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Memory and I/O buses

I/O bus
1880Mbps 1056Mbps

Crossbar

Memory

CPU

I CPU accesses physical memory over a bus

I Devices access memory over I/O bus with DMA

I Devices can appear to be a region of memory
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Realistic PC architecture
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What is memory?

I SRAM – Static RAM
I Like two NOT gates circularly wired input-to-output
I 4–6 transistors per bit, actively holds its value
I Very fast, used to cache slower memory

I DRAM – Dynamic RAM
I A capacitor + gate, holds charge to indicate bit value
I 1 transistor per bit – extremely dense storage
I Charge leaks—need slow comparator to decide if bit 1 or 0
I Must re-write charge after reading, and periodically refresh

I VRAM – “Video RAM”
I Dual ported, can write while someone else reads
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What is I/O bus? E.g., PCI
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Communicating with a device

I Memory-mapped device registers
I Certain physical addresses correspond to device registers
I Load/store gets status/sends instructions – not real memory

I Device memory – device may have memory OS can write
to directly on other side of I/O bus

I Special I/O instructions
I Some CPUs (e.g., x86) have special I/O instructions
I Like load & store, but asserts special I/O pin on CPU
I OS can allow user-mode access to I/O ports with finer granu-

larity than page

I DMA – place instructions to card in main memory
I Typically then need to “poke” card by writing to register
I Overlaps unrelated computation with moving data over (typi-

cally slower than memory) I/O bus
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DMA buffers

Buffer
descriptor
list

Memory buffers

100

1400

1500

1500

1500

…

I Include list of buffer locations in main memory
I Card reads list then accesses buffers (w. DMA)

I Descriptions sometimes allow for scatter/gather I/O
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Example: Network Interface Card
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I Link interface talks to wire/fiber/antenna
I Typically does framing, link-layer CRC

I FIFOs on card provide small amount of buffering

I Bus interface logic uses DMA to move packets to and
from buffers in main memory
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Example: IDE disk read w. DMA
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Driver architecture

I Device driver provides several entry points to kernel
I Reset, ioctl, output, interrupt, read, write, strategy . . .

I How should driver synchronize with card?
I E.g., Need to know when transmit buffers free or packets arrive
I Need to know when disk request complete

I One approach: Polling
I Sent a packet? Loop asking card when buffer is free
I Waiting to receive? Keep asking card if it has packet
I Disk I/O? Keep looping until disk ready bit set

I Disadvantages of polling?

I Can’t use CPU for anything else while polling
I Or schedule poll in future and do something else, but then high

latency to receive packet or process disk block
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Interrupt driven devices

I Instead, ask card to interrupt CPU on events
I Interrupt handler runs at high priority
I Asks card what happened (xmit buffer free, new packet)
I This is what most general-purpose OSes do

I Bad under high network packet arrival rate
I Packets can arrive faster than OS can process them
I Interrupts are very expensive (context switch)
I Interrupt handlers have high priority
I In worst case, can spend 100% of time in interrupt handler and

never make any progress – receive livelock
I Best: Adaptive switching between interrupts and polling

I Very good for disk requests

I Rest of today: Disks (network devices in 1.5 weeks)
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Anatomy of a disk

I Stack of magnetic platters
I Rotate together on a central spindle @3,600-15,000 RPM
I Drive speed drifts slowly over time
I Can’t predict rotational position after 100-200 revolutions

I Disk arm assembly
I Arms rotate around pivot, all move together
I Pivot offers some resistance to linear shocks
I Arms contain disk heads–one for each recording surface
I Heads read and write data to platters
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Disk
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Storage on a magnetic platter

I Platters divided into concentric tracks

I A stack of tracks of fixed radius is a cylinder
I Heads record and sense data along cylinders

I Significant fractions of encoded stream for error correction

I Generally only one head active at a time
I Disks usually have one set of read-write circuitry
I Must worry about cross-talk between channels
I Hard to keep multiple heads exactly aligned
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Cylinders, tracks, & sectors
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Disk positioning system

I Move head to specific track and keep it there
I Resist physical socks, imperfect tracks, etc.

I Seek time depends on:
I Inertial power of the arm actuator motor
I Distance between outer-disk recording radius and inner-disk record-

ing radius (data-band)
I Depends on platter-size

I A seek consists of up to four phases:
I speedup–accelerate arm to max speed or half way point
I coast–at max speed (for long seeks)
I slowdown–stops arm near destination
I settle–adjusts head to actual desired track

I Very short seeks dominated by settle time (∼1 ms)
I Short (200-400 cyl.) seeks dominated by speedup

I Accelerations of 40g
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Seek details

I Head switches comparable to short seeks
I May also require head adjustment
I Settles take longer for writes than for reads – Why?

