
Cache
and

 Data Structures

Bruno Raffin
DataMove

INRIA - LIG
GRENOBLE

Part of the Slides are from
 Marc Tchiboukdjian
and
 Marie Durand

Motivation 1/2

•  Numerical simulations:
– 3D objects: meshes, particles
– Spatial and temporal coherency

•  Computer memories: 1D

Motivation 2/2
Today’s machines:

 -> complex memory hierarchies

Access by blocks of continuous data (memory
pages, cache lines, read/write coalescing)

Need to carefully consider data access
schemes and memory layouts

Spatial Coherency

(3D) Neighbor data tend to be accessed
together

 -> Mesh topology, Atoms, etc.

Try to keep this 3D locality when projecting the
data in the 1D memory:

 Goal: Access n neighbor data by
 n/B memory block transfers (B-size)

Memory Hierarchy
Cache RAM

CPU Disk
Block transfers

100ns 106ns 102ns Access times

Disk Access Model (DAM)

Cache

CPU

Disk

Size M
M/B blocks

Block transfers

Infinite size Size B

[Aggarwal and Vitter 1988]

W: #operations CPU

Q: #block transfers

or external memory
 out-of-core
 cache-aware
 I/O model

•  Simple: only two levels

•  Good when the bottleneck is between
two specific levels

Advantages of the DAM model

CPU Disk

Cache

RAM

•  Internal efficiency: work is comparable to
the best internal memory algorithms

•  Spatial locality: a block should contain as
much useful data as possible

•  Temporal locality: as much useful work as
possible before the block is ejected

Principles of external-memory
algorithm design

Scanning in the DAM model

B
N

NNW =)(

Read an N-elements array: the naive algorithm is optimal

this bound is optimal

⎡ ⎤BNNscan /)(=

⎡ ⎤BNNQ /)(=

Searching in the DAM model

)(lgNO

Searching a key in an N-nodes balanced binary tree

)()(lg.1)(gNONONW l==
)(lg)(lg.1)(NONONQ ==

: naive doesn’t work

Searching in the DAM model

Θ(B)

Θ(B)

Θ(B)
)(log NO B

)()(log.lg)(gNONOBNW B l==

[Bayer and McCreight 1972] Searching a key in an N-elements B-tree

)(log)(log.1)(NONONQ BB ==

Multiplying in the DAM model

N

A AxB

B

NxN matrices in row-major order

N

()
)()(
.)(
3

2

NONW
NNONW

=

=

()3

2

)(

.)(

NONQ

NN
B
NONQ

=

⎟
⎠

⎞
⎜
⎝

⎛ +=

Using the naive N3 algorithm:

Memory accesses in B are suboptimal:

: naive doesn’t work

Multiplying in the DAM model

N

N

3/M

3/M

1

NxN matrices in submatrices

2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Multiplying in the DAM model

N

N

3/M

A AxB

B 3/M• Cost for two sub-matrices

• Total cost

⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠
⎞⎜

⎝
⎛=

B
MONQMONW)()(

3

W (N) =O M
3().O N

M
⎛

⎝
⎜

⎞

⎠
⎟.O

N 2

M
⎛

⎝
⎜

⎞

⎠
⎟

W (N) =O N 3()

Q(N) =O M
B

⎛

⎝
⎜

⎞

⎠
⎟.O

N
M

⎛

⎝
⎜

⎞

⎠
⎟.O

N 2

M
⎛

⎝
⎜

⎞

⎠
⎟

Q(N) =O N 3

B M
⎛

⎝
⎜

⎞

⎠
⎟

NxN matrices in submatrices

Sorting in the DAM model

B
M

on disk

()NNONW
O

N
B
MONNW

B
M

NW
B

M

log)(

otherwise)1(

1 if log.)(

=

⎪⎩

⎪
⎨

⎧
>⎟

⎠

⎞
⎜
⎝

⎛+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

M/B-way merge sort of an N-elements array

optimal)(log)(

otherwise

 if
)(

/ Nsort
B
N

B
NONQ

B
NO

MN
B
NONQ

B
M

NQ

BM

B
M

=⎟
⎠

⎞
⎜
⎝

⎛=

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠

⎞
⎜
⎝

⎛

>⎟
⎠

⎞
⎜
⎝

⎛+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

cache

•  Cut into M/B sublists
•  Recursively sort them
•  Merge using a heap of size

M/B

•  B and M are needed to design the algorithm

•  Only two levels of the hierarchy

•  B and M can vary
–  e.g. multi-process scheduling

•  Block transfer cost is not uniform
–  disk seek time

Limitations of the DAM model

DAM Based Algorithms are said to be “cache-aware “

Cache-Oblivious Model (CO)

