
Efficient Multi-core Programming

Bruno Raffin
MOAIS Team, Grenoble, France

Bruno.raffin@inria.fr

Goals

To give you the main keys of “modern” parallel multi-core
programming

Not a tutorial for learning a specific programming
environment

2

Introduction
Parallel programming has long been the domain of high performance
computing (supercomputers for numerical simulations), but for some years now
also of:
‣ Cloud Computing (Amazon Elastic Cluster)
‣ Big Data Analytics (Google Map Reduce)

Evolution of computer architectures has made parallelism omnipresent:
‣ Multi-core traditional processors
‣ Multi-core accelerators (GPU, Xeon Phi)
‣ Multi-core low power processors (ARM)

If you are somehow concerned about performance, you need to parallelize your
code.
Exemple of supercomputer: SunWay TaiHuLight (China)
‣ #1@Top500 2016
‣ 10 500 000 compute cores
‣ 93 PetaFlops

3

Multi-core Architecture Overview

Memory: virtually shared memory (global address space, cache coherent), but
physically distributed if more than one socket present.

๏ Memory access time depends on memory distance

Memory hierarchy: L1 and L2 (core local) , L3 (shared in socket), memory

4

Non-uniform memory access (NUMA) architectures

6 / 27

Socket

Core

Memory

Multi-core Architecture Overview

How to know what you have:

 hwloc-ls --of txt

hwlock tool (developed by
INRIA Bordeaux Team)
integrated in OpenMPI

5

6 -

Performance : Basics

6

T1 = sequential execution time
Tp = parallel execution time with p processors

Speedup: T1 / Tp ≤ T1 / (T1/p) = p

Amdahl’s law: α: sequential fraction of the code

Sequential sections eventually
 kill the speedup

Parallel Programing Basics
Message Passing (MPI: Message passing interface)

๏ P processors
๏ Each processor owns a private memory (no shared memory)
๏ Processors communicate through explicit messages

-  MPI_SEND / MPI_RECV

๏ All processors execute the same program. Use their rank to distinguish their
work.

 if (myrank == 0)
 do something
 else
 do another stuff

The vast majority of parallel applications are written with MPI.
๏ Well adapted to distributed memory architectures (clusters)
๏ Also work well on multi-core architectures
๏  But no data sharing (duplicates), load balancing can be difficult, parallelization

needs a deep code refactoring 7

Parallel Programing Basics

Shared memory parallel programming:

• Direct thread programming (Java threads, Posix threads):

๏ Need to care for too many low level details
-  Error-prone
-  Difficult to scale to many threads

Forget about it except for some very specific cases and a few threads.

• CUDA/OpenCL programming
‣ CUDA: no portability (NVIDIA products only)
‣ OpenCL:
๏ portable (not true for performance, but make progress)
๏ Programming model deeply influenced by GPU hardware

‣ Require a deep code refactoring

 8

Task Programming
Express potential parallelism. Let the runtime actually extract the required
parallelism and schedule it when and where it thinks its appropriate.

Potential parallelism: a task (sequence of instructions)
‣ Dynamics and recursive: a task can create other tasks.

Shared memory model: the programmer needs to ensure concurrent accesses
(R/W or W/W) are correctly managed.
‣ Base synchronization primitive: sync

wait for the completion of all previously -sequential order- defined tasks.

Programming with tasks: Cilk, Intel TBB, OpenMP, KAAPI, OmpSS

9

10 -

Task Programming: Cilk Example

10

Int fib (int n)
{
 int x, y;
 if (n<2) return n;
 x = fib (n-1);
 y = fib (n-2);
 return x+y;
}

Parallelizing
Fibonacci
with Cilk

11 -

Task Programming: Cilk Example

11

Int fib (int n)
{
 int x, y;
 if (n<2) return n;
 x = fib (n-1);
 y = fib (n-2);
 return x+y;
}

Int fib (int n)
{

 int x, y;
 if (n<2) return n;
 x = spawn fib (n-1);

 y = spawn fib (n-2);
 sync;
 return x+y;
}

Parallelizing
Fibonacci
with Cilk

Task creation

Wait the completion of all
previously (sequential order)
spawned tasks

12

Task Programming: Cilk Example

Task

Sync

Task Scheduling
Where and when tasks are actually executed ?

