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History (Andrei Markov)

This study investigates a text excerpt containing 20,000 Russian letters of the alphabet,
excluding b and 'b,? from Pushkin’s novel Eugene Onegin — the entire first chapter and
sixteen stanzas of the second.

This sequence provides us with 20,000 connected trials, which are either a vowel
or a consonant.

Accordingly, we assume the existence of an unknown constant probability p that the
observed letter is a vowel. We determine the approximate value of p by observation,
by counting all the vowels and consonants. Apart from p, we shall find — also through
observation — the approximate values of two numbers p; and py, and four numbers
Pi.1» P1.0s Po,1, and poo. They represent the following probabilities: p; — a vowel follows
another vowel; py —a vowel follows a consonant; p; 1 —a vowel follows two vowels; py o —
a vowel follows a consonant that is preceded by a vowel; py 1 —a vowel follows a vowel
that is preceded by a consonant; and, finally, poo — a vowel follows two consonants.

The indices follow the same system that I introduced in my paper “On a Case of
Samples Connected in Complex Chain” [Markov 1911b]; with reference to my other
paper, “Investigation of a Remarkable Case of Dependent Samples” [Markov 1907a],
however, py = p>. We denote the opposite probabilities for consonants with q and
indices that follow the same pattern.

If we seek the value of p, we first find 200 approximate values from which we
can determine the arithmetic mean. To be precise, we divide the entire sequence of
20,000 letters into 200 separate sequences of 100 letters, and count how many vowels
there are in each 100: we obtain 200 numbers, which, when divided by 100, yield 200
approximate values of p.

An example of statistical investigation in
the text of "Eugene Onegin" illustrating

coupling of "tests" in chains.

(1913) In Proceedings of Academic
Scientific St. Petersburg, VI, pages
153-162.

1856-1922
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Formalisation Long run behavior Cache modeling Synthesis
Graphs and Paths

SN Random Walks
Path in a graph:
Xn n-th visited node
c b g path : o, it, - - - , in
d ;normalized weight : arc (/,j) — pi;
N GSD
\/®\/ concatenation : . — x
e f Pioyfts -+ in) = Pig,is Pirsip = * Pip_1,in

disjoint union : U — +
P(io ~ in) = Z,-h... in g Plosit Piip *** Pip_1.in

automaton : state/transitions randomized (language)
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Dynamical Systems

Figure 3. A fern drawn by a Markov chain
Evolution Operator

Initial value : X
Recurrence equation : Xpi1 = ®(Xn, &nt1)

Innovation at step n+ 1 : {niq
Finite set of innovations : {¢1, ¢z, -+ , ¢k}

Random function (chosen with a given
probability)

Diaconis-Freedman 99

Randomized Iterated Systems
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Measure Approach

0 e © . *
. X *e . Distribution of K particles
R B Initial State Xo = 0
. . T o State = nb of particles in 0
. . . . ® ‘| Dynamic : uniform choice of a particle and jump
° to the other side

n(F)

P(Xy = i|Xo = 0)

. K—i+1
7'(',7_1([—1).7
i+ 1

K

+7I'n,1(l'+ 1).

Paul Ehrenfest (1880-1933)

T = mh_1.P

lterated product of matrices g
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Algorithmic Interpretation

int minimum (T,K)
min= +o0
t=0; "
?fr (k=0: k < K: k++) do State : X, = rank of the n" processing
if (T[i]< min) then . ' . .
min = T(k]; P(Xno1 = fIXn =i, Xn—1 = k1, -+ , Xo = h)
process(min); _ IP’(X,,+1 =j|Xn _ ,-)
cpt++;
end if 1 Sy
end for P(Xpy1 = j|Xp = i) = 4 K7 ./ ;
return(cpt) 0 sinon.

\évgtsig:ﬁ K All the information of for the step n+- 1 is

on average ? contained in the state at step n

Number of processing min

T=min{n;, X,=1}

Correlation of length 1
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Markov Chain Long run behavior Cache modeling Synthesis
Formal definition

Let {X»},cn @ random sequence of variables in a discrete state-space X’

{Xn} en is @ Markov chain with initial law 7(0) iff
@ Xp ~ m(0) and
@ forall n € Nand forall (j,i,in_1,---,ig) € X2
P(Xpy1 = jIXn =i, X1 = in_1,-- , Xo = io) = P(Xny1 = j| Xn = i).
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Formal definition

Let {X»},cn @ random sequence of variables in a discrete state-space X

{Xn} en is @ Markov chain with initial law 7(0) iff
@ Xy ~ m(0) and
@ forall n € Nand forall (j,i,in_1,---,ig) € X2
P(Xpy1 = jIXn =i, X1 = in_1,-- , Xo = io) = P(Xny1 = j| Xn = i).