Cache

CPU

Disk

Unknown size M

Block transfers

Infinite size Unknown size B

Optimal replacement
strategy (FIF)

[Frigo et al 1999]

Parameters are unknown when writing the algorithm
(block and cache size):

•  Machine-independent

•  Efficient with all levels of the memory hierarchy

Advantages of the CO Model

• Optimal replacement

• Only two levels of memory

•  Full associativity

•  Tall-cache assumption

Assumptions

)(
²)(
1 ε+Ω=

Ω=

BM
BM

Scanning in the CO model

B
N

⎡ ⎤ 1/)(
)(

+=

=

BNNQ
NNW

Alignement issue

Spatial Coherency

(3D) Neighbor data tend to be accessed
together

 -> Mesh topology, Atoms, etc.

Try to keep this 3D locality when projecting the
data in the 1D memory:

 Goal: Access n neighbor data by
 n/B memory block transfers (B-size)

Space-filling Curves

(x,y,z) -> Z-index by bit switches

Hilbert Curve Morton Curve

Examples in 2D, but extends to higher dimensions

Morton Curve

Morton Curve

Memory Layout

Morton Curve:
Cache Oblivious Data Layouts

query slice

loaded block unloaded block

Memory Layout

The layout is computed
independently from a given M
and B

Spatially coherent accesses will
show a good cache behavior

See [Pascucci, Siggraph-2005]
or [Tchiboukdjian, TVCG 2010]
for mesh specific CO layouts

Morton Curve Indexing

Z-index obtained
by Interleaving the
binary coordinates
of x and y

Z-index

Z-curves are used by some databases data structures (trees, hash
tables), or for data partitioning in numerical simulations.

Morton Curve Based CO
layout and Parallelism

•  How would you manage such CO layout on a
NUMA node ?

•  How would you implement parallel element
searches ?

•  What are the benefits of this CO layout (on a
NUMA node) ?

•  Map data blocks to
memory banks
according to CO
layout

•  Make sure threads
access local banks
first

What about GPUs ?

Morton Curve Based CO
layout and Parallelism

Packed Memory Array

A Cache Oblivious data structure for
dynamics data.

Cache Oblivious Data Structure for Moving Particles

particles

simulation

short-range
interaction

movement
~a = 1

m

P ~F

Cache Oblivious Data Structure for Moving Particles

particles

simulation

short-range
interaction

movement
~a = 1

m

P ~F

Cache Oblivious Data Structure for Moving Particles

particles

simulation

short-range
interaction

movement
~a = 1

m

P ~F

Spatial Locality Preserving Memory Layout

3D Space

0 0 0 0 0 0 0 0 0 0

cache lines

0 0 0 0 0 0 0 0 0 0

1D memory

3 / 20

Spatial Locality Preserving Memory Layout

3D Space

0 0 0 0 0 0 0 0 0 0

cache lines

0 0 0 0 0 0 0 0 0 0

Group particles by cell.

1D memory

3 / 20

Spatial Locality Preserving Memory Layout

3D Space

0 0 0 0 0 0 0 0 0 0

cache lines

0 0 0 0 0 0 0 0 0 0

Cell index sorting: Z-order

1D memory

3 / 20

Related Data Structures

Classical approaches:

Z-index sorting

Compact (spatial) hashing

Periodically (1/100):

sort particles data array

[Ihmsen et al., 2011]
0 0 0 0 0 0 0 0 0 0

particles data

0 3 1 4 5 9 2 8 7 6

particles indices

cell 0 cell 1 cell 2 cell 3

cell indices

4 / 20

Idea

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

5 / 20

Idea

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

5 / 20

Packed Memory Array (PMA)

K elements in an array of
size N (N � K gaps)

Segments of size logN

#segments: power of 2

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

0 6 0 0 7 11 12 0 12 12 0 0 13 14 0 0

a segment

a window of 2 segments

h

[Bender et al. (2000, 2005)]

6 / 20

Packed Memory Array (PMA)

Densities min ⇢, max ⌧

⇢0 < ... < ⇢
h

< ⌧
h

< ... < ⌧0

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0
0 6 0 0 7 11 12 0 12 12 0 0 13 14 0 0

a segment a window of 2 segments

h

[Bender et al. (2000, 2005)]

6 / 20

How Does the Original PMA Work ?