Various scheduling algorithms can be used:

‣ List scheduling: all processors (or thread) get tasks from a centralized list

 -> Some OpenMP implementations

‣ Work stealing: distributed tasks lists. Execute local tasks first, randomly
steal from others if idle.

 -> TBB, Cilk, KAAPI

13

14 -

List Scheduling [Graham 65]

• List of tasks to be executed:
dependencies define a direct acyclic
graph

• A task is ready to be executed when
all its dependencies are resolved.

• W1: total number of operations to
perform to execute the program

• W∞: number of operations to perform
along the critical path

14

W1 = 12
W∞ = 6

15 -

List Scheduling [Graham 65]

15

d

b c

e f

a

g h i

k j

l

a b

c

d

f

e g

h

i

j

k l

T(4)=6

P0

P3

P2

P1

Idle

Idle

Idle

Tasks
already executed

Ready Tasks
(centralized list)

16 -

List Scheduling [Graham 65]

16

Theorem [Graham 69]

 T(p) ≤ [W1 + (p -1) .W∞] / π.p
where:
 p: number of processors
 π: processor speed (ops/s)

Idea of the proof:
‣ T(p) ≤ (W1 + Idle) / π.p
‣ There is at most one Idle zone per step along the critical path : Idle ≤ (p -1) . W∞

17 -

List Scheduling [Graham 65]

17

T(p)

Idle

Idle

Idle

time

Proc.

Topt(p)

2*Topt(p)

T(p)*π*p ≤ W1+ Sum(Idle)

How can we bound Sum(Idle) ?

18 -

List Scheduling [Graham 65]

18

As
‣ T(p) ≤ [W1 + (p -1) .W∞] / π.p
‣ W1 / π.p ≤ Toptimal(p)
‣ W∞ / π ≤ Toptimal(p)

We have:

T(p) ≤ 2 . Toptimal(p)

19 -

Work Stealing Algorithm

19

• Each processor maintains its own list of
ready tasks (tasks ready to be executed)

• Each processor executes its ready tasks

• New ready tasks are added to the local list.

• When a processor becomes idle, it
randomly selects a victim and tries to steal
part of its work (50%). If steal fails select
another victim.

Decentralized
scheduling
algorithm

20 -

Work Stealing Algorithm: Provable
Performance

20

Theorem [Arora et al. 98]
 Work stealing guarantees with a high probability:

 T(p) ≤ W1 / π.p + 0 (W∞/ π),
 with a total number of steals of 0(p.W∞).

• If W1 >>> W∞: T(p) ≈ W1 / π.p = Toptimal(p)

• Number of steals related to p.W∞

21 -

Task Programming: Performance
Considerations

21

List scheduling or work stealing: dynamics load balancing

Task creation (even if not actually used to extract
parallelism) cost some overheads:
‣ To few tasks: not enough potential parallelism to enable load
balancing and feed all processors
‣ To many (small) tasks: performance may be affected by task
management overheads

Need to control the amount of tasks created: the granularity of
tasks.

22 -

Tasks: Grain and Overheads

22

Sequential loop:
for i:=0 to n-1 {
 a[j] = F(A[i]);
}
Cilk parallelization ?

23 -

Tasks: Grain and Overheads

23

Sequential loop:
for i:=0 to n-1 {
 a[j] = F(A[i]);
}
Cilk parallelization:
Range(F,x,y){
 for z:=x to y-1 { A[z]=F(A[z]);}
}
r:= n/j;
for j:=0 to n-1 stride r {
 spawn Range(F,i,i+r);
}
sync;

W1 (n) = 0(n)
W∞(n) = 0(n/j)

If j = n : smallest granularity, but n

task creations (overheads)

If j = p and all processors available

during execution, we are close
to the optimal (modulo steal
overheads), but no flex for load
balancing.

