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Continuous random variable

I A random variable (or stochastic variable) is, roughly speaking, a
variable whose value results from a measurement.
Such a variable enables to model uncertainty that may result of in-
complete information or imprecise measurements.
Formally (Ω,F , P ) is a probability space where:

I Ω, the sample space, is the set of all possible outcomes (e.g., {1, 2, 3, 4, 5, 6})
I F if the set of events where an event is a set containing zero or more

outcomes (e.g., the event of having an odd number {1, 3, 5})
I The probability measure P : F → [0, 1] is a function returning an

event’s probability.

I Since many computer science experiments are based on time mea-
surements, we focus on continuous variables.

X : Ω→ R
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Probability Distribution

A probability distribution (a.k.a. probability density function or p.d.f.) is
used to describe the probabilities of different values occurring.

A random variable X has density f , where f is a non-negative and inte-
grable function, if:

P [a 6 X 6 b] =

∫ b

a

f(x) dx
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Expected value

I When one speaks of the ”expected price”, ”expected height”, etc.
one means the expected value of a random variable that is a price, a
height, etc.

E[X] = x1p1 + x2p2 + . . .+ xkpk

=

∫ ∞
−∞

xf(x) dx

The expected value of X is the “average value” of X.

It is not the most probable value. The mean is one aspect of the
distribution of X. The median or the mode are other interesting
aspects.

I The variance is a measure of how far the values of a random variable
are spread out from each other.
If a random variable X has the expected value (mean) µ = E[X],
then the variance of X is given by:

Var(X) = E
[
(X − µ)2

]
=

∫ ∞
−∞

(x− µ)2f(x) dx
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How to estimate Expected value ?

To empirically estimate the expected value of a random variable, one re-
peatedly measures observations of the variable and computes the arithmetic
mean of the results.

Unfortunately, if you repeat the estimation, you may get a different value
since X is a random variable . . .
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Central Limit Theorem

I Let {X1, X2, . . . , Xn} be a random sample of size n (i.e., a sequence
of independent and identically distributed random variables with
expected values µ and variances σ2).

I The sample average of these random variables is:

Sn =
1

n
(X1 + · · ·+Xn)

Sn is a random variable too.

I For large n’s, the distribution of Sn is approximately normal with mean

µ and variance σ2

n .

Sn −−−−→
n→∞

N
(
µ,
σ2

n

)
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The Normal Distribution
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The smaller the variance the more “spiky” the distribution.

I Dark blue is less than one standard deviation from the mean. For the
normal distribution, this accounts for about 68% of the set.

I Two standard deviations from the mean (medium and dark blue) ac-
count for about 95%

I Three standard deviations (light, medium, and dark blue) account for
about 99.7%
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The Normal Distribution
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CLT Illustration

Start with an arbitrary distribution and compute the distribution of Sn for
increasing values of n.

1 2 3 4 8 16 32

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Statistics Basics 8 / 26



CLT consequence: confidence interval
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When n is large:

P

(
µ ∈

[
Sn − 2

σ√
n
, Sn + 2

σ√
n

])
= P

(
Sn ∈

[
µ− 2

σ√
n
, µ+ 2

σ√
n

])
≈ 95%

There is 95% of chance that the true mean lies within 2 σ√
n

of the sample mean.
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Comparing Two Alternatives

Assume, you have evaluated two scheduling heuristics A and B on n dif-
ferent DAGs.

BA

Makespan

Heuristic

The two 95% confidence intervals do not overlap ; P(µA < µB) > 90%.
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Comparing Two Alternatives

Assume, you have evaluated two scheduling heuristics A and B on n dif-
ferent DAGs.

BA

Makespan

Heuristic

The two 95% confidence intervals do overlap ; ??.

Reduce C.I ?
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Comparing Two Alternatives

Assume, you have evaluated two scheduling heuristics A and B on n dif-
ferent DAGs.

BA

Makespan

Heuristic

The two 70% confidence intervals do not overlap ; P(µA < µB) > 49%.

