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Goals 

 

To give you the main keys  of  “modern” parallel multi-core 
programming 
 

  
 

Not a tutorial for learning a specific  programming 
environment  
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Introduction 
Parallel programming has long been the domain of high performance 
computing (supercomputers for numerical simulations), but for some years now 
also of: 
‣ Cloud Computing (Amazon Elastic Cluster) 
‣ Big Data Analytics (Google Map Reduce) 

 
Evolution of computer architectures has made parallelism omnipresent: 
‣ Multi-core  traditional processors 
‣ Multi-core accelerators (GPU, Xeon Phi) 
‣ Multi-core low power processors (ARM) 

If you are somehow concerned about performance, you need to parallelize your 
code. 
Exemple of   supercomputer: SunWay TaiHuLight (China) 
‣ #1@Top500 2016 
‣ 10 500 000 compute cores 
‣ 93 PetaFlops 
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Multi-core Architecture Overview 

 

Memory:  virtually shared memory (global address space, cache coherent), but 
physically distributed if more than one socket present. 

๏ Memory access time depends on memory distance 

Memory hierarchy: L1 and  L2 (core local) , L3 (shared in socket), memory 
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Non-uniform memory access (NUMA) architectures

6 / 27

Socket 

Core 

Memory 



Multi-core Architecture Overview 

How to know what you have:  
 

 hwloc-ls --of txt 
 
hwlock tool (developed by 
INRIA Bordeaux Team) 
integrated in OpenMPI 

5 



6 -  

Performance : Basics 
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T1 = sequential execution time 
Tp = parallel execution time with p processors 
 
Speedup:      T1 / Tp ≤ T1 / (T1/p)  = p 

Amdahl’s law:  α: sequential fraction of the  code 
  

 
 
Sequential sections eventually 
 kill the speedup 

 



Parallel Programing Basics 
Message Passing (MPI: Message passing interface) 
 

๏ P processors  
๏ Each processor owns a private memory (no shared memory) 
๏ Processors communicate through explicit messages  

-  MPI_SEND / MPI_RECV 

๏ All processors execute the same program. Use their rank to distinguish their 
work. 

  if (myrank == 0) 
   do something 
  else 
   do another stuff 

 
The vast majority of parallel applications are written with MPI.  
๏ Well adapted to distributed memory architectures (clusters) 
๏ Also work well on multi-core architectures 
๏  But no data sharing  (duplicates), load balancing can be difficult, parallelization 

needs a deep code refactoring 7 



Parallel Programing Basics 

Shared memory parallel programming:  
 
• Direct thread programming (Java threads, Posix threads): 

๏ Need to care for too many low level details  
-  Error-prone 
-  Difficult to scale to many threads 

 

Forget about it except for some very specific cases and a few threads. 
 
• CUDA/OpenCL programming 
‣ CUDA: no portability (NVIDIA products only) 
‣ OpenCL:  
๏ portable (not true for performance, but make progress) 
๏ Programming model deeply influenced by GPU hardware 

‣ Require a deep code refactoring 
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Task Programming 
Express potential parallelism. Let the runtime actually extract the required 
parallelism and schedule it when  and where it thinks its appropriate. 

Potential parallelism: a task (sequence of instructions) 
‣ Dynamics and recursive: a task can create other tasks. 

Shared memory model:  the programmer needs to ensure concurrent accesses 
(R/W or W/W) are correctly managed. 
‣ Base synchronization primitive: sync 

wait for the completion of all previously -sequential order- defined tasks. 
 

 
Programming with tasks: Cilk, Intel TBB, OpenMP, KAAPI, OmpSS 
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Task Programming: Cilk Example 
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Int fib (int n) 
{ 
  int x, y; 
  if (n<2) return n; 
  x = fib (n-1); 
        y = fib (n-2); 
        return x+y; 
} 

Parallelizing 
Fibonacci 
with Cilk 
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Task Programming: Cilk Example 

11 

Int fib (int n) 
{ 
  int x, y; 
  if (n<2) return n; 
  x = fib (n-1); 
        y = fib (n-2); 
        return x+y; 
} 

Int fib (int n) 
{ 

  int x, y; 
  if (n<2) return n; 
  x = spawn fib (n-1); 

        y = spawn fib (n-2); 
        sync; 
        return x+y; 
} 

Parallelizing 
Fibonacci 
with Cilk 

Task creation 

Wait the completion of all 
previously (sequential order) 
spawned tasks 
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Task Programming: Cilk Example 

Task 

Sync 



Task Scheduling 
Where and when tasks are actually executed ?  
 