Difficulty: task size choice

24 -

High Level Parallel Instructions

24

Cilk_for i:=0 to n-1 {
 A[i]:=F(A[i]);

}

No need to explicit tasks:
‣ Easy to program
‣ No need to deal with task grain (well, some hints may be needed)

#pragma cilk grainsize = 42
The runtime can rely on various approaches:
‣ Static iteration range partitioning (N/P or smaller)
‣ Recursive partitioning:

Recursively create 2 tasks with 50% of the iteration domain each, down to the
grain size limit

‣ On-demand partitioning:
When a victim receives a steal request, it gives half of its remaining iteration
domain

Parallel loop with independent iterations

25 4 - Adaptive granularity for task-based parallelism -

On-demand Partitioning

T1 : [0 - 15]

25

T1 : [3 - 15]

Proc 1 got all the work Proc1 performed 3 iterations

26 4 - Adaptive granularity for task-based parallelism -

On-demand Partitioning

26

T1 : [4 - 15]

split (T1)

Idle
Core

steal request

T1 : [4 - 9]

Stolen work: T2 :
[10 – 15]

Idle
Core

Parallel Kd-Tree
A classical acceleration data structure:

 Ray tracing (ray/triangle intersection)

Buid_kd-tree(node)

 Select splitting plane
 Foreach triangle in node
 split triangle, put left part in node1, right part in node2
 Build_kd-tree (node1)
 Build_kd-tree (node2)

End

27

How to parallelize it ?

Parallel Kd-Tree

 Buid_kd-tree(node)

 Select splitting plane
 Foreach triangle in node
 split triangle, put left part in node1, right part in node2
 Spawn Build_kd-tree (node1)
 Spawn Build_kd-tree (node2)

End

28

Benefit of task programming ?
Benefit of work stealing ?
What should be improved ?

Parallel Kd-Tree

29

Buid_kd-tree(node)
 Select splitting plane
 foreach triangle in node
 split triangle, put left part in node1, right part in node2
 if (# triangle in node1 > threshold)
 Spawn Build_kd-tree (node1)
 else
 Build_kd-tree (node1)
 if (# triangle in node2 > threshold)
 Spawn Build_kd-tree (node2)
 else
 Build_kd-tree (node2)

End

Control granularity by
setting a threshold for task
spawning

What about a threshold
based on depth ?

What else to improve ?

Parallel Kd-Tree

30

Trace profile you probably get

time

Proc id (48)

0

48

Parallel Kd-Tree

31

! Concurrent write on node1
and node2

-> use concurrent data structures

Buid_kd-tree(node)
 Select splitting plane
 Cilk_for each triangle in node
 split triangle, put left part in node1, right part in node2
 if (# triangle in node1 > threshold)
 Spawn Build_kd-tree (node1)
 else
 Build_kd-tree (node1)
 if (# triangle in node2 > threshold)
 Spawn Build_kd-tree (node2)
 else
 Build_kd-tree (node2)

End

Parallel Kd-Tree
Buid_kd-tree(node)

 Select splitting plane
 if (#triangle in node > threshold)
 Cilk_for each triangle in node
 split triangle, put left part in node1, right part in node2
 else
 Foreach triangle in node
 split triangle, put left part in node1, right part in node2
 if (# triangle in node1 > threshold)
 Spawn Build_kd-tree (node1)
 else
 Build_kd-tree (node1)
 if (# triangle in node2 > threshold)
 Spawn Build_kd-tree (node2)
 else
 Build_kd-tree (node2)

End 32

Only internally parallelize big tasks
(mostly in the top of the tree)

Parallel Kd-Tree
Buid_kd-tree(node)

 Select splitting plane
 if (#triangle in node > threshold)
 Cilk_for each triangle in node
 split triangle, put left part in node1, right part in node2
 else
 Foreach triangle in node
 split triangle, put left part in node1, right part in node2
 if (# triangle in node1 > threshold)
 Spawn Build_kd-tree (node1)
 else
 Build_kd-tree (node1)
 if (# triangle in node2 > threshold)
 Spawn Build_kd-tree (node2)
 else
 Build_kd-tree (node2)

End 33

Let have a closer look at the
concurrent write issue here !

