

Cache and Data Structures

Bruno Raffin DataMove INRIA - LIG GRENOBLE Part of the Slides are from Marc Tchiboukdjian and Marie Durand

Motivation 1/2

- Numerical simulations:
 - 3D objects: meshes, particles
 - Spatial and temporal coherency
- Computer memories: 1D

Motivation 2/2

Today's machines:

-> complex memory hierarchies

Access by blocks of continuous data (memory pages, cache lines, read/write coalescing)

Need to carefully consider data access schemes and memory layouts

(3D) Neighbor data tend to be accessed together

-> Mesh topology, Atoms, etc.

Try to keep this 3D locality when projecting the data in the 1D memory:

Goal: Access n neighbor data by n/B memory block transfers (B-size)

Disk Access Model (DAM)

Q: #block transfers

Advantages of the DAM model

- Simple: only two levels
- Good when the bottleneck is between two specific levels

Principles of external-memory algorithm design

- Internal efficiency: work is comparable to the best internal memory algorithms
- Spatial locality: a block should contain as much useful data as possible
- Temporal locality: as much useful work as possible before the block is ejected

Scanning in the DAM model

Read an N-elements array: the naive algorithm is optimal

Searching in the DAM model

Searching a key in an N-nodes balanced binary tree : naive doesn't work

$$W(N) = 1.O(\lg N) = O(\lg N)$$
$$Q(N) = 1.O(\lg N) = O(\lg N)$$

Searching in the DAM model

Searching a key in an N-elements B-tree

[Bayer and McCreight 1972]

 $W(N) = \lg B.O(\log_B N) = O(\lg N)$ $Q(N) = 1.O(\log_B N) = O(\log_B N)$

Multiplying in the DAM model

NxN matrices in row-major order

: naive doesn't work

Using the naive N³ algorithm:

 $W(N) = O(N)N^{2}$ $W(N) = O(N^{3})$

Memory accesses in B are suboptimal:

$$Q(N) = O\left(\frac{N}{B} + N\right) N^{2}$$
$$Q(N) = O\left(N^{3}\right)$$

AxB

Multiplying in the DAM model

NxN matrices in submatrices

Multiplying in the DAM model

NxN matrices in submatrices

A

Sorting in the DAM model

M/B-way merge sort of an N-elements array

$$W(N) = \begin{cases} \frac{M}{B} W\left(\frac{N}{M_B}\right) + N.O\left(\log\frac{M}{B}\right) & \text{if } N > 1\\ O(1) & \text{otherwise} \end{cases}$$

- Cut into M/B sublists
- Recursively sort them
- Merge using a heap of size M/B

Limitations of the DAM model

- B and M are needed to design the algorithm
- Only two levels of the hierarchy
- B and M can vary
 - e.g. multi-process scheduling
- Block transfer cost is not uniform
 - disk seek time

DAM Based Algorithms are said to be "cache-aware "

Cache-Oblivious Model (CO)

[Frigo et al 1999]

Advantages of the CO Model

Parameters are unknown when writing the algorithm (block and cache size):

- Machine-independent
- Efficient with all levels of the memory hierarchy

Assumptions

- Optimal replacement
- Only two levels of memory
- Full associativity
- Tall-cache assumption $M = \Omega(B^2)$ $M = \Omega(B^{1+\varepsilon})$

W(N) = N $Q(N) = \lceil N / B \rceil + 1$

(3D) Neighbor data tend to be accessed together

-> Mesh topology, Atoms, etc.

Try to keep this 3D locality when projecting the data in the 1D memory:

Goal: Access n neighbor data by n/B memory block transfers (B-size)

Space-filling Curves

Morton Curve

Hilbert Curve

 $(x,y,z) \rightarrow Z$ -index by bit switches

Examples in 2D, but extends to higher dimensions

Morton Curve

Morton Curve

Morton Curve: Cache Oblivious Data Layouts

Morton Curve Indexing

Z-index obtained by Interleaving the binary coordinates of x and y

Z-index

Z-curves are used by some databases data structures (trees, hash tables), or for data partitioning in numerical simulations.

Morton Curve Based CO layout and Parallelism

- How would you manage such CO layout on a NUMA node ?
- How would you implement parallel element searches ?
- What are the benefits of this CO layout (on a NUMA node) ?

Morton Curve Based CO layout and Parallelism

- Map data blocks to memory banks according to CO layout
- Make sure threads access local banks first

What about GPUs ?

Packed Memory Array

A Cache Oblivious data structure for dynamics data.

Cache Oblivious Data Structure for Moving Particles

Cache Oblivious Data Structure for Moving Particles

Cache Oblivious Data Structure for Moving Particles

Spatial Locality Preserving Memory Layout

1D memory

Spatial Locality Preserving Memory Layout

Group particles by cell.

1D memory

Spatial Locality Preserving Memory Layout

Cell index sorting: Z-order

1D memory

Classical approaches:

- Z-index sorting
- Compact (spatial) hashing Periodically (1/100):
 - sort particles data array

[Ihmsen et al., 2011]

- K elements in an array of size N (N – K gaps)
- Segments of size log N
- #segments: power of 2

[Bender et al. (2000, 2005)]

[Bender et al. (2000, 2005)]

Amortized number of moves: $O(\log^2 N)$.

Element Moves

Some values change

• Some values change: gather in an array

- Some values change
- Ø Sort of moving elements

- Some values change
- Ø Sort of moving elements

- Some values change
- Ø Sort of moving elements
- Secursively split array according to window middle value

- Some values change
- Ø Sort of moving elements
- Secursively split array according to window middle value

- Some values change
- Ø Sort of moving elements
- 8 Recursively split array according to window middle value
- Direct insertion

- Some values change
- Ø Sort of moving elements
- 8 Recursively split array according to window middle value
- Oirect insertion or rebalance

Merging two sorted lists: one scan, in place.

Supports moves, insertions and deletions.

Experimental Results: Moving Integers

Speed-up (T_{qsort}/T_{pma})

Sorting Moving Elements: Speed-up of PMA vs Qsort (Libc)

Scan Performance

Dense array: PMA: for i in 1 to K do for i in 1 to N do sum += a[i] if isValid(a[i]) sum += a[i]

K	Ν	N/K	T_{PMA}/T_{array}
100 000	163 840	1.64	1.69
1000000	1572864	1.57	1.86
2 900 000	4 456 448	1.54	1.74
10000000	15 728 640	1.57	1.78

• Test case built to exacerbate the overhead. On realistic computation schemes it fades away.

Application to Particles

Application to Particles: Results

Global performance: 2.8% (sort is 4.5% of total simulation time).

Application to Particles: Results

Global performance: 2.8% (sort is 4.5% of total simulation time).

Searching in the CO model

Multiplying in the CO model

D&C matrix multiplication using a recursive layout

Multiplying in the CO model

D&C matrix multiplication using a recursive layout

 $W(N) = \begin{cases} 8W(N/2) + O(N^2) & \text{if } N > 1\\ O(1) & \text{otherwise} \end{cases}$ R $W(N) = O(N^3)$ $Q(N) = \begin{cases} 8Q(N/2) + O(N^2/B) & \text{if } N^2 > M/3 \\ O(N^2/B) & \text{otherwise} \end{cases}$ Α $Q(N) = O\left(\frac{N^3}{B\sqrt{M}}\right)$ Ν **AxB** Ν