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

0 6 0 0 7 9 11 0 12 12 0 0 13 14 0 0

h

15

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 00 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0

10

0 6 7 0 9 11 0 0 12 12 0 0 13 14 15 00 6 7 0 9 10 11 0 12 12 0 0 13 14 15 0

Amortized number of moves: O(log2 N).

7 / 20

How Does the Original PMA Work ?

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

0 6 0 0 7 9 11 0 12 12 0 0 13 14 0 0

h

15

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 00 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0

10

0 6 7 0 9 11 0 0 12 12 0 0 13 14 15 00 6 7 0 9 10 11 0 12 12 0 0 13 14 15 0

Amortized number of moves: O(log2 N).

7 / 20

How Does the Original PMA Work ?

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

0 6 0 0 7 9 11 0 12 12 0 0 13 14 0 0

h

15

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0

10

0 6 7 0 9 11 0 0 12 12 0 0 13 14 15 00 6 7 0 9 10 11 0 12 12 0 0 13 14 15 0

Amortized number of moves: O(log2 N).

7 / 20

How Does the Original PMA Work ?

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

0 6 0 0 7 9 11 0 12 12 0 0 13 14 0 0

h

15

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0

10

0 6 7 0 9 11 0 0 12 12 0 0 13 14 15 00 6 7 0 9 10 11 0 12 12 0 0 13 14 15 0

Amortized number of moves: O(log2 N).

7 / 20

How Does the Original PMA Work ?

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

0 6 0 0 7 9 11 0 12 12 0 0 13 14 0 0

h

15

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0

10

0 6 7 0 9 11 0 0 12 12 0 0 13 14 15 00 6 7 0 9 10 11 0 12 12 0 0 13 14 15 0

Amortized number of moves: O(log2 N).

7 / 20

How Does the Original PMA Work ?

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

0 6 0 0 7 9 11 0 12 12 0 0 13 14 0 0

h

15

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 00 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0

10

0 6 7 0 9 11 0 0 12 12 0 0 13 14 15 0

0 6 7 0 9 10 11 0 12 12 0 0 13 14 15 0

Amortized number of moves: O(log2 N).

7 / 20

How Does the Original PMA Work ?

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

0 6 0 0 7 9 11 0 12 12 0 0 13 14 0 0

h

15

0 6 0 0 7 9 11 0 12 12 0 0 13 14 15 00 6 0 0 7 9 11 0 12 12 0 0 13 14 15 0

10

0 6 7 0 9 11 0 0 12 12 0 0 13 14 15 0

0 6 7 0 9 10 11 0 12 12 0 0 13 14 15 0

Amortized number of moves: O(log2 N).

7 / 20

Element Moves

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

0 6 7 0 9 10 11 0 12 12 0 0 13 14 15 0

8 / 20

Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 0 6 0 0 7 11 12 0 0 12 12 0 0 0 13 14 0 15 0

10 16 11 8

3 3 2 3

6 5

11

1 Some values change

: gather in an array

2 Sort of moving elements

3 Recursively split array according to window middle value

4 Direct insertion

or rebalance

9 / 20

Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 10 6 0 0 7 16 12 0 0 12 11 0 0 0 13 8 0 15 0

10 16 11 8

3 3 2 3

6 5

11

1 Some values change

: gather in an array

2 Sort of moving elements

3 Recursively split array according to window middle value

4 Direct insertion

or rebalance

9 / 20

Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 0 6 0 0 7 0 12 0 0 12 0 0 0 0 13 0 0 15 0

10 16 11 8

2 2 1 2

4 3

7

1 Some values change: gather in an array

2 Sort of moving elements

3 Recursively split array according to window middle value

4 Direct insertion

or rebalance

9 / 20

Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 0 6 0 0 7 0 12 0 0 12 0 0 0 0 13 0 0 15 0

10 16 11 8

8 10 11 16

2 2 1 2

4 3

7

1 Some values change

: gather in an array

2 Sort of moving elements

3 Recursively split array according to window middle value

4 Direct insertion

or rebalance

9 / 20

Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 0 6 0 0 7 0 12 0 0 12 0 0 0 0 13 0 0 15 0

10 16 11 8

8 10 11 16

2 2 1 2

4 3

7

1 Some values change

: gather in an array

2 Sort of moving elements

3 Recursively split array according to window middle value

4 Direct insertion

or rebalance

9 / 20

Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 0 6 0 0 7 0 12 0 0 12 0 0 0 0 13 0 0 15 0

10 16 11 8

8 10 11 16

2 2 1 2

4 3

7

1 Some values change

: gather in an array

2 Sort of moving elements

3 Recursively split array according to window middle value

4 Direct insertion

or rebalance

9 / 20

Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 0 6 0 0 7 0 12 0 0 12 0 0 0 0 13 0 0 15 0