 Related papers

Advanced Graphics related algorithms parallelized with Work stealing:

•  QuickCSG: Arbitrary and Faster Boolean Combinations of N Solids

•  Fast Construction of SAH BVHs on the Intel Many Integrated Core (MIC)
Architecture

34

Reducers

Cilk provides thread safe and efficient parallel data structures called reducers

Cilk:reducer_list_append<triangle> node1, node2;
node_list = node->get_value()
Cilk_for each triangle in node

 split triangle
 node1->push_back(left part)
 node2->push_back(right part)

35

Get the result of the reducer

Append reducer: allow safe
concurrent append to a list

Append data to the reducer

Reducers

Other reducers exists like (and new ones can be developed - the reduction
operation needs to be associative):

 reducer_max_index
 reducer_max
 reducer_opadd

But keep in mind that for some reducers (case of append or reductions on
floats) the result of reduction is often different from the one of the sequential
execution.

36

Reducers
How it works (append reducer) ?

3 threads (workers), red, green and blue, execute the parallel cilk_for loop with
work stealing.

Possible distribution of iterations amongst the threads:

 it0 …. itN

How to fill safely and efficiently (in parallel) the reducer list ?

 Protect the reducer list with a lock operation ?

 Safe but what about performance ?
 Can be worst than a sequential execution. 37

Holder / Thread Local Storage

How to fill safely and efficiently (in parallel) the reducer list ?

Possible distribution of iterations amongst the red green and blue threads:

 it0 …. itN
First notice that each thread executes sequentially a fraction of the iterations
Each thread can thus accumulate a partial result computed on the iterations it
processes.

 Hey, it’s task based programming. I have no access to threads !!!

Well it’s possible to declare a variable that has one instance per thread:

 it’s called a thread local storage (holders in Cilk) 38

Holder / Thread Local Storage

Possible distribution of iterations amongst the red, green and blue threads:

 it0 …. itN
In parallel each thread accumulates a partial result computed on its iterations in
its local storage:

 Thread red local storage

 Thread green local storage

 Thread blue local storage
`

39

Cilk:holder<list<triangle>> holder1, holder2;

Cilk_for each triangle in node

 split triangle
 holder1->push_back(left part)
 holder2->push_back(right part)

No sync between threads: very efficient

Holder / Thread Local Storage

Now need to append the partial result: need sync between

`

1.  Recursively by appending partial results two by two

2.  Compute a parallel scan/prefix to get the offset for each thread, next
threads can copy in parallel their list directly to their final destination

40

Scan/Prefix Computation

41

Spawn/Sync Considered Harmful ?

42

Get the OS Out of the Way:
Memory allocator

Classical allocator are made thread safe by using locks
-> high performance penalty

Scalable allocators (tbbmalloc or gperftools) are designed to be efficient in a
multi-threaded context.

Each thread provisions some memory space to be used when it needs to allocate
memory (no lock). Provisioning memory require locks, but performed at lower
frequency (amortized cost)

‣  Easy to use: simply link to the scalable allocator library
‣  Performance improvement can be significant (at no effort !)

43

Get the OS Out of the Way:
Processor Binding

Classical scheduler can move a process or thread to a different core during the
execution

 Need to repopulate the cache: more cache misses
 Data may be farther (memory bank): take longer to load

Explicitly bind each thread to a given core (and forbid migration):

 hwloc-bind socket:1/core.1 socket:2.core:1 a.out

44

Non-uniform memory access (NUMA) architectures

6 / 27

Get the OS Out of the Way:
Memory Binding

By default memory pages are locates in the memory bank of the first thread
that touches it (first-touch policy). Can be bad.

Example:
‣ Data are read from a file by a single thread (usually the case)
‣  All pages containing these data are on the memory bank attached to the socket

that ran that thread.
‣  In parallel sections all threads will read these data from this very same memory

bank -> bottleneck

45

Non-uniform memory access (NUMA) architectures

6 / 27

Non-uniform memory access (NUMA) architectures

6 / 27

Get the OS Out of the Way:
Memory Binding

By default memory pages are locates in the memory bank of the first thread
that touches it (first-touch policy). Can be bad.

Alternative:
‣ Request that pages be cyclically distributed (interleave policy)
‣ On average threads will have their memory accesses evenly distributed on all

memory banks

Example:

 hwloc-bind -membind socket:1-2 --mempolicy interleave
 –cpubind socket:1/core.1 socket:2.core:1 a.out

 Effect: bind threads to first core of socket 1 and 2

 and interleave pages on the associated memory banks

And much more can be done (see hwloc) !

