
Outlines

HPC 101

Arnaud LEGRAND, CR CNRS, LIG/INRIA/Mescal

Vincent DANJEAN, MCF UJF, LIG/INRIA/Moais

October, 15th 2012

Outlines

Goals of the two next lectures

Learn and understand low-level software in HPC

Understand the internal of HPC programming model
implementations

Limitation of mixing HPC programming models

Outlines
Part I: Hardware in HPC
Part II: Low-level software primitives in HPC
Part III: Low-level API in HPC

Hardware in HPC

2 Computational units
Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory
Current Architectures in HPC

3 Networks
(Fast|Giga)-Ethernet
Legacy hardware
Current networking hardware

4 Summary

Outlines
Part I: Hardware in HPC
Part II: Low-level software primitives in HPC
Part III: Low-level API in HPC

Low-level software primitives in HPC

5 basic programming models for computational units
Hardware support for synchronization
Threads

6 Low-level communication interface/libraries
BIP and MX/Myrinet
SiSCI/SCI
VIA

7 Classical low-level techniques for efficient communications
Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

8 Summary of low-level software primitives in HPC

Outlines
Part I: Hardware in HPC
Part II: Low-level software primitives in HPC
Part III: Low-level API in HPC

Low-level API in HPC

9 Synchronization
Semaphores
Monitors

10 PThread
Normalization of the threads interface
Basic POSIX Thread API

11 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

Computational units
Networks
Summary

Part I

Hardware in HPC

2

High-Performance
Computing

● Simulation complements theory and experiments
– Climatology, seismology, astrophysics, nano-sciences,

material chemistry, molecular biology, ...

● Computation needs are always higher
– Faster or better results

Courtesy of Samuel Thibault

Computational units
Networks
Summary

3

Irregular applications

● Multi-scale simulation
● Code coupling

Finite Difference Method

Finite Element Method

Courtesy of Samuel Thibault

Computational units
Networks
Summary

Irregular applications

● Adaptive Mesh Refinement (AMR)
– Behavior not known a priori

Courtesy of Samuel Thibault

Computational units
Networks
Summary

5

Towards more and more
hierarchical computers

● Landscape has changed
– From super-computers to clusters

– With more and more parallelism

Tera10, 8704 coresBlue Gene, 106,496 cores

Courtesy of Samuel Thibault

Computational units
Networks
Summary

Computational units
Networks
Summary

High Performance Computing

Needs are always here
numerical or financial simulation, modelisation, virtual
reality virtuelle
more data, more details, . . .

Computing power will never be enough

One way to follow: using parallelism
Idea: change space into time
more resources to gain some time

Computational units
Networks
Summary

Parallel Architectures

Two main kinds
Architectures with shared memory and architectures with
distributed memory.

Multiprocessors

P

P

P

P
Mem

Clusters

Fast network

P Mem P Mem P Mem

Computational units
Networks
Summary

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory
Current Architectures in HPC

Outlines: Hardware in HPC

2 Computational units
Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory
Current Architectures in HPC

3 Networks

4 Summary

Computational units
Networks
Summary

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory
Current Architectures in HPC

Why several processors/cores ?

Limits for monocore processors
superscalar processors: instruction level parallelism
frequency
electrical power

What to do with place available on chips ?
caches (bigger and quicker)
several series of registers (hyperthreaded processors)
several series of cores (multi-core processors)
all of that

Computational units
Networks
Summary

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory
Current Architectures in HPC

Symmetric Multi Processors

all processors have access to the same memory and I/O
in case of multi-core processors, the SMP architecture
applies to the cores, treating them as separate processors
rarely used nowadays but on processors with few cores (2
or 4)

Non Uniform Memory Access Architectures
memory access time depends on the memory location
relative to a processor
better scaling hardware architecture
harder to program efficiently: trade off needed between
load-balancing and memory data locality

Computational units
Networks
Summary

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory
Current Architectures in HPC

Clusters

Composed of a few to hundreds of machines
often homogeneous

same processor, memory, etc.
often linked with a high speed, low latency network

Myrinet, InfinityBand, Quadrix, etc.

Biggest clusters can be split in several parts
computing nodes
I/O nodes
front (interactive) node

Computational units
Networks
Summary

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory
Current Architectures in HPC

Grids

Lots of heterogeneous resources

aggregation of clusters and/or standalone nodes
high latency network (Internet for example)
often dynamic resources (clusters/nodes appear and
disappear)
different architectures, networks, etc.

Computational units
Networks
Summary

Parallel Machines with Shared Memory
Parallel Machines with Distributed Memory
Current Architectures in HPC

Computational units

Hierarchical Architectures
HT technology
multi-core processor
multi processors machine
cluster of machines
grid of clusters and individual machines

Even more complexity
computing on GPU

require specialized codes but hardware far more powerful
FPGA

hardware can be specialized on demand
still lots of work on interface programming here

Computational units
Networks
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current networking hardware

Outlines: Hardware in HPC

2 Computational units

3 Networks
(Fast|Giga)-Ethernet
Legacy hardware
Current networking hardware

4 Summary

Computational units
Networks
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current networking hardware

High Speed Networks

High Speed Networks are used in clusters
low distance
very interesting performance

low latency: about 1µs
high bandwidth: about 10 Gb/s and more

specific light protocols
static routing of messages
no required packet fragmentation
sometimes, no packet required

Myrinet, Quadrics, SCI, . . .