{Xn} cn I8 @ homogeneous Markov chain iff
@ for all n € N and for all (j, i) € A2
. . ; \ def
P(Xnp1 = j|Xn = 1) = P(X; = j|X = 1) Z pij.

(invariance during time of probability transition)
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Markov Chain Long run behavior

Cache modeling

Synthesis
Algebraic representation
P = ((pi,)) is the transition matrix of the chain
@ Pis a stochastic matrix
pij = 0; Z,D,‘,j =1
)
Linear recurrence equation m;(n) = P(Xp = i)
7 = mp_1P.
@ Equation of Chapman-Kolmogorov (homogeneous): ((p, ))
) =P(Xn =X =i); P™T = PP,
P(Xnim=jlXo=1) = > P(Xntm = jIXm = K)P(Xm = k| Xo = i);
Kk
= > P(Xo=j|Xo = K)P(Xm = k|Xo = i).
k
Interpretation: decomposition of the set of paths with length n+ m from i to j
v
L1 G
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- Estimation of 7(n)
- Estimation of stopping times

Ta=inf{n > 0; X, € A}

m’ll‘

L1
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Markov Chain Long run behavior Cache modeling Synthesis
Problems

Finite horizon

- Estimation of 7(n)
- Estimation of stopping times

Ta =inf{n>0; X, € A}

Infinite horizon

- Convergence properties
- Estimation of the asymptotics
- Estimation speed of convergence
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Applications in computer science

Applications in most of scientific domains ...
In computer science :

Markov chain : an algorithmic tool

- Numerical methods (Monte-Carlo methods)
- Randomized algorithms (ex: TCP, searching, pageRank...)
- Learning machines (hidden Markov chains)
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Applications in computer science

Applications in most of scientific domains ...
In computer science :

Markov chain : an algorithmic tool

- Numerical methods (Monte-Carlo methods)
- Randomized algorithms (ex: TCP, searching, pageRank...)
- Learning machines (hidden Markov chains)

Markov chains : a modeling tool

- Performance evaluation (quantification and dimensionning)
- Stochastic control
- Program verification
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Markov Chain Long run behavior Cache modeling Synthesis
Nicholas Metropolis (1915-1999)

Nick Metropolis

Metropolis contributed several original ideas to

mathematics and physics. Perhaps the most widely

known is the Monte Carlo method. Also, in 1953

Metropolis co-authored the first paper on a technique that

was central to the method known now as simulated

annealing. He also developed an algorithm (the

Metropolis algorithm or Metropolis-Hastings algorithm) for

generating samples from the Boltzmann distribution, later

generalized by W.K. Hastings.
14
L
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Nicholas Metropolis (1915-1999)

Simulated annealing

Convergence to a global minimum by a stochastic
gradient scheme.

Xns1 = Xn — grad®(X,)An(Random).

Nick Metropolis

Metropolis contributed several original ideas to
mathematics and physics. Perhaps the most widely
known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that
was central to the method known now as simulated
annealing. He also developed an algorithm (the
Metropolis algorithm or Metropolis-Hastings algorithm) for nN— oo
generating samples from the Boltzmann distribution, later An(random) — 0
generalized by W.K. Hastings.
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Modeling and Analysis of Computer Systems

Complex system

o«

J

e

System
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Modeling and Analysis of Computer Systems

Complex system

Input of the system

System
output

Environment
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Modeling and Analysis of Computer Systems

Complex system Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic

- time homogeneous

- stochastically regular

Input of the system

System
output

Environment
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Markov Chain

Long run behavior Cache modeling

Modeling and Analysis of Computer Systems

Complex system

System

Environment

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic

- time homogeneous

- stochastically regular

Problem

Understand “typical” states

- steady-state estimation

- ergodic simulation

- state space exploring techniques

Synthesis
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