Various scheduling algorithms can be used:  
 
‣ List scheduling: all processors (or thread) get tasks from a centralized list 

 -> Some OpenMP implementations 
 

‣ Work stealing:  distributed tasks lists. Execute local tasks first, randomly 
steal from others if idle. 

   -> TBB, Cilk,  KAAPI 
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List Scheduling [Graham 65] 

• List of tasks to be executed: 
dependencies define a direct acyclic 
graph  

• A task is ready to be executed when 
all its dependencies are resolved.  

• W1:  total number of operations to 
perform to execute the program 

• W∞: number of operations to perform 
along the critical path 
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W1 = 12  
W∞ = 6 
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List Scheduling [Graham 65] 
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List Scheduling [Graham 65] 
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Theorem [Graham 69] 

  T(p) ≤ [W1 + (p -1) .W∞] / π.p  
where: 
 p: number of processors 
 π:  processor speed (ops/s) 
 
 

Idea of the proof: 
‣ T(p) ≤ (W1 + Idle) / π.p  
‣ There is at most one Idle zone per step along the critical path :   Idle  ≤ (p -1) . W∞ 
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List Scheduling [Graham 65] 
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T(p) 

Idle 

Idle 

Idle 

time  

# Proc. 

Topt(p) 

2*Topt(p) 

T(p)*π*p ≤ W1+ Sum(Idle)   

How can we bound Sum(Idle) ?  
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List Scheduling [Graham 65] 
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As 
‣ T(p) ≤ [W1 + (p -1) .W∞] / π.p  
‣ W1 / π.p   ≤   Toptimal(p)  
‣ W∞ / π     ≤   Toptimal(p) 
 

We have: 

T(p) ≤ 2 . Toptimal(p) 
 



19 -  

Work Stealing Algorithm 
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• Each processor maintains its own list of 
ready tasks (tasks ready to be executed) 

• Each processor executes its ready tasks 

• New ready tasks are added to the  local list. 

• When a processor becomes idle, it 
randomly selects a victim and tries to steal 
part of its work (50%). If steal fails select 
another victim. 

Decentralized 
scheduling 
algorithm 
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Work Stealing Algorithm: Provable 
Performance  
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Theorem [Arora et al. 98] 
  Work stealing guarantees with a high probability: 

 T(p) ≤ W1 / π.p  + 0 (W∞/ π), 
  with a total number of steals of 0(p.W∞). 
 
• If  W1 >>> W∞: T(p)  ≈ W1 / π.p = Toptimal(p) 
 
• Number of steals related to p.W∞  
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Task Programming:  Performance 
Considerations 
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List scheduling or work stealing:  dynamics load balancing 
 
Task creation (even if not actually used to extract 
parallelism) cost some overheads: 
‣ To few tasks: not enough potential parallelism to enable load 
balancing and feed all processors 
‣ To many (small) tasks:  performance may be affected by task 
management overheads 

 
Need to control the amount of tasks created: the granularity of 
tasks. 

 
 



22 -  

Tasks:  Grain and Overheads 
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Sequential loop: 
for i:=0 to n-1 { 
  a[j] = F(A[i]); 
} 
Cilk parallelization ? 
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Tasks:  Grain and Overheads 
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Sequential loop: 
for i:=0 to n-1 { 
  a[j] = F(A[i]); 
} 
Cilk parallelization: 
Range(F,x,y){ 
 for z:=x to y-1 { A[z]=F(A[z]);} 
} 
r:= n/j; 
for  j:=0 to n-1 stride r { 
   spawn  Range(F,i,i+r); 
} 
sync; 

W1 (n) = 0(n) 
W∞(n) = 0(n/j) 
 
If j = n : smallest granularity, but  n 

task creations (overheads) 
 
If j = p and all processors available  

during execution, we are close 
to the optimal (modulo steal 
overheads), but no flex for load 
balancing.  