Computational units
Networks
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current networking hardware

(Fast|Giga)-Ethernet

Interconnect:
Hub or switch

Wires:
Copper or optical
fiber

Latency:
about 10µs

Bandwidth:
From 100 Mb/s to
10 Gb/s (100 Gb/s,
june 2010)

Remark:
compatible with
traditional Ethernet

Computational units
Networks
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current networking hardware

Myrinet

Myricom corporate
Interconnect:

Switch
PCI card with:

a processor: LANai
SRAM memory: about 4 MB

Latency:
about 1 or 2µs

Bandwidth:
10 Gb/s

Remark:
static, wormhole routing
can you RJ45 cables

Computational units
Networks
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current networking hardware

SCI

Scalable Coherent Interface
IEEE norm (1993)
Dolphin corporate

Uses remote memory access:
Address space remotely mapped

Computational units
Networks
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current networking hardware

InfiniBand

Several manufacturers (Cisco, HP, Intel, IBM, etc.)
Interconnect:

Optical links
Serial, point-to-point connections
Switched fabric (possibility of several paths)

Bandwidth
single line of 2, 4, 8, 14 or 25 Mb/s
possibility of bonding 4 or 12 lines

Latency:
about 100 or 200 ns for hardware only
about 1 or 2µs for some hardware with its driver

Remark:
can interconnect buildings
RDMA operations available

Computational units
Networks
Summary

(Fast|Giga)-Ethernet
Legacy hardware
Current networking hardware

Quadrics

One manufacturer (Quadrics)
Interconnect:

Bi-directional serial links
Switched fabric (possibility of several paths)

Bandwidth
1 to 2 Gb/s on each direction

Latency:
about 1.3µs in MPI

Remark:
selected by Bull for the fastest supercomputer in Europe:
Tera100 at CEA
global operations (reduction, barrier) available in hardware

Computational units
Networks
Summary

Outlines: Hardware in HPC

2 Computational units

3 Networks

4 Summary

Computational units
Networks
Summary

Hardware in HPC

Performance, performance and performance
HPC machines: as many TFlops as possible for the user

very complex multi-cores, multi-processors machines
specialized hardware accelerators (GPU, FPGA, etc.)
dedicated specialized networks

Some limitations
not the price
but the power consumption
dedicated EDF electrical line for the last French
super-calculator
and the physics
an electric signal cannot go quicker than the light speed

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Part II

Low-level software primitives in HPC

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Outlines: Low-level software primitives in HPC

5 basic programming models for computational units
Hardware support for synchronization
Threads

6 Low-level communication interface/libraries

7 Classical low-level techniques for efficient communications

8 Summary of low-level software primitives in HPC

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Synchronization requires hardware support

What happens with incrementations in parallel?

for (i=0; i<10; i++){

var++;

for (i=0; i<10; i++){

var++;

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Synchronization requires hardware support

What happens with incrementations in parallel?
for (i=0; i<10; i++){
var++;

}

for (i=0; i<10; i++){
var++;

}

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Synchronization requires hardware support

What happens with incrementations in parallel?
for (i=0; i<10; i++){
var++;

}

for (i=0; i<10; i++){
var++;

}

Hardware support required
TAS atomic test and set instruction

cmpexchge compare and exchange
atomic operation incrementation, decrementation, adding, etc.

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Critical section with busy waiting

Example of code
while (TAS(&var))

;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters
- very difficult to do it correctly (compiler, processor, etc.)

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Critical section with busy waiting

Example of code
while (TAS(&var))

while (var) ;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters
- very difficult to do it correctly (compiler, processor, etc.)

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Critical section with busy waiting

Example of code
while (TAS(&var))

while (var) ;
/* in critical section */
var=0;

Busy waiting

+ very reactive

+ no OS or lib support required

- use a processor while not doing anything

- does not scale if there are lots of waiters
- very difficult to do it correctly (compiler, processor, etc.)

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Programming on Shared Memory Parallel Machines

Using process

Processors

Operating system Resources management
(files, memory, CPU, network, etc)

Process

Mem Mem Mem Mem

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Programming on Shared Memory Parallel Machines

Using threads

process

Processors

Operating system Resources management
(files, memory, CPU, network, etc)

Process

Multithreaded process

Memory

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

basic programming models for computational units

Why threads ?
To take profit from shared memory parallel architectures

SMP, hyperthreaded, multi-core, NUMA, etc. processors
future Intel processors: several hundreds cores

To describe the parallelism within the applications
independent tasks, I/O overlap, etc.

What will use threads ?
User application codes

directly (with thread libraries)
POSIX API (IEEE POSIX 1003.1C norm) in C, C++, . . .

with high-level programming languages (Ada, OpenMP, . . .)
Middleware programming environments

demonized tasks (garbage collector, . . .), . . .