Let’s do more experiments instead.
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Comparing Two Alternatives

Assume, you have evaluated two scheduling heuristics A and B on n dif-
ferent DAGs.

BA

Makespan

Heuristic

The width of the confidence interval is proportionnal to σ√
n

.

Halving C.I. requires 4 times more experiments!

Try to reduce variance if you can...
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Comparing Two Alternatives with Blocking

I C.I.s overlap because variance is large. Some DAGS have an intrinsi-
cally longer makespan than others, hence a large Var(A) and Var(B)

BA

Makespan

Heuristic

I The previous test estimates µA and µB independently.
E[A] < E[B]⇔ E[B −A] < 0.
In the previous evaluation, the same DAG is used for measuring Ai
and Bi, hence we can focus on B −A.
Since Var(B −A) is much smaller than Var(A) and Var(B), we can
conclude that µA < µB with 95% of confidence.

I Relying on such common points is called blocking and enable to reduce
variance.
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How Many Replicates ?

I The CLT says that “when n goes large”, the sample mean is normally
distributed.
The CLT uses σ =

√
Var(X) but we only have the sample variance,

not the true variance.

Q: How Many Replicates ?
A1: How many can you afford ?
A2: 30. . .

Rule of thumb: a sample of 30 or more is big sample but a sample
of 30 or less is a small one (doesn’t always work).

I With less than 30, you need to make the C.I. wider using e.g. the
Student law.

I Once you have a first C.I. with 30 samples, you can estimate how many
samples will be required to answer your question. If it is too large,
then either try to reduce variance (or the scope of your experiments)
or simply explain that the two alternatives are hardly distinguishable...

I Running the right number of experiments enables to get to
conclusions more quickly and hence to test other hypothesis.
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Q: How Many Replicates ?
A1: How many can you afford ?
A2: 30. . .

Rule of thumb: a sample of 30 or more is big sample but a sample
of 30 or less is a small one (doesn’t always work).

I With less than 30, you need to make the C.I. wider using e.g. the
Student law.

I Once you have a first C.I. with 30 samples, you can estimate how many
samples will be required to answer your question. If it is too large,
then either try to reduce variance (or the scope of your experiments)
or simply explain that the two alternatives are hardly distinguishable...

I Running the right number of experiments enables to get to
conclusions more quickly and hence to test other hypothesis.

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Statistics Basics 12 / 26



How Many Replicates ?

I The CLT says that “when n goes large”, the sample mean is normally
distributed.
The CLT uses σ =

√
Var(X) but we only have the sample variance,

not the true variance.

Q: How Many Replicates ?

A1: How many can you afford ?
A2: 30. . .

Rule of thumb: a sample of 30 or more is big sample but a sample
of 30 or less is a small one (doesn’t always work).

I With less than 30, you need to make the C.I. wider using e.g. the
Student law.

I Once you have a first C.I. with 30 samples, you can estimate how many
samples will be required to answer your question. If it is too large,
then either try to reduce variance (or the scope of your experiments)
or simply explain that the two alternatives are hardly distinguishable...

I Running the right number of experiments enables to get to
conclusions more quickly and hence to test other hypothesis.

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Statistics Basics 12 / 26



How Many Replicates ?

I The CLT says that “when n goes large”, the sample mean is normally
distributed.
The CLT uses σ =

√
Var(X) but we only have the sample variance,

not the true variance.

Q: How Many Replicates ?
A1: How many can you afford ?

A2: 30. . .
Rule of thumb: a sample of 30 or more is big sample but a sample
of 30 or less is a small one (doesn’t always work).

I With less than 30, you need to make the C.I. wider using e.g. the
Student law.

I Once you have a first C.I. with 30 samples, you can estimate how many
samples will be required to answer your question. If it is too large,
then either try to reduce variance (or the scope of your experiments)
or simply explain that the two alternatives are hardly distinguishable...

I Running the right number of experiments enables to get to
conclusions more quickly and hence to test other hypothesis.

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Statistics Basics 12 / 26



How Many Replicates ?