 

Difficulty: task size choice 
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High Level Parallel Instructions 

24 

Cilk_for i:=0 to n-1 { 
   A[i]:=F(A[i]); 

} 
 
No need to explicit tasks: 
‣ Easy to program 
‣ No need to deal with task grain (well, some hints may be needed)  

#pragma cilk grainsize = 42 
The runtime  can rely on various approaches: 
‣ Static iteration range partitioning ( N/P or smaller) 
‣ Recursive partitioning:  

Recursively create 2 tasks with 50% of the iteration domain each, down to the 
grain size limit 

‣ On-demand partitioning:  
When a victim receives a steal request, it gives  half of its remaining iteration 
domain 

 
 
 
 
 
 
 
 
 
 

Parallel loop with independent iterations 



25 4 - Adaptive granularity for task-based parallelism -  

On-demand Partitioning 

T1 : [0 - 15] 
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T1 : [3 - 15] 

Proc  1 got all the work Proc1 performed 3 iterations 



26 4 - Adaptive granularity for task-based parallelism -  

On-demand Partitioning 
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T1 : [4 - 15] 

split (T1) 

Idle 
Core 

steal request 

T1 : [4 - 9] 

Stolen work: T2 : 
[10 – 15] 

Idle 
Core 



Parallel Kd-Tree 
A classical acceleration data structure:  

 Ray tracing (ray/triangle intersection) 
 
 
Buid_kd-tree(node) 

 Select splitting plane 
 Foreach triangle in node 
  split triangle, put left part in node1, right part in node2 
 Build_kd-tree (node1) 
 Build_kd-tree (node2) 

End 
 

27 

How to parallelize it ? 



Parallel Kd-Tree 
 
 Buid_kd-tree(node) 

 Select splitting plane 
 Foreach triangle in node 
  split triangle, put left part in node1, right part in node2 
 Spawn Build_kd-tree (node1) 
 Spawn  Build_kd-tree (node2) 

End 
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Benefit of task programming ? 
Benefit of work stealing ?  
What should be improved ?   



Parallel Kd-Tree 
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Buid_kd-tree(node) 
 Select splitting plane 
 foreach triangle in node 
  split triangle, put left part in node1, right part in node2 
 if (# triangle in node1 > threshold) 
  Spawn Build_kd-tree (node1) 
 else  
  Build_kd-tree (node1) 
 if (# triangle in node2 > threshold) 
  Spawn Build_kd-tree (node2) 
 else  
  Build_kd-tree (node2) 

End 

Control granularity by 
setting a threshold for task 
spawning 
 
What about a threshold 
based on depth ?  

What else  to improve ? 



Parallel Kd-Tree 
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Trace profile you probably get 

time 

Proc id (48) 

0 

48 



Parallel Kd-Tree 
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! Concurrent write on node1 
and node2 
 

-> use concurrent data structures 

Buid_kd-tree(node) 
 Select splitting plane 
 Cilk_for each triangle in node 
  split triangle, put left part in node1, right part in node2 
 if (# triangle in node1 > threshold) 
  Spawn Build_kd-tree (node1) 
 else  
  Build_kd-tree (node1) 
 if (# triangle in node2 > threshold) 
  Spawn Build_kd-tree (node2) 
 else  
  Build_kd-tree (node2) 

End 



Parallel Kd-Tree 
Buid_kd-tree(node) 

 Select splitting plane 
 if (#triangle in node > threshold) 
  Cilk_for each triangle in node 
   split triangle, put left part in node1, right part in node2 
 else  
  Foreach triangle in node 
   split triangle, put left part in node1, right part in node2 
 if (# triangle in node1 > threshold) 
  Spawn Build_kd-tree (node1) 
 else  
  Build_kd-tree (node1) 
 if (# triangle in node2 > threshold) 
  Spawn Build_kd-tree (node2) 
 else  
  Build_kd-tree (node2) 

End 32 

Only internally parallelize big tasks 
(mostly in the top of the tree) 
 



Parallel Kd-Tree 
Buid_kd-tree(node) 

 Select splitting plane 
 if (#triangle in node > threshold) 
  Cilk_for each triangle in node 
   split triangle, put left part in node1, right part in node2 
 else  
  Foreach triangle in node 
   split triangle, put left part in node1, right part in node2 
 if (# triangle in node1 > threshold) 
  Spawn Build_kd-tree (node1) 
 else  
  Build_kd-tree (node1) 
 if (# triangle in node2 > threshold) 
  Spawn Build_kd-tree (node2) 
 else  
  Build_kd-tree (node2) 

End 33 

Let have a closer look at the 
concurrent write issue here ! 