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

User threads

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

User level

User scheduler

Efficiency + Flexibility + SMP - Blocking syscalls -

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Kernel threads

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

Kernel level

Efficiency - Flexibility - SMP + Blocking syscalls +

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Mixed models

by the kernel
Entities managed

Operating system

Processors

Multithreaded process

threads

Kernel scheduler

User level

User scheduler

Efficiency + Flexibility + SMP + Blocking syscalls limited

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Thread models characteristics

Characteristics
Library Efficiency Flexibility SMP Blocking syscalls

User + + - -
Kernel - - + +
Mixed + + + limited

Summary
Mixed libraries seems more attractive however they are more
complex to develop. They also suffer from the blocking system
call problem.

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

User Threads and Blocking System Calls

User level library

Kernel scheduler

User scheduler

Mixed library

Kernel scheduler

User scheduler

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Scheduler Activations

Idea proposed by Anderson et al. (91)
Dialogue (and not monologue) between the user and kernel
schedulers

the user scheduler uses system calls
the kernel scheduler uses upcalls

Upcalls
Notify the application of scheduling kernel events

Activations
a new structure to support upcalls
a kinf of kernel thread or virtual processor

creating and destruction managed by the kernel

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Scheduler Activations

Instead of:

InterruptionExternal request

space
User

Kernel Time

...better use the following schema:

Interruption

Act. A

External request

space
User

Kernel Time
upcall(unblocked, preempted, new)

Act. C
Act. A (next)

Act. B

upcall(blocked, new)

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

User scheduler

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(New)

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(New)

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

Upcall(Blocked, New)

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

system
call

Blocking

threads

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Working principle

managed by the kernel

User-level

Operating system

Processors

Multithreaded process

Activations

Kernel scheduler

threads

Upcall(Unblocked,Preempted,New)

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Hardware support for synchronization
Threads

Exploiting computational resources

Some recurring patterns
hardware synchronization primitives
threads

Common feature: very hard to program correctly such hardware

One cannot expect HPC applications to handle directly these
kind of resources. It is too complex for an scientific application
programmer.

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

BIP and MX/Myrinet
SiSCI/SCI
VIA

Outlines: Low-level software primitives in HPC

5 basic programming models for computational units

6 Low-level communication interface/libraries
BIP and MX/Myrinet
SiSCI/SCI
VIA

7 Classical low-level techniques for efficient communications

8 Summary of low-level software primitives in HPC

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

BIP and MX/Myrinet
SiSCI/SCI
VIA

BIP/Myrinet

Basic Interface for Parallelism
L. Prylli and B. Tourancheau

Dedicated to Myrinet networks
Characteristics

Asynchronous communication
No error detection
No flow control

Small messages are copied into a fixed buffer at reception
Big messages are lost if the receiver is not ready

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

BIP and MX/Myrinet
SiSCI/SCI
VIA

MX/Myrinet

Myrinet eXpress
Official driver from Myricom

Very simplistic interface to allow easy implementation of
MPI

Flow control
Reliable communications
Non contiguous messages
Multiplexing

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

BIP and MX/Myrinet
SiSCI/SCI
VIA

SiSCI/SCI

Driver for SCI cards
Programming model

Remote memory access
Explicit: RDMA
Implicit: memory projections

Performance
Explicit use of some operation required:

memory “flush”
SCI_memcpy
RDMA

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

BIP and MX/Myrinet
SiSCI/SCI
VIA

VIA

Virtual Interface Architecture
A new standard

Lots of industrials
Microsoft, Intel, Compaq, etc.

Use for InfiniBand networks
Characteristics

Virtual interfaces objects
Queues of descriptors (for sending and receiving)

Explicit memory recording
Remote reads/writes

RDMA

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Outlines: Low-level software primitives in HPC

5 basic programming models for computational units

6 Low-level communication interface/libraries

7 Classical low-level techniques for efficient communications
Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

8 Summary of low-level software primitives in HPC

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Interacting with the network card: PIO mode

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Interacting with the network card: DMA mode

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications

Goals
Reduce the communication time

Copy time cannot be neglected
but it can be partially recovered with pipelining

Reduce the processor use
currently, memcpy are executed by processor instructions

Idea
The network card directly read/write data from/to the
application memory

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications for emission

PIO mode transfers
No problem for zero-copy

DMA mode transfers
Non contiguous data in physical memory
Headers added in the protocol

linked DMA
limits on the number of non contiguous segments

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications for reception

A network card cannot “freeze” the received message on the
physical media

If the receiver posted a “recv” operation before the message
arrives

zero-copy OK if the card can filter received messages
else, zero-copy allowed with bounded-sized messages
with optimistic heuristics

If the receiver is not ready
A handshake protocol must be setup for big messages
Small messages can be stored in an internal buffer

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Using a Handshake Protocol

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

A few more considerations

The receiving side plays an important role
Flow-control is mandatory
Zero-copy transfers

the sender has to ensure that the receiver is ready
a handshake (REQ+ACK) can be used

Communications in user-space introduce some difficulties
Direct access to the NIC

most technologies impose “pinned” memory pages

Network drivers have limitations

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Communication Protocol Selection

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Communication Protocol Selection

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Operating System Bypass

Initialization
traditional system
calls
only at session
beginning

Transfers
direct from user
space
no system call
“less” interrupts

Humm. . . And what
about security ?

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

OS-bypass + zero-copy

Problem
Zero-copy mechanism uses DMA that requires physical
addresses
Mapping between virtual and physical address is only
known by:

the processor (MMU)
the OS (pages table)

We need that
the library knows this mapping
this mapping is not modified during the communication

ex: swap decided by the OS, copy-on-write, etc.