46

47 -

Performance Monitoring

47

Get the execution time first

How to get lower level details (cache misses, page
defaults, etc.):

 Likwid : instrument the code to get some low level
counters. Beware that it impacts the execution time.

 Vtune: integrated performance monitoring and

analysis tool from Intel. Need experience but can be very
efficient once mastered.

Cilk, TBB and OpenMP
Intel Cilk (plus):
‣ a language (developed at MIT, transferred to Intel)
‣ very few constructions (cilk_spawn, cilk_sync, cilk_for, cilk_reducer, cilk_holder)
‣  integrated in 2 C++ compilers (ICC, GCC)

Intel TBB:
‣  A C++ library
‣  Not compiler dependent
‣  Verbose (c++)
‣  Expose more low level aspects (3 different ways to spawn tasks for instance)

OpenMP:
‣ A standard maintained by a consortium
‣ Pragmas (compilation directives)
‣ Various implementations (Intel, Gnu, IBM, Oracle, Portland Group …)
‣ Rich set of pragmas (too many ?) offering a lot of flex, but available

implementations not always very efficient (on all aspects at least)
‣ Come just after MPI as the most used parallel programming environment 48

Cilk, TBB and OpenMP
Intel Cilk (plus):
‣ a language (developed at MIT, transferred to Intel)
‣ very few constructions (cilk_spawn, cilk_sync, cilk_for, cilk_reducer, cilk_holder)
‣  integrated in 2 C++ compilers (ICC, GCC)

Intel TBB:
‣  A C++ library
‣  Not compiler dependent
‣  Verbose (c++)
‣  Expose more low level aspects (3 different ways to spawn tasks for instance)

OpenMP:
‣ A standard maintained by a consortium
‣ Pragmas (compilation directives)
‣ Various implementations (Intel, Gnu, IBM, Oracle, Portland Group …)
‣ Rich set of pragmas (too many ?) offering a lot of flex, but available

implementations not always very efficient (on all aspects at least)
‣ Come just after MPI as the most used parallel programming environment 49

-

 OpenMP: A Simple Example

50

f = 1.0

for (i = 0; i < N; i++)
z[i] = x[i] + y[i];

for (i = 0; i < M; i++)
a[i] = b[i] + c[i];

...

scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

A gentle introduction to parallel programming and HPC platforms - 51

#pragma omp parallel default (none) shared (z, x, y, a, b, c, n, m)
private (f, i, scale)
{

f = 1.0

for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

for (i = 0; i < m; i++)
a[i] = b[i] + c[i];

...

scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

} /* End of OpenMP parallel region */

pa
ra

lle
l r

eg
io

n

OpenMP: A Simple Example

- 52

#pragma omp parallel default (none) shared (z, x, y, a, b, c, n, m)
private (f, i, scale)
{

f = 1.0

for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

for (i = 0; i < m; i++)
a[i] = b[i] + c[i];

...

scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

} /* End of OpenMP parallel region */

pa
ra

lle
l r

eg
io

n

Statements
executed by all the

threads of the
parallel region !

OpenMP: A Simple Example

- 53

#pragma omp parallel default (none) shared (z, x, y, a, b, c, n, m)
private (f, i, scale)
{

f = 1.0

#pragma omp for
for (i = 0; i < n; i++)

z[i] = x[i] + y[i];

#pragma omp for
for (i = 0; i < m; i++)

a[i] = b[i] + c[i];

...

scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

} /* End of OpenMP parallel region */

pa
ra

lle
l r

eg
io

n

Statements executed by
all the threads of the

parallel region

Statements executed by
all the threads of the

parallel region

parallel loop
(work is distributed)

parallel loop
(work is distributed)

OpenMP: A Simple Example

- 54

#pragma omp parallel default (none) shared (z, x, y, a, b, c, n, m)
private (f, i, scale)
{

f = 1.0

#pragma omp for nowait
for (i = 0; i < n; i++)

z[i] = x[i] + y[i];

#pragma omp for nowait
for (i = 0; i < m; i++)

a[i] = b[i] + c[i];

...