 Related papers  

 
Advanced Graphics related algorithms parallelized with Work stealing:    
 
•  QuickCSG: Arbitrary and Faster Boolean Combinations of N Solids 

•  Fast Construction of SAH BVHs on the Intel Many Integrated Core (MIC) 
Architecture 
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Reducers 
 
 
 
Cilk provides thread safe and efficient parallel data structures called  reducers 
 
Cilk:reducer_list_append<triangle> node1, node2; 
node_list =   node->get_value() 
Cilk_for each triangle in node 

 split triangle 
 node1->push_back(left part) 
 node2->push_back(right part) 

35 

Get the result of the reducer 

Append reducer: allow safe 
concurrent append to a list 

Append data to the reducer 



Reducers 
 
 
 
Other reducers exists like (and new ones can be developed - the reduction 
operation needs to be associative):   

 reducer_max_index 
 reducer_max 
 reducer_opadd 

 
 
But keep in mind that for some reducers (case of append or reductions on 
floats) the result of  reduction is often different from the one of the sequential 
execution. 
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Reducers 
How it works (append reducer) ?  
 
 
3 threads (workers), red, green and blue, execute the parallel cilk_for loop with 
work stealing. 
 
Possible distribution of iterations amongst the threads: 
 
 
 

       it0                ….                                           itN 
 
How to fill  safely and efficiently (in parallel)  the reducer list ?  
 
  Protect  the reducer list with a lock operation ?  

 Safe but what about performance ?   
 Can be worst than a sequential execution. 37 



Holder / Thread Local Storage 
 
How to fill  safely and efficiently (in parallel)  the reducer list ?  
 
 
Possible distribution of iterations amongst the red green and blue threads: 
 
 
 

       it0                ….                                           itN 
First notice that each thread executes sequentially a fraction of the iterations  
Each thread can thus  accumulate a partial result computed on the iterations it 
processes. 
 

 Hey,  it’s task based  programming. I have no access to threads !!! 
   
Well it’s possible to declare a variable that has one instance per thread:  

 it’s called a thread local storage (holders in Cilk) 38 



Holder / Thread Local Storage 
 
Possible distribution of iterations amongst the red, green and blue threads: 
 
 

       it0                ….                                           itN 
In parallel each thread accumulates a partial result computed on its iterations in 
its local storage:   

    Thread red local storage 
     
   Thread green local storage 
    

                   Thread blue local storage 
` 
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Cilk:holder<list<triangle>> holder1, holder2; 
 
Cilk_for each triangle in node 

 split triangle 
 holder1->push_back(left part) 
 holder2->push_back(right part) 

No sync between threads: very efficient 



Holder / Thread Local Storage 
 
Now need to append the partial result: need sync between 
 

           
    

 
` 
 
 
 
1.  Recursively by appending partial results two by two 

2.  Compute a parallel scan/prefix  to get the offset for each thread, next 
threads can  copy in parallel their list directly to their final destination 
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Scan/Prefix  Computation 

41 



Spawn/Sync Considered Harmful ?  
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Get the OS Out of the Way: 
Memory allocator 
  

Classical allocator are made thread safe by using locks  
-> high performance penalty  

 
 

Scalable allocators (tbbmalloc or gperftools) are designed to be efficient in a  
multi-threaded context.  
 

Each thread provisions some memory space to be used when it  needs to allocate 
memory (no lock). Provisioning memory require locks, but performed at lower 
frequency (amortized cost)  
 
‣  Easy to use:  simply link to the scalable allocator library 
‣  Performance improvement  can be significant (at no effort !) 

43 



Get the OS Out of the Way: 
Processor Binding 

 
Classical scheduler can move a process or thread to a different core during the 
execution 

  Need to repopulate the cache: more cache misses 
  Data may be farther (memory bank): take longer to load 

 
Explicitly bind each thread to a given core (and forbid migration): 

  
 hwloc-bind  socket:1/core.1 socket:2.core:1 a.out 
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Non-uniform memory access (NUMA) architectures
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Get the OS Out of the Way: 
Memory  Binding 

 
By default memory pages are locates in the memory bank of the first thread 
that touches it (first-touch policy). Can be bad.   
 
