0 9 10 11 0 12 12 0 0 13 14 15 0

Amortized number of moves: O(log2 N).
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Element Moves
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Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 0 6 0 0 7 11 12 0 0 12 12 0 0 0 13 14 0 15 0

10 16 11 8

3 3 2 3

6 5

11

1 Some values change

: gather in an array

2 Sort of moving elements

3 Recursively split array according to window middle value

4 Direct insertion

or rebalance
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Rebalance with a Single Scan

0 0 6 0 0 7 0 12 0 0

0 6 7 8 0 10 11 12 0 0

8 10 11

4 elements 3 elements

Merging two sorted lists: one scan, in place.
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Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 6 7 8 0 10 11 12 0 0 12 0 0 0 0 13 0 0 15 16

4 3 1 3

7 4

11

Supports moves, insertions and deletions.

11 / 20



Experimental Results: Moving Integers
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Sorting Moving Elements: Speed-up of PMA vs Qsort (Libc)

100 000

1 000 000

10 000 000

T

isort

= 500xT
pma

with
100 000 elements and
10% of moves

Array filled with random
elements. Execution time
measured around several
applications of a given
percentage of randomly
selected moves.

TODO: insertion sort, level of rebalance
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Scan Performance

Dense array:

for i in 1 to K do

sum += a[i]

PMA:

for i in 1 to N do

if isValid(a[i])

sum += a[i]

K N N/K T
PMA

/T
array

100 000 163 840 1.64 1.69
1 000 000 1 572 864 1.57 1.86
2 900 000 4 456 448 1.54 1.74
10 000 000 15 728 640 1.57 1.78

Test case built to exacerbate the overhead. On realistic computation
schemes it fades away.
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Application to Particles

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
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10 11

12 13

14 15
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Application to Particles: Results

Implementation in Fluids [Hoetzlein, 2008]: 2.9 106particles
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Global performance: 2.8% (sort is 4.5% of total simulation time). 15 / 20
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Searching in the CO model 
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Multiplying in the CO model 
D&C matrix multiplication using a recursive layout 



Multiplying in the CO model 

N 

N 

A 

AxB 

B 

2
N

( ) ( )

( )3

2

)(

otherwise                           )1(
1 if   28)(

NONW

O
NNONWNW

=

⎪⎩

⎪
⎨
⎧ >+

=

( ) ( )
( )

⎟
⎠
⎞

⎜
⎝
⎛=

⎪⎩

⎪
⎨
⎧ >+

=

MB
NONQ

B
NO

MNB
NONQ

NQ

3

2

22

)(

otherwise                  
3 if    28

)(

D&C matrix multiplication using a recursive layout 

2
N


