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History (Andreï Markov)

An example of statistical investigation in
the text of "Eugene Onegin" illustrating
coupling of "tests" in chains.
(1913) In Proceedings of Academic
Scientific St. Petersburg, VI, pages
153-162.

1856-1922
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Graphs and Paths
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Random Walks

Path in a graph:
Xn n-th visited node
path : i0, i1, · · · , in
normalized weight : arc (i, j) −→ pi,j

concatenation : . −→ ×
P(i0, i1, · · · , in) = pi0,i1 pi1,i2 · · · pin−1,in

disjoint union : ∪ −→ +
P(i0 ; in) =

∑
i1,··· ,in−1

pi0,i1 pi1,i2 · · · pin−1,in

automaton : state/transitions randomized (language)
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Dynamical Systems

Diaconis-Freedman 99

Evolution Operator

Initial value : X0

Recurrence equation : Xn+1 = Φ(Xn, ξn+1)

Innovation at step n + 1 : ξn+1

Finite set of innovations : {φ1, φ2, · · · , φK}

Random function (chosen with a given
probability)

Randomized Iterated Systems
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Measure Approach

Ehrenfest’s Urn (1907)

Paul Ehrenfest (1880-1933)

Distribution of K particles

Initial State X0 = 0
State = nb of particles in 0
Dynamic : uniform choice of a particle and jump
to the other side

πn(i) = P(Xn = i|X0 = 0)

= πn−1(i − 1).
K − i + 1

K

+πn−1(i + 1).
i + 1

K

πn = πn−1.P

Iterated product of matrices
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Algorithmic Interpretation

int minimum (T,K)
min= +∞
cpt=0;
for (k=0; k < K; k++) do

if (T[i]< min) then
min = T[k];
process(min);
cpt++;

end if
end for
return(cpt)

Worst case K ;
Best case 1;
on average ?

Number of processing min

State : Xn = rank of the nth processing

P(Xn+1 = j|Xn = i,Xn−1 = ik−1, · · · ,X0 = i0)
= P(Xn+1 = j|Xn = i)

P(Xn+1 = j|Xn = i) =

{
1

K−i+1 si j < i;
0 sinon.

All the information of for the step n + 1 is
contained in the state at step n

τ = min{n; Xn = 1}

Correlation of length 1
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Formal definition

Let {Xn}n∈N a random sequence of variables in a discrete state-space X

{Xn}n∈N is a Markov chain with initial law π(0) iff

X0 ∼ π(0) and

for all n ∈ N and for all (j, i, in−1, · · · , i0) ∈ X n+2

P(Xn+1 = j|Xn = i,Xn−1 = in−1, · · · ,X0 = i0) = P(Xn+1 = j|Xn = i).

{Xn}n∈N is a homogeneous Markov chain iff

for all n ∈ N and for all (j, i) ∈ X 2

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i) def
= pi,j .

(invariance during time of probability transition)
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Algebraic representation

P = ((pi,j )) is the transition matrix of the chain

P is a stochastic matrix

pi,j > 0;
∑

j

pi,j = 1.

Linear recurrence equation πi (n) = P(Xn = i)

πn = πn−1P.

Equation of Chapman-Kolmogorov (homogeneous): Pn = ((p(n)
i,j ))

p(n)
i,j = P(Xn = j|X0 = i); Pn+m = Pn.Pm;

P(Xn+m = j|X0 = i) =
∑

k

P(Xn+m = j|Xm = k)P(Xm = k |X0 = i);

=
∑

k

P(Xn = j|X0 = k)P(Xm = k |X0 = i).

Interpretation: decomposition of the set of paths with length n + m from i to j .
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Problems

Finite horizon

- Estimation of π(n)
- Estimation of stopping times

τA = inf{n > 0; Xn ∈ A}
- · · ·

Infinite horizon

- Convergence properties
- Estimation of the asymptotics
- Estimation speed of convergence
- · · ·
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Applications in computer science

Applications in most of scientific domains ...
In computer science :

Markov chain : an algorithmic tool

- Numerical methods (Monte-Carlo methods)
- Randomized algorithms (ex: TCP, searching, pageRank...)
- Learning machines (hidden Markov chains)
-· · ·

Markov chains : a modeling tool

- Performance evaluation (quantification and dimensionning)
- Stochastic control
- Program verification
-· · ·
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Nicholas Metropolis (1915-1999)

Metropolis contributed several original ideas to
mathematics and physics. Perhaps the most widely
known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that
was central to the method known now as simulated
annealing. He also developed an algorithm (the
Metropolis algorithm or Metropolis-Hastings algorithm) for
generating samples from the Boltzmann distribution, later
generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic
gradient scheme.

Xn+1 = Xn − ~gradΦ(Xn)∆n(Random).

∆n(random)
n→∞−→ 0.
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Modeling and Analysis of Computer Systems

Complex system

System

Basic model assumptions

System :
- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

Understand “typical” states
- steady-state estimation
- ergodic simulation
- state space exploring techniques
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