Example:   
‣ Data are read from a file by a single thread (usually the case) 
‣   All pages containing these data are on the memory bank attached to the socket 

that ran that thread. 
‣  In parallel sections all threads will read these data from this very same memory 

bank -> bottleneck 
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Non-uniform memory access (NUMA) architectures
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Non-uniform memory access (NUMA) architectures

6 / 27

Get the OS Out of the Way: 
Memory  Binding 

By default memory pages are locates in the memory bank of the first thread 
that touches it (first-touch policy). Can be bad.   
 
Alternative:    
‣ Request that pages be cyclically distributed (interleave policy) 
‣ On average threads will have their memory accesses evenly distributed on all 

memory banks 
 
Example:   

 hwloc-bind  -membind socket:1-2  --mempolicy interleave  
  –cpubind socket:1/core.1 socket:2.core:1  a.out 

  
 Effect: bind threads to  first core of socket 1 and 2 

            and interleave pages on the associated memory banks 

 
And much more can be done (see hwloc) ! 
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Performance Monitoring  

47 

Get the execution time first  
   

 
How to get lower level details (cache misses, page 
defaults, etc.): 
 

 Likwid : instrument the code to get some low level 
counters. Beware that it impacts the execution time. 

    
 Vtune: integrated performance monitoring and 

analysis tool from Intel. Need experience but can be very 
efficient once mastered.  



Cilk, TBB and OpenMP  
Intel Cilk (plus):  
‣ a language (developed at MIT, transferred to Intel) 
‣ very few constructions (cilk_spawn, cilk_sync, cilk_for, cilk_reducer, cilk_holder) 
‣   integrated in  2 C++ compilers (ICC, GCC) 
 

Intel TBB:  
‣  A C++ library  
‣  Not compiler dependent 
‣  Verbose (c++) 
‣  Expose more low level aspects (3 different ways to spawn tasks for instance)   

OpenMP: 
‣ A standard maintained by a consortium 
‣ Pragmas (compilation directives) 
‣ Various implementations (Intel, Gnu, IBM, Oracle, Portland Group …) 
‣ Rich set of pragmas (too many ?) offering a lot of flex, but available 

implementations not always very efficient (on all aspects at least) 
‣ Come just after MPI as the most used parallel programming environment  48 
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 OpenMP: A Simple Example 
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f = 1.0

for (i = 0; i < N; i++)
z[i] = x[i] + y[i];

for (i = 0; i < M; i++)
a[i] = b[i] + c[i];

...

scale = sum (a, 0, m) + sum (z, 0, n) + f;
...



A gentle introduction to parallel programming and HPC platforms -  51 

#pragma omp parallel default (none) shared (z, x, y, a, b, c, n, m)
private (f, i, scale)
{

f = 1.0

for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

for (i = 0; i < m; i++)
a[i] = b[i] + c[i];

...

scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

} /* End of OpenMP parallel region */ 

pa
ra

lle
l r

eg
io

n 

OpenMP: A Simple Example 
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#pragma omp parallel default (none) shared (z, x, y, a, b, c, n, m)
private (f, i, scale)
{

f = 1.0

for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

for (i = 0; i < m; i++)
a[i] = b[i] + c[i];

...

scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

} /* End of OpenMP parallel region */ 

pa
ra

lle
l r

eg
io

n 

Statements 
executed by all the 

threads of the 
parallel region ! 

OpenMP: A Simple Example 
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#pragma omp parallel default (none) shared (z, x, y, a, b, c, n, m)
private (f, i, scale)
{

f = 1.0

#pragma omp for
for (i = 0; i < n; i++)

z[i] = x[i] + y[i];

#pragma omp for
for (i = 0; i < m; i++)

a[i] = b[i] + c[i];

...

scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

} /* End of OpenMP parallel region */ 

pa
ra

lle
l r

eg
io

n 

Statements executed by 
all the threads of the 

parallel region 

Statements executed by 
all the threads of the 

parallel region 

parallel loop 
(work is distributed) 

parallel loop 
(work is distributed) 

OpenMP: A Simple Example 
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#pragma omp parallel default (none) shared (z, x, y, a, b, c, n, m)
private (f, i, scale)
{

f = 1.0

#pragma omp for nowait
for (i = 0; i < n; i++)

z[i] = x[i] + y[i];

#pragma omp for nowait
for (i = 0; i < m; i++)

a[i] = b[i] + c[i];

...