No way to ensure this in user space !

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

OS-bypass + zero-copy

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

OS-bypass + zero-copy

First solution
Pages “recorded” in the kernel to avoid swapping
Management of a cache for virtual/physical addresses
mapping

in user space or on the network card

Diversion of system calls that can modify the address
space

Second solution
Management of a cache for virtual/physical addresses
mapping on the network card
OS patch so that the network card is informed when a
modification occurs
Solution chosen by MX/Myrinet and Elan/Quadrics

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol
OS Bypass

Direct consequences

Latency measure can vary whether the memory region
used

Some pages are “recorded” within the network card
Ideal case are ping-pong exchanges

The same pages are reused hundred of times

Worst case are applications using lots of different data
regions. . .

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Outlines: Low-level software primitives in HPC

5 basic programming models for computational units

6 Low-level communication interface/libraries

7 Classical low-level techniques for efficient communications

8 Summary of low-level software primitives in HPC

basic programming models for computational units
Low-level communication interface/libraries

Classical low-level techniques for efficient communications
Summary of low-level software primitives in HPC

Summary of low-level software primitives in HPC

Efficient hardware
numerous parallel threads
very low latency and high bandwidth networks
complex hardware to be programmed efficiently

synchronization, onboard CPU, onboard MMU for DMA, etc.

Very specific programming interfaces

specialized assembly instructions for synchronization
dedicated to specific technologies (but VIA)
different programming models
quasi no portability

It is not reasonable to program a scientific application directly
with such programming interfaces

Synchronization
PThread

MPI

Part III

Low-level API in HPC

Synchronization
PThread

MPI

Semaphores
Monitors

Outlines: Low-level API in HPC

9 Synchronization
Semaphores
Monitors

10 PThread

11 MPI

Synchronization
PThread

MPI

Semaphores
Monitors

Semaphores

Internal state: a counter initialised to a positive or null value
Two methods:

P(s) wait for a positive counter then decrease it
once

V(s) increase the counter

Common analogy: a box with tokens
Initial state: the box has n tokens in it
One can put one more token in the box (V)
One can take one token from the box (P) waiting if none is
available

Synchronization
PThread

MPI

Semaphores
Monitors

Monitors

Mutex
Two states: locked or not
Two methods:

lock(m) take the mutex
unlock(m) release the mutex (must be done by the

thread owning the mutex)

Conditions
waiting thread list (conditions are not related with tests)
Three methods:

wait(c, m) sleep on the condition. The mutex is released
atomically during the wait.

signal(c) one sleeping thread is wake up
broadcast(c) all sleeping threads are wake up

Synchronization
PThread

MPI

Normalization of the threads interface
Basic POSIX Thread API

Outlines: Low-level API in HPC

9 Synchronization

10 PThread
Normalization of the threads interface
Basic POSIX Thread API

11 MPI

Synchronization
PThread

MPI

Normalization of the threads interface
Basic POSIX Thread API

Normalisation of the thread interface

Before the norm
each Unix had its (slightly) incompatible interface
but same kinds of features was present

POSIX normalization
IEEE POSIX 1003.1C norm (also called POSIX threads
norm)
Only the API is normalised (not the ABI)

POSIX thread libraries can easily be switched at source
level but not at runtime

POSIX threads own
processor registers, stack, etc.
signal mask

POSIX threads can be of any kind (user, kernel, etc.)

Synchronization
PThread

MPI

Normalization of the threads interface
Basic POSIX Thread API

Basic POSIX Thread API

Creation/destruction
int pthread_create(pthread_t *thread, const
pthread_attr_t *attr, void

*(*start_routine)(void*), void *arg)

void pthread_exit(void *value_ptr)

int pthread_join(pthread_t thread, void

**value_ptr)

Synchronisation (semaphores)
int sem_init(sem_t *sem, int pshared, unsigned
int value)

int sem_wait(sem_t *sem)

int sem_post(sem_t *sem)

int sem_destroy(sem_t *sem)

Synchronization
PThread

MPI

Normalization of the threads interface
Basic POSIX Thread API

Basic POSIX Thread API (2)

Synchronisation (mutex)
int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

int pthread_mutex_lock(pthread_mutex_t *mutex)

int pthread_mutex_unlock(pthread_mutex_t
*mutex)

int pthread_mutex_destroy(pthread_mutex_t
*mutex)

Synchronisation (conditions)
int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr)

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex)

int pthread_cond_signal(pthread_cond_t *cond)

int pthread_cond_broadcast(pthread_cond_t
*cond)

int pthread_cond_destroy(pthread_cond_t *cond)

Synchronization
PThread

MPI

Normalization of the threads interface
Basic POSIX Thread API

Basic POSIX Thread API (3)

Per thread data
int pthread_key_create(pthread_key_t *key, void
(*destr_function) (void*))

int pthread_key_delete(pthread_key_t key)

int pthread_setspecific(pthread_key_t key,
const void *pointer)

void * pthread_getspecific(pthread_key_t key)

The new __thread C keyword
used for a global per-thread variable
need support from the compiler and the linker at compile
time and execute time
libraries can have efficient per-thread variables without
disturbing the application