#pragma omp barrier
scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

} /* End of OpenMP parallel region */

pa
ra

lle
l r

eg
io

n

OpenMP: A Simple Example

- 55

#pragma omp parallel default (none) shared (z, x, y, a, b, c, n, m)
private (f, i, scale) if (n > some_threshold && m > some_threshold)
{

f = 1.0

#pragma omp for nowait
for (i = 0; i < n; i++)

z[i] = x[i] + y[i];

#pragma omp for nowait
for (i = 0; i < m; i++)

a[i] = b[i] + c[i];

...

#pragma omp barrier
scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

} /* End of OpenMP parallel region */

OpenMP: A Simple Example

56 -

OpenMP: Fibonacci Example

#include <stdio.h>
#include <omp.h>
int fib(int n)
{
 int i, j;
 if (n<2)
 return n;
 else
 {
 #pragma omp task shared(i)
firstprivate(n)
 i=fib(n-1);

 #pragma omp task shared(j)
firstprivate(n)
 j=fib(n-2);

 #pragma omp taskwait
 return i+j;
 }
}

int main()
{
 int n = 10;

 omp_set_dynamic(0);
 omp_set_num_threads(4);

 #pragma omp parallel shared(n)
 {
 #pragma omp single
 printf ("fib(%d) = %d\n", n,
fib(n));
 }
}

56

End of single (no implicit barrier)
End of parallel (implicit barrier)

57 -
57

A few words About Accelerators

2013 GTX Titan

1.5 TFlops (fp64)
265 Watts

2688 cores
7.1 B transistors

6G GB of memory

1992	Maspar	SIMD	Machine	

16	384	processors	
	
2.4	Gflops	(double)	
	
1GB	of	memory	

Are	GPU	really	SIMD	machines	?		

- Data	parallel	per	mulJprocessor	
- Explicit	memory	management		
- More	threads	than	SIMD	units	(SP)	
to	overlap	memory	accesses	
- Coalesced	accesses	to	gather	
global	memory	accesses	
- Limited	number	of	registers	per	
MulJprocessors	can	limit	data	
parallelism	

Load balancing with some kind of list scheduling
possible on [Toss & al. Europar 2012]

 Intel Xeon Phi co-processor:
‣ 60 X86 cores (4 Hyperthreads per core)
‣ A wide vector processing engine per core
‣ One global memory
‣ Cache coherent architecture
‣ Connect on the PCI bus

Supported programming environments:
‣  MPI, OpenMP, TBB, Cilk

Today about 3 times slower than Nvidia Tesla Card, but porting an existing code is a
way faster.

Intel Xeon Phi Accelerator

MIC, Larrabbe, Xeon Phi and ???

The MIC was initially introduced as a GPU called Larrabbe [Siggraph 2008],
with real time ray tracing capabilities.

 SC’09 prototype demo was a fiasco

Renamed Xeon Phi, it became available in 2013 as an accelerator (no video
output)

Since 2016, available as a standalone processor that can be plugged in a
standard Xeon socket

 No more need to transfer data over the (slow) PCI Express

 The first many-core processor

63 -
63

Conclusion
Task based programming + work stealing scheduling:

 It’s becoming a standard (Intel cilk, Intel TBB, OpenMP)
 The way to go for “easy”, portable and efficient parallelizations

TBB versus Cilk versus OpenMP

 Make your choice. Similar base concepts but very different
instantiations (we could expect Intel to unify them all at least at the runtime
level)

64 -
64

Conclusion
Task programming versus Nvidia/OpenMP

 More progressive transition from sequential to parallel code
 Nvidia/OpenCL: bottom-up approach (a prog. env adapted to the hardware)
 Task programming: top-dowm (an algorithm with provable performance

to efficient implementations)

Xeon Phi versus GPU:

 Smoother learning curve for the Phi
 Higher performance for NVIDIA GPUs
 Watch the Phi evolution (will fit on standard socket by 2016)

65 -
65

Conclusion

Get used to parallel thinking and design your algorithms with parallelization in
mind. You will save a lot of time when actually parallelizing your code

Remember. If performance matters, today you cannot escape parallelization

One more thing,…….. I am not sponsored by Intel J

-

Thanks!