10 16 11 8

8 10 11 16

2 2 1 2

4 3

7

1 Some values change

: gather in an array

2 Sort of moving elements

3 Recursively split array according to window middle value

4 Direct insertion

or rebalance

9 / 20

Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 0 6 0 0 7 0 12 0 0 12 0 0 0 0 13 0 0 15 16

10 16 11 8

8 10 11

2 2 1 3

4 4

8

1 Some values change

: gather in an array

2 Sort of moving elements

3 Recursively split array according to window middle value

4 Direct insertion

or rebalance

9 / 20

Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 0 6 0 0 7 0 12 0 0 12 0 0 0 0 13 0 0 15 16

10 16 11 8

8 10 11

2 2 1 3

4 4

8

1 Some values change

: gather in an array

2 Sort of moving elements

3 Recursively split array according to window middle value

4 Direct insertion or rebalance

9 / 20

Rebalance with a Single Scan

0 0 6 0 0 7 0 12 0 0

0 6 7 8 0 10 11 12 0 0

8 10 11

4 elements 3 elements

Merging two sorted lists: one scan, in place.

10 / 20

Applying Moves by Batches

(8, 12)

(3, 7)

(1, 4) (1, 4)

(3, 7)

(1, 4) (1, 4)

0 6 7 8 0 10 11 12 0 0 12 0 0 0 0 13 0 0 15 16

4 3 1 3

7 4

11

Supports moves, insertions and deletions.

11 / 20

Experimental Results: Moving Integers

0 10 20 30 40 50
0

2

4

6

8

8%

3.1x

4.7x

Moves %

S
p
ee
d-
up

(T
q
s
o
r
t

/T
p
m
a

)

Sorting Moving Elements: Speed-up of PMA vs Qsort (Libc)

100 000

1 000 000

10 000 000

T

isort

= 500xT
pma

with
100 000 elements and
10% of moves

Array filled with random
elements. Execution time
measured around several
applications of a given
percentage of randomly
selected moves.

TODO: insertion sort, level of rebalance
12 / 20

Scan Performance

Dense array:

for i in 1 to K do

sum += a[i]

PMA:

for i in 1 to N do

if isValid(a[i])

sum += a[i]

K N N/K T
PMA

/T
array

100 000 163 840 1.64 1.69
1 000 000 1 572 864 1.57 1.86
2 900 000 4 456 448 1.54 1.74
10 000 000 15 728 640 1.57 1.78

Test case built to exacerbate the overhead. On realistic computation
schemes it fades away.

13 / 20

Application to Particles

⇢
h

, ⌧
h

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0

⇢1, ⌧1

⇢0, ⌧0 ⇢0, ⌧0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

14 / 20

Application to Particles: Results

Implementation in Fluids [Hoetzlein, 2008]: 2.9 106particles

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Frames

S
or
t
E
xe
cu
ti
on

T
im

e
[s
]

Reference

PMA

% moves

0%

10%

20%

30%

M
ov
es

Global performance: 2.8% (sort is 4.5% of total simulation time). 15 / 20

Application to Particles: Results

Implementation in Fluids [Hoetzlein, 2008]: 2.9 106particles

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Frames

S
or
t
E
xe
cu
ti
on

T
im

e
[s
]

Reference

PMA

% moves

0%

10%

20%

30%

speed-up: 2.5x

M
ov
es

Global performance: 2.8% (sort is 4.5% of total simulation time). 15 / 20

Bk Bk Bk Bk Bk

Searching in the CO model

A

B1

h

⎣ ⎦2h

A B1 Bk

⎡ ⎤2h

)(lgNO)(lg BO

)(lg)(NONW =

[Bender et al 2000] Binary tree mapped in memory using a recursive layout

)(log
)(lg
)(lg

).1()(NO
BO
NOONQ B==

3 4

1 2
13

11

14

12

1 2 3 4 13 11 14 12

Multiplying in the CO model
D&C matrix multiplication using a recursive layout

Multiplying in the CO model

N

N

A

AxB

B

2
N

() ()

()3

2

)(

otherwise)1(
1 if 28)(

NONW

O
NNONWNW

=

⎪⎩

⎪
⎨
⎧ >+

=

() ()
()

⎟
⎠
⎞

⎜
⎝
⎛=

⎪⎩

⎪
⎨
⎧ >+

=

MB
NONQ

B
NO

MNB
NONQ

NQ

3

2

22

)(

otherwise
3 if 28

)(

D&C matrix multiplication using a recursive layout

2
N