Synchronization
PThread

MPI

Normalization of the threads interface
Basic POSIX Thread API

Basic POSIX Thread API (3)

Per thread data
int pthread_key_create(pthread_key_t *key, void
(*destr_function) (void*))

int pthread_key_delete(pthread_key_t key)

int pthread_setspecific(pthread_key_t key,
const void *pointer)

void * pthread_getspecific(pthread_key_t key)

The new __thread C keyword
used for a global per-thread variable
need support from the compiler and the linker at compile
time and execute time
libraries can have efficient per-thread variables without
disturbing the application

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Outlines: Low-level API in HPC

9 Synchronization

10 PThread

11 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

Message Passing

 The above is a programming model and things may look
different in the actual implementation (e.g., MPI over
Shared Memory)

 Message Passing is popular because it is general:
 Pretty much any distributed system works by exchanging

messages, at some level
 Distributed- or shared-memory multiprocessors, networks of

workstations, uniprocessors
 It is not popular because it is easy (it’s not)

P

M

P

M

P

M
. . .

network

 Each processor runs a process
 Processes communicate by

exchanging messages
 They cannot share memory in

the sense that they cannot
address the same memory cells

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Code Parallelization
 Shared-memory programming

 Parallelizing existing code can be very easy
 OpenMP: just add a few pragmas
 Pthreads: wrap work in do_work functions

 Understanding parallel code is easy
 Incremental parallelization is natural

 Distributed-memory programming
 parallelizing existing code can be very difficult

 No shared memory makes it impossible to “just”
reference variables

 Explicit message exchanges can get really tricky
 Understanding parallel code is difficult

 Data structured are split all over different memories
 Incremental parallelization can be challenging

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Programming Message
Passing

 Shared-memory programming is simple conceptually
(sort of)

 Shared-memory machines are expensive when one
wants a lot of processors

 It’s cheaper (and more scalable) to build distributed
memory machines
 Distributed memory supercomputers (IBM SP series)
 Commodity clusters

 But then how do we program them?
 At a basic level, let the user deal with explicit

messages
 difficult
 but provides the most flexibility

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Message Passing

 Isn’t exchanging messages completely known
and understood?
 That’s the basis of the IP idea
 Networked computers running programs that

communicate are very old and common
 DNS, e-mail, Web, ...

 The answer is that, yes it is, we have
“Sockets”
 Software abstraction of a communication between

two Internet hosts
 Provides and API for programmers so that they do

not need to know anything (or almost anything)
about TCP/IP and write code with programs that
communicate over the internet

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Using Sockets for parallel
programming?

 One could thing of writing all parallel code on a
cluster using sockets
 n nodes in the cluster
 Each node creates n-1 sockets on n-1 ports
 All nodes can communicate

 Problems with this approach
 Complex code
 Only point-to-point communication
 No notion of types messages
 But

 All this complexity could be “wrapped” under a higher-level API
 And in fact, we’ll see that’s the basic idea

 Does not take advantage of fast networking within a cluster/
MPP

 Sockets have “Internet stuff” in them that’s not necessary
 TPC/IP may not even be the right protocol!

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Message Passing for Parallel
Programs

 Although “systems” people are happy
with sockets, people writing parallel
applications need something better
 easier to program to
 able to exploit the hardware better within a

single machine
 This “something better” right now is

MPI
 We will learn how to write MPI programs

 Let’s look at the history of message
passing for parallel computing

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Outlines: Low-level API in HPC

9 Synchronization

10 PThread

11 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

The MPI Standard
 MPI Forum setup as early as 1992 to come up with a de facto

standard with the following goals:
 source-code portability
 allow for efficient implementation (e.g., by vendors)
 support for heterogeneous platforms

 MPI is not
 a language
 an implementation (although it provides hints for

implementers)
 June 1995: MPI v1.1 (we’re now at MPI v1.2)

 http://www-unix.mcs.anl.gov/mpi/
 C and FORTRAN bindings
 We will use MPI v1.1 from C in the class

 Implementations:
 well-adopted by vendors
 free implementations for clusters: MPICH, LAM, CHIMP/MPI
 research in fault-tolerance: MPICH-V, FT-MPI, MPIFT, etc.

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

SPMD Programs
 It is rare for a programmer to write a different program for each

process of a parallel application
 In most cases, people write Single Program Multiple Data

(SPMD) programs
 the same program runs on all participating processors
 processes can be identified by some rank
 This allows each process to know which piece of the problem to

work on
 This allows the programmer to specify that some process does

something, while all the others do something else (common in
master-worker computations)

main(int argc, char **argv) {
 if (my_rank == 0) { /* master */
 ... load input and dispatch ...
 } else { /* workers */
 ... wait for data and compute ...
 }

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI Concepts

 Fixed number of processors
 When launching the application one must specify the

number of processors to use, which remains unchanged
throughout execution

 Communicator
 Abstraction for a group of processes that can communicate
 A process can belong to multiple communicators
 Makes is easy to partition/organize the application in

multiple layers of communicating processes
 Default and global communicator: MPI_COMM_WORLD

 Process Rank
 The index of a process within a communicator
 Typically user maps his/her own virtual topology on top of

just linear ranks
 ring, grid, etc.