I The CLT says that “when n goes large”, the sample mean is normally
distributed.
The CLT uses σ =

√
Var(X) but we only have the sample variance,

not the true variance.

Q: How Many Replicates ?
A1: How many can you afford ?
A2: 30. . .

Rule of thumb: a sample of 30 or more is big sample but a sample
of 30 or less is a small one (doesn’t always work).

I With less than 30, you need to make the C.I. wider using e.g. the
Student law.

I Once you have a first C.I. with 30 samples, you can estimate how many
samples will be required to answer your question. If it is too large,
then either try to reduce variance (or the scope of your experiments)
or simply explain that the two alternatives are hardly distinguishable...

I Running the right number of experiments enables to get to
conclusions more quickly and hence to test other hypothesis.

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Statistics Basics 12 / 26



How Many Replicates ?

I The CLT says that “when n goes large”, the sample mean is normally
distributed.
The CLT uses σ =

√
Var(X) but we only have the sample variance,

not the true variance.

Q: How Many Replicates ?
A1: How many can you afford ?
A2: 30. . .

Rule of thumb: a sample of 30 or more is big sample but a sample
of 30 or less is a small one (doesn’t always work).

I With less than 30, you need to make the C.I. wider using e.g. the
Student law.

I Once you have a first C.I. with 30 samples, you can estimate how many
samples will be required to answer your question. If it is too large,
then either try to reduce variance (or the scope of your experiments)
or simply explain that the two alternatives are hardly distinguishable...

I Running the right number of experiments enables to get to
conclusions more quickly and hence to test other hypothesis.

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Statistics Basics 12 / 26



How Many Replicates ?

I The CLT says that “when n goes large”, the sample mean is normally
distributed.
The CLT uses σ =

√
Var(X) but we only have the sample variance,

not the true variance.

Q: How Many Replicates ?
A1: How many can you afford ?
A2: 30. . .

Rule of thumb: a sample of 30 or more is big sample but a sample
of 30 or less is a small one (doesn’t always work).

I With less than 30, you need to make the C.I. wider using e.g. the
Student law.

I Once you have a first C.I. with 30 samples, you can estimate how many
samples will be required to answer your question. If it is too large,
then either try to reduce variance (or the scope of your experiments)
or simply explain that the two alternatives are hardly distinguishable...

I Running the right number of experiments enables to get to
conclusions more quickly and hence to test other hypothesis.

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Statistics Basics 12 / 26



How Many Replicates ?

I The CLT says that “when n goes large”, the sample mean is normally
distributed.
The CLT uses σ =

√
Var(X) but we only have the sample variance,

not the true variance.

Q: How Many Replicates ?
A1: How many can you afford ?
A2: 30. . .

Rule of thumb: a sample of 30 or more is big sample but a sample
of 30 or less is a small one (doesn’t always work).

I With less than 30, you need to make the C.I. wider using e.g. the
Student law.

I Once you have a first C.I. with 30 samples, you can estimate how many
samples will be required to answer your question. If it is too large,
then either try to reduce variance (or the scope of your experiments)
or simply explain that the two alternatives are hardly distinguishable...

I Running the right number of experiments enables to get to
conclusions more quickly and hence to test other hypothesis.

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Statistics Basics 12 / 26



Key Hypothesis

The hypothesis of CLT are very weak. Yet, to qualify as replicates, the
repeated measurements:

I must be independent (take care of warm-up)

I must not be part of a time series (the system behavior may temporary
change)

I must not come from the same place (the machine may have a problem)

I must be of appropriate spatial scale

Perform graphical checks
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Simple Graphical Check

Fixed Location: If the fixed location assumption holds, then the run sequence plot will
be flat and non-drifting.

Fixed Variation: If the fixed variation assumption holds, then the vertical spread in the
run sequence plot will be the approximately the same over the entire horizontal axis.

Independence: If the randomness assumption holds, then the lag plot will be structureless
and random.