#pragma omp barrier
scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

} /* End of OpenMP parallel region */ 

pa
ra

lle
l r

eg
io

n 

OpenMP: A Simple Example 
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#pragma omp parallel default (none) shared (z, x, y, a, b, c, n, m)
private (f, i, scale) if (n > some_threshold && m > some_threshold)
{

f = 1.0

#pragma omp for nowait
for (i = 0; i < n; i++)

z[i] = x[i] + y[i];

#pragma omp for nowait
for (i = 0; i < m; i++)

a[i] = b[i] + c[i];

...

#pragma omp barrier
scale = sum (a, 0, m) + sum (z, 0, n) + f;
...

} /* End of OpenMP parallel region */ 

OpenMP: A Simple Example 
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OpenMP: Fibonacci Example 

#include <stdio.h>
#include <omp.h>
int fib(int n)
{
  int i, j;
  if (n<2)
    return n;
  else
    {
       #pragma omp task shared(i) 
firstprivate(n)
       i=fib(n-1);

       #pragma omp task shared(j) 
firstprivate(n)
       j=fib(n-2);

       #pragma omp taskwait
       return i+j;
    }
}

int main()
{
  int n = 10;

  omp_set_dynamic(0);
  omp_set_num_threads(4);

  #pragma omp parallel shared(n)
  {
    #pragma omp single
    printf ("fib(%d) = %d\n", n, 
fib(n));
  }
}

56 

End of single (no implicit barrier) 
End of parallel (implicit barrier) 
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A few words About Accelerators 



2013 GTX Titan 

1.5 TFlops (fp64) 
265 Watts 
 
2688 cores 
7.1 B transistors 
 
6G GB of memory 



1992	Maspar	SIMD	Machine	

16	384	processors	
	
2.4	Gflops	(double)	
	
1GB	of	memory	



Are	GPU	really	SIMD	machines	?		

- Data	parallel	per	mulJprocessor	
- Explicit	memory	management		
- More	threads	than	SIMD	units	(SP)	
to	overlap	memory	accesses	
- Coalesced	accesses	to	gather	
global	memory	accesses	
- Limited	number	of	registers	per	
MulJprocessors	can	limit	data	
parallelism	

Load balancing with some kind of list scheduling  
possible on  [Toss & al. Europar  2012] 



 Intel Xeon Phi co-processor: 
‣ 60 X86 cores (4 Hyperthreads per core)   
‣ A  wide vector processing engine per core 
‣ One global memory  
‣ Cache coherent architecture 
‣ Connect on the PCI bus 

 
 
Supported programming environments:     
‣  MPI, OpenMP, TBB, Cilk 
 

 
Today about 3 times slower than Nvidia Tesla Card, but porting an existing code is a 
way faster.  
 

Intel Xeon Phi Accelerator 



MIC, Larrabbe, Xeon Phi and ??? 

The MIC was initially introduced  as a GPU called Larrabbe [Siggraph 2008], 
with real time ray tracing capabilities.   

 SC’09 prototype demo was a fiasco 
 
Renamed Xeon Phi, it became available in 2013 as an accelerator (no video 
output) 
 
 
Since 2016, available as a standalone processor that can be plugged in a 
standard Xeon socket 

  
 No more need to  transfer data over the (slow) PCI Express 
  
 The first many-core processor  
   

 
 
 
 



63 -  
63 

Conclusion 
Task based programming + work stealing scheduling:  

 It’s becoming a standard (Intel cilk, Intel TBB, OpenMP) 
 The way to go for “easy”, portable and efficient parallelizations 

 
TBB versus Cilk versus OpenMP 

 Make your choice.  Similar base concepts but very different 
instantiations (we could expect Intel to unify them all at least at the runtime 
level) 
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Conclusion 
Task programming versus Nvidia/OpenMP 

 More progressive transition from sequential to parallel code 
 Nvidia/OpenCL: bottom-up approach  (a prog. env adapted to the hardware) 
 Task programming: top-dowm (an algorithm with provable performance 

to efficient implementations) 
 
 
 
Xeon Phi versus GPU:  

 Smoother learning curve for the Phi 
 Higher performance for NVIDIA GPUs  
 Watch the Phi evolution (will  fit on standard socket by 2016) 
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Conclusion 
 
 
 
Get used to parallel thinking and design your algorithms with parallelization in 
mind. You will save a lot of time when actually parallelizing your code 
 
 
Remember. If performance matters, today you cannot escape parallelization 
 

 
 
 

One more thing,…….. I am not sponsored by Intel J 
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Thanks! 