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI Communicators

MPI_COMM_WORLD

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

User-created
Communicator

21

3 4 5

876

0

1

0

User-created
Communicator

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

A First MPI Program
#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int my_rank, n;
 char hostname[128];
 MPI_init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 MPI_Comm_size(MPI_COMM_WORLD,&n);
 gethostname(hostname,128);
 if (my_rank == 0) { /* master */
 printf(“I am the master: %s\n”,hostname);
 } else { /* worker */
 printf(“I am a worker: %s (rank=%d/%d)\n”,
 hostname,my_rank,n1);
 }
 MPI_Finalize();
 exit(0);
}

Has to be called first, and once

Has to be called last, and once

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Compiling/Running it

 Compile with mpicc
 Run with mpirun

% mpirun np 4 my_program <args>
 requests 4 processors for running my_program with command-

line arguments
 see the mpirun man page for more information
 in particular the machinefile option that is used to run on a

network of workstations
 Some systems just run all programs as MPI programs and

no explicit call to mpirun is actually needed
 Previous example program:
% mpirun np 3 machinefile hosts my_program
 I am the master: somehost1
 I am a worker: somehost2 (rank=2/2)
 I am a worker: somehost3 (rank=1/2)

(stdout/stderr redirected to the process calling mpirun)

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Outlines: Low-level API in HPC

9 Synchronization

10 PThread

11 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

Point-to-Point Communication

 Data to be communicated is described by three
things:
 address
 data type of the message
 length of the message

 Involved processes are described by two things
 communicator
 rank

 Message is identified by a “tag” (integer) that
can be chosen by the user

P

M

P

M

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Point-to-Point Communication

 Two modes of communication:
 Synchronous: Communication does not

complete until the message has been
received

 Asynchronous: Completes as soon as the
message is “on its way”, and hopefully it
gets to destination

 MPI provides four versions
 synchronous, buffered, standard, ready

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Synchronous/Buffered sending in
MPI

 Synchronous with MPI_Ssend
 The send completes only once the receive has

succeeded
 copy data to the network, wait for an ack
 The sender has to wait for a receive to be posted
 No buffering of data

 Buffered with MPI_Bsend
 The send completes once the message has been

buffered internally by MPI
 Buffering incurs an extra memory copy
 Doe not require a matching receive to be posted
 May cause buffer overflow if many bsends and no

matching receives have been posted yet

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Standard/Ready Send

 Standard with MPI_Send
 Up to MPI to decide whether to do synchronous or

buffered, for performance reasons
 The rationale is that a correct MPI program should

not rely on buffering to ensure correct semantics
 Ready with MPI_Rsend

 May be started only if the matching receive has
been posted

 Can be done efficiently on some systems as no
hand-shaking is required

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI_RECV

 There is only one MPI_Recv, which returns when the data has
been received.
 only specifies the MAX number of elements to receive

 Why all this junk?
 Performance, performance, performance
 MPI was designed with constructors in mind, who would endlessly

tune code to extract the best out of the platform (LINPACK
benchmark).

 Playing with the different versions of MPI_?send can improve
performance without modifying program semantics

 Playing with the different versions of MPI_?send can modify
program semantics

 Typically parallel codes do not face very complex distributed
system problems and it’s often more about performance than
correctness.

 You’ll want to play with these to tune the performance of your code
in your assignments

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Example: Sending and
Receiving

#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int i, my_rank, nprocs, x[4];
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 if (my_rank == 0) { /* master */
 x[0]=42; x[1]=43; x[2]=44; x[3]=45;
 MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
 for (i=1;i<nprocs;i++)
 MPI_Send(x,4,MPI_INT,i,0,MPI_COMM_WORLD);
 } else { /* worker */
 MPI_Status status;
 MPI_Recv(x,4,MPI_INT,0,0,MPI_COMM_WORLD,&status);
 }
 MPI_Finalize();
 exit(0);
}

destination
and

source

user-defined
tag

Max number of
elements to receive

Can be examined via calls
like MPI_Get_count(), etc.

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Example: Deadlock

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

...

MPI_Buffer_attach()

MPI_Bsend()

MPI_Recv()

...

...

MPI_Ssend()

MPI_Recv()

...

Deadlock

No
Deadlock

No
Deadlock

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

What about MPI_Send?

 MPI_Send is either synchronous or
buffered....

 With , running “some” version of MPICH
...

MPI_Send()

MPI_Recv()

...

...

MPI_Send()

MPI_Recv()

...

Deadlock

No
Deadlock

Data size > 127999 bytes

Data size < 128000 bytes

 Rationale: a correct MPI program should not rely
on buffering for semantics, just for performance.

 So how do we do this then? ...

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Non-blocking
communications

 So far we’ve seen blocking communication:
 The call returns whenever its operation is

complete (MPI_SSEND returns once the message
has been received, MPI_BSEND returns once the
message has been buffered, etc..)

 MPI provides non-blocking communication:
the call returns immediately and there is
another call that can be used to check on
completion.

 Rationale: Non-blocking calls let the
sender/receiver do something useful while
waiting for completion of the operation
(without playing with threads, etc.).