Fixed Distribution : If the fixed distribution assumption holds, in particular if the fixed
normal distribution holds, then

I the histogram will be bell-shaped, and
I the normal probability plot will be linear.
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Comparing Two Alternatives (Blocking + Randomization)

I When comparing A and B for different settings, doing A,A,A,A,A,A
and then B,B,B,B,B,B is a bad idea.

I You should better do A,B, A,B, A,B, A,B, . . . .

I Even better, randomize your run order. You should flip a coin for each
configuration and start with A on head and with B on tail...

A,B, B,A, B,A, A,B, . . . .

With such design, you will even be able to check whether being the
first alternative to run changes something or not.

I Each configuration you test should be run on different machines.
You should record as much information as you can on how the exper-
iments was performed (http://expo.gforge.inria.fr/).
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Experimental Design

There are two key concepts:

replication and randomization

You replicate to increase reliability. You randomize to reduce bias.

If you replicate thoroughly and randomize properly,
you will not go far wrong.

Other important issues:
I Parsimony
I Pseudo-replication
I Experimental vs. observational data

It doesn’t matter if you cannot do your own advanced statistical
analysis. If you designed your experiments properly, you may be
able to find somebody to help you with the statistics.

If your experiments is not properly designed, then no matter how
good you are at statistics, you experimental effort will have been
wasted.

No amount of high-powered statistical analysis can turn a bad
experiment into a good one.

J.-M. Vincent and A. Legrand Introduction to Design of Experiments Statistics Basics 16 / 26



Experimental Design

There are two key concepts:

replication and randomization

You replicate to increase reliability. You randomize to reduce bias.

If you replicate thoroughly and randomize properly,
you will not go far wrong.

Other important issues:
I Parsimony
I Pseudo-replication
I Experimental vs. observational data

It doesn’t matter if you cannot do your own advanced statistical
analysis. If you designed your experiments properly, you may be
able to find somebody to help you with the statistics.

If your experiments is not properly designed, then no matter how
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Parsimony

The principle of parsimony is attributed to the 14th century English philoso-
pher William of Occam:

“Given a set of equally good explanations for a given phenomenon,
the correct explanation is the simplest explanation”

I Models should have as few parameters as possible

I Linear models should be preferred to non-linear models

I Models should be pared down until they are minimal adequate

This means, a variable should be retained in the model only if it causes
a significant increase in deviance when removed from the current model.

A model should be as simple as possible. But no simpler.

– A. Einstein
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Replication vs. Pseudo-replication

Measuring the same configuration several times is not replication. It’s
pseudo-replication and may be biased.
Instead, test other configurations (with a good randomization).

In case of pseudo-replication, here is what you can do:

I average away the pseudo-replication and carry out your statistical
analysis on the means

I carry out separate analysis for each time period

I use proper time series analysis
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Experimental data vs. Observational data

You need a good blend of observation, theory and experiments.

Many scientific experiments appear to be carried out with no hypothesis
in mind at all, but simply to see what happens.
This may be OK in the early stages but drawing conclusions on such obser-
vations is difficult (large number of equally plausible explanations; without
testable prediction no experimental ingenuity; . . . ).

Strong inference Essential steps:
1 Formulate a clear hypothesis
2 devise an acceptable test

Weak inference It would be silly to disregard all observational data that
do not come from designed experiments. Often, they are the only we
have (e.g. the trace of a system).
But we need to keep the limitations of such data in mind. It is possible
to use it to derive hypothesis but not to test hypothesis.
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Design of Experiments
Goal

Computer scientists tend to either:

I vary one parameter at a time and use a very fine sampling of the
parameter range,

I or run thousands of experiments for a week varying a lot of parameters
and then try to get something of it. Most of the time, they (1) don’t
know how to analyze the results (2) realize something went wrong
and everything need to be done again.

These two flaws come from poor training and from the fact that C.S.
experiments are almost free and very fast to conduct.
Most strategies of experimentation have been designed to

I provide sound answers despite all the randomness and uncontrollable
factors;

I maximize the amount of information provided by a given set of ex-
periments;

I reduce as much as possible the number of experiments to perform to
answer a given question under a given level of confidence.
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Design of Experiments
Select the problem to study

I Clearly define the kind of system to study, the kind of phenomenon to
observe (state or evolution of state through time), the kind of study to
conduct (descriptive, exploratory, prediction, hypothesis testing, . . . ).

I For example, the set of experiments to perform when studying the
stabilization of a peer-to-peer algorithm under a high churn is com-
pletely different from the ones to perform when trying to assess the
superiority of a scheduling algorithm compared to another over a wide
variety of platforms.

I It would be also completely different of the experiments to perform
when trying to model the response time of a Web server under a
workload close to the server saturation.

This first step enables to decide on which kind of design should be
used.
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Design of Experiments
Define the set of relevant response

The system under study is generally
modeled though a black-box model:

z1 . . . zq
Uncontrolable factors

x1 . . . xp

Controlable factors

System
y

OutputInputs

I In our case, the response could be the makespan of a scheduling algo-
rithm, the amount of messages exchanged in a peer-to-peer system,
the convergence time of distributed algorithm, the average length of
a random walk, . . .

I Some of these metrics are simple while others are the result of com-
plex aggregation of measurements. Many such responses should thus
generally be recorded so as to check their correctness.
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Design of Experiments
Determine the set of relevant factors or variables

Some of the variables (x1,. . . ,xp) are
controllable whereas some others (z1,
. . . , zq) are uncontrollable.

z1 . . . zq
Uncontrolable factors

x1 . . . xp

Controlable factors

System
y

OutputInputs

I In our case typical controllable variables could be the heuristic used
(e.g., FIFO, HEFT, . . . ) or one of their parameter (e.g., an allowed
replication factor, the time-to-live of peer-to-peer requests, . . . ), the
size of the platform or their degree of heterogeneity, . . . .

I In the case of computer simulations, randomness should be controlled
and it should thus be possible to completely remove uncontrollable
factors. Yet, it may be relevant to consider some factors to be un-
controllable and to feed them with an external source of randomness.
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Design of Experiments
Typical case studies

The typical case studies defined in the first step could include:

I determining which variables are most influential on the response y
(factorial designs, screening designs). This allows to distinguish be-
tween primary factors whose influence on the response should be mod-
eled and secondary factors whose impact should be averaged. This
also allows to determine whether some factors interact in the response;

I deriving an analytical model of the response y as a function of the
primary factors x. This model can then be used to determine where
to set the primary factors x so that response y is always close to a de-
sired value or is minimized/maximized (analysis of variance, regression
model, response surface methodology, . . . );

I determining where to set the primary factors x so that variability in
response y is small;

I determining where to set the primary factors x so that the effect
of uncontrollable variables z1, . . . , zq is minimized (robust designs,
Taguchi designs).
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Linear Regression

Y = a+ bX + ε

I Y is the response variable

I X is a continuous explanatory
variable

I a is the intercept

I b is the slope

I ε is some noise

When there are 2 explanatory variables:

Y = a+ b(1)X(1) + b(2)X(2) + b(1,2)X(1)X(2) + ε

ε is generally assumed to be independent of X(k), hence it needs to be
checked once the regression is done.

I Although your phenomenon is not linear, the linear model helps for
initial investigations (as a first crude approximation).

I You should always wonder whether there is a way of looking at your
problem where it is linear.
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2-level factorial design

I Decide a low and a high value for every factor

Estimate of

factor effect

True factor

effect

Estimate of

factor effect

True factor

effect

HighLow HighLow

Factor Factor

R
es

p
on

se

R
es

p
on

se

I Test every (2p) combination of high and low values, possibly replicat-
ing for each combination.

I By varying everything, we can detect interactions right away.

I Standard way of analyzing this: ANOVA (ANalysis Of VAriance) en-
able to discriminate real effects from noise.

; enable to prove that some parameters have little influence and can be
randomized over (possibly with a more elaborate model)

; enable to easily know how to change factor range when performing
steepest ascent method.
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