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Non-blocking Communication

 MPI_Issend, MPI_Ibsend, MPI_Isend, MPI_Irsend,
MPI_Irecv

 MPI_Request request;
 MPI_Isend(&x,1,MPI_INT,dest,tag,communicator,&request);

 MPI_Irecv(&x,1,MPI_INT,src,tag,communicator,&request);

 Functions to check on completion: MPI_Wait,
MPI_Test, MPI_Waitany, MPI_Testany, MPI_Waitall,
MPI_Testall, MPI_Waitsome, MPI_Testsome.
MPI_Status status;

MPI_Wait(&request, &status) /* block */

MPI_Test(&request, &status) /* doesn’t block */

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Example: Non-blocking comm
#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) {
 int i, my_rank, x, y;
 MPI_Status status;
 MPI_Request request;
 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 if (my_rank == 0) { /* P0 */
 x=42;
 MPI_Isend(&x,1,MPI_INT,1,0,MPI_COMM_WORLD,&request);
 MPI_Recv(&y,1,MPI_INT,1,0,MPI_COMM_WORLD,&status);
 MPI_Wait(&request,&status);
 } else if (my_rank == 1) { /* P1 */
 y=41;
 MPI_Isend(&y,1,MPI_INT,0,0,MPI_COMM_WORLD,&request);
 MPI_Recv(&x,1,MPI_INT,0,0,MPI_COMM_WORLD,&status);
 MPI_Wait(&request,&status);
 }
 MPI_Finalize(); exit(0);
}

No
Deadlock

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Use of non-blocking comms

 In the previous example, why not just swap one pair
of send and receive?

 Example:
 A logical linear array of N processors, needing to exchange

data with their neighbor at each iteration of an application
 One would need to orchestrate the communications:

 all odd-numbered processors send first
 all even-numbered processors receive first

 Sort of cumbersome and can lead to complicated patterns
for more complex examples

 In this case: just use MPI_Isend and write much simpler code
 Furthermore, using MPI_Isend makes it possible to

overlap useful work with communication delays:
MPI_Isend()
<useful work>
MPI_Wait()

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Iterative Application Example
for (iterations)

 update all cells
 send boundary values
 receive boundary values

 Would deadlock with MPI_Ssend, and maybe
deadlock with MPI_Send, so must be implemented
with MPI_Isend

 Better version that uses non-blocking
communication to achieve
communication/computation overlap (aka latency
hiding):
for (iterations)
 initiate sending of boundary values to neighbours;
 initiate receipt of boundary values from neighbours;
 update nonboundary cells;
 wait for completion of sending of boundary values;

 wait for completion of receipt of boundary values;
 update boundary cells;

 Saves cost of boundary value communication if
hardware/software can overlap comm and comp

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Non-blocking
communications

 Almost always better to use non-blocking
 communication can be carried out during blocking system

calls
 communication and communication can overlap
 less likely to have annoying deadlocks
 synchronous mode is better than implementing acks by hand

though
 However, everything else being equal, non-blocking

is slower due to extra data structure bookkeeping
 The solution is just to benchmark

 When you do your programming assignments, you
will play around with different communication types

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

More information

 There are many more functions that allow
fine control of point-to-point communication

 Message ordering is guaranteed
 Detailed API descriptions at the MPI site at

ANL:
 Google “MPI”. First link.
 Note that you should check error codes, etc.

 Everything you want to know about deadlocks
in MPI communication

 http://andrew.ait.iastate.edu/HPC/Papers/mpicheck2/mpicheck2.htm

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Outlines: Low-level API in HPC

9 Synchronization

10 PThread

11 MPI
Message Passing
Introduction to MPI
Point-to-Point Communications
Collective Communications

Collective Communication

 Operations that allow more than 2 processes
to communicate simultaneously
 barrier
 broadcast
 reduce

 All these can be built using point-to-point
communications, but typical MPI
implementations have optimized them, and
it’s a good idea to use them

 In all of these, all processes place the same
call (in good SPMD fashion), although
depending on the process, some arguments
may not be used

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Barrier

 Synchronization of the calling processes
 the call blocks until all of the processes

have placed the call
 No data is exchanged
 Similar to an OpenMP barrier

...

MPI_Barrier(MPI_COMM_WORLD)

...

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Broadcast

 One-to-many communication
 Note that multicast can be

implemented via the use of
communicators (i.e., to create
processor groups)
...

MPI_Bcast(x, 4, MPI_INT, 0,
MPI_COMM_WORLD)

...

Rank of the root

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Broadcast example

 Let’s say the master must send the user
input to all workers

int main(int argc,char **argv) {

int my_rank;

 int input;

MPI_Init(&argc,&argv);

 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

 if (argc != 2) exit(1);

 if (sscanf(argv[1],”%d”,&input) != 1) exit(1);

MPI_Bcast(&input,1,MPI_INT,0,MPI_COMM_WORLD);

...

}

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Scatter

 One-to-many communication
 Not sending the same message to all

root

destinations
...

MPI_Scatter(x, 100, MPI_INT, y, 100, MPI_INT, 0,
MPI_COMM_WORLD)

...

Rank of the root
Send buffer

Receive buffer

Data to send to each Data to receive

. . .

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

This is actually a bit tricky

 The root sends data to itself!

 Arguments #1, #2, and #3 are only
meaningful at the root

master node

work node

work node work node

work node

work node

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Scatter Example

 Partitioning an array of input among
workers

int main(int argc,char **argv) {
int *a;
double *revbuffer;
...

 MPI_Comm_size(MPI_COMM_WORLD,&n);
<allocate array recvbuffer of size N/n>

if (my_rank == 0) { /* master */
<allocate array a of size N>

}
MPI_Scatter(a, N/n, MPI_INT,

 recvbuffer, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 ...
}

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Scatter Example

 Without redundant sending at the root

int main(int argc,char **argv) {
int *a;
double *revbuffer;
...

 MPI_Comm_size(MPI_COMM_WORLD,&n);
if (my_rank == 0) { /* master */

<allocate array a of size N>
<allocate array recvbuffer of size N/n>

 MPI_Scatter(a, N/n, MPI_INT,
 MPI_IN_PLACE, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 } else { /* worker */

<allocate array recvbuffer of size N/n>
MPI_Scatter(NULL, 0, MPI_INT,

 recvbuffer, N/n, MPI_INT,
 0, MPI_COMM_WORLD);
 }
 ...
}

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Gather

 Many-to-one communication
 Not sending the same message to the root

root

sources

...

MPI_Gather(x, 100, MPI_INT, y, 100, MPI_INT, 0, MPI_COMM_WORLD)
...

Rank of the root
Send buffer

Receive buffer

Data to send from each Data to receive

. . .

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Gather-to-all

 Many-to-many communication
 Each process sends the same message to all
 Different Processes send different messages

...

MPI_Allgather(x, 100, MPI_INT, y, 100, MPI_INT, MPI_COMM_WORLD)
...

Send buffer

Receive bufferData to send to each

Data to receive

. . .

. . .

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

All-to-all
 Many-to-many communication
 Each process sends a different message to each other

process

...

MPI_Alltoall(x, 100, MPI_INT, y, 100, MPI_INT, MPI_COMM_WORLD)
...

Send buffer

Receive bufferData to send to each

Data to receive

. . .

. . .

Block i from proc j goes to block j on proc i

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

Reduction Operations

 Used to compute a result from data that is
distributed among processors
 often what a user wants to do anyway

 e.g., compute the sum of a distributed array
 so why not provide the functionality as a single API

call rather than having people keep re-
implementing the same things

 Predefined operations:
 MPI_MAX, MPI_MIN, MPI_SUM, etc.

 Possibility to have user-defined operations

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI_Reduce, MPI_Allreduce

 MPI_Reduce: result is sent out to the root
 the operation is applied element-wise for each

element of the input arrays on each processor
 An output array is returned

 MPI_Allreduce: result is sent out to
everyone

...

MPI_Reduce(x, r, 10, MPI_INT, MPI_MAX, 0, MPI_COMM_WORLD)
...

output arrayinput array array size root

...

MPI_Allreduce(x, r, 10, MPI_INT, MPI_MAX, MPI_COMM_WORLD)
...

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI_Reduce example

3 4 2 8 12 1P0

5 2 5 1 7 11P1

2 4 4 10 4 5P2

1 6 9 3 1 1P3

11 16 20 22 24 18P0

sbuf

rbuf

MPI_Reduce(sbuf,rbuf,6,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD)

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

MPI_Scan: Prefix reduction
 Process i receives data reduced on

process 0 to i.

3 4 2 8 12 1P0

5 2 5 1 7 11P1

2 4 4 10 4 5P2

1 6 9 3 1 1P3

3 4 2 8 12 1P0

8 6 7 9 19 12P1

10 10 11 19 23 17P2

11 16 12 22 24 18P3

MPI_Scan(sbuf,rbuf,6,MPI_INT,MPI_SUM,MPI_COMM_WORLD)

sbuf rbuf

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

And more...

 Most broadcast operations come with a
version that allows for a stride (so that blocks
do not need to be contiguous)
 MPI_Gatherv(), MPI_Scatterv(), MPI_Allgatherv(),

MPI_Alltoallv()
 MPI_Reduce_scatter(): functionality

equivalent to a reduce followed by a scatter
 All the above have been created as they are

common in scientific applications and save
code

 All details on the MPI Webpage

Courtesy of Henri Casanova

Synchronization
PThread

MPI

Introduction to MPI
Point-to-Point Communications
Collective Communications

	Outlines
	Part I: Hardware in HPC
	Part II: Low-level software primitives in HPC
	Part III: Low-level API in HPC

	Hardware in HPC
	Computational units
	Parallel Machines with Shared Memory
	Parallel Machines with Distributed Memory
	Current Architectures in HPC

	Networks
	(Fast|Giga)-Ethernet
	Legacy hardware
	Current networking hardware

	Summary

	Low-level software primitives in HPC
	basic programming models for computational units
	Hardware support for synchronization
	Threads

	Low-level communication interface/libraries
	BIP and MX/Myrinet
	SiSCI/SCI
	VIA

	Classical low-level techniques for efficient communications
	Interacting with the network card: PIO and DMA
	Zero-copy communications
	Handshake Protocol
	OS Bypass

	Summary of low-level software primitives in HPC

	Low-level API in HPC
	Synchronization
	Semaphores
	Monitors

	PThread
	Normalization of the threads interface
	Basic POSIX Thread API

	MPI
	Message Passing
	Introduction to MPI
	Point-to-Point Communications
	Collective Communications