If read strays from track, catch error with checksum, retry
If write strays, you’ve just clobbered some other track

I Disk keeps table of pivot motor power
I Maps seek distance to power and time
I Disk interpolates over entries in table
I Table set by periodic “thermal recalibration”
I But, e.g., ∼500 ms recalibration every ∼25 min bad for AV

I “Average seek time” quoted can be many things
I Time to seek 1/3 disk, 1/3 time to seek whole disk
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Sectors

I Bits are grouped into sectors: generally 512 bytes + over-
head information

I Error Correcting Codes
I Servo fields to properly position the head

I Disk interface presents linear array of sectors
I Also 512 bytes, written atomically (even if power failure)

I Disk maps logical sector #s to physical sectors
I Zoning–puts more sectors on longer tracks
I Track and Cylinder skewing–sector 0 pos. varies by track

(why?)

I Sparing–flawed sectors remapped elsewhere

I OS doesn’t know logical to physical sector mapping
I Larger logical sector # difference means larger seek
I Highly non-linear relationship (and depends on zone)
I OS has no info on rotational positions
I Can empirically build table to estimate times
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Disk review

I Disk reads/writes in terms of sectors, not bytes
I Read/write single sector or adjacent groups (cluster)

I How to write a single byte? “Read-modify-write”
I Read in sector containing the byte
I Modify that byte
I Write entire sector back to disk
I Key: if cached, don’t need to read in

I Sector = unit of atomicity.
I Sector write done completely, even if crash in middle

(disk saves up enough momentum to complete)

I Larger atomic units have to be synthesized by OS
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Disk interface

I Controls hardware, mediates access
I Computer, disk often connected by bus (e.g., SCSI)

I Multiple devices may contentd for bus

I Possible disk/interface features:

I Disconnect from bus during requests
I Command queuing: Give disk multiple requests

I Disk can schedule them using rotational information

I Disk cache used for read-ahead
I Otherwise, sequential reads would incur whole revolution
I Cross track boundaries? Can’t stop a head-switch

I Some disks support write caching
I But data not stable—not suitable for all requests
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Disk performance

I Placement & ordering of requests a huge issue
I Sequential I/O much, much faster than random
I Long seeks much slower than short ones
I Power might fail any time, leaving inconsistent state

I Must be careful about order for crashes
I More on this in next lecture

I Try to achieve contiguous accesses where possible
I E.g., make big chunks of individual files contiguous

I Try to order requests to minimize seek times
I OS can only do this if it has a multiple requests to order
I Requires disk I/O concurrency
I High-performance apps try to maximize I/O concurrency

I Next: How to schedule concurrent requests
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Scheduling: FCFS

I “First Come First Served”
I Process disk requests in the order they are received

I Advantages

I Easy to implement
I Good fairness

I Disadvantages

I Cannot exploit request locality
I Increases average latency, decreasing throughput
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FCFS example
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Shortest positioning time first (SPTF)

I Shortest positioning time first (SPTF)
I Always pick request with shortest seek time

I Advantages

I Exploits locality of disk requests
I Higher throughput

I Disadvantages

I Starvation
I Don’t always know what request will be fastest

I Improvement

: Aged SPTF
I Give older requests higher priority
I Adjust “effective” seek time with weighting factor:

Teff = Tpos −W · Twait

I Also called Shortest Seek Time First (SSTF)
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SPTF example
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“Elevator” scheduling (SCAN)

I Sweep across disk, servicing all requests passed
I Like SPTF, but next seek must be in same direction
I Switch directions only if no further requests

I Advantages

I Takes advantage of locality
I Bounded waiting

I Disadvantages

I Cylinders in the middle get better service
I Might miss locality SPTF could exploit

I CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

I Also called LOOK/CLOOK in textbook
I (Textbook uses [C]SCAN to mean scan entire disk uselessly)
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Flash memory

I Today, people increasingly using flash memory
I Completely solid state (no moving parts)

I Remembers data by storing charge
I Lower power consumption and heat
I No mechanical seek times to worry about

I Limited # overwrites possible
I Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases
I Requires flash translation layer (FTL) to provide wear leveling,

so repeated writes to logical block don’t wear out physical block
I FTL can seriously impact performance
I In particular, random writes very expensive [Birrell]

I Limited durability
I Charge wears out over time
I Turn off device for a year, you can easily lose data
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Disk vs. Memory

MLC NAND
Disk Flash DRAM

Smallest write sector sector byte
Atomic write sector sector byte/word
Random read 8 ms 75 µs 50 ns
Random write 8 ms 300 µs* 50 ns
Sequential read 100 MB/s 250 MB/s > 1 GB/s
Sequential write 100 MB/s 170 MB/s* > 1 GB/s
Cost $.08–1/GB $3/GB $10-25/GB
Persistence Non-volatile Non-volatile Volatile

*Flash write performance degrades over time
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File system fun

I File systems = the hardest part of OS
I More papers on FSes than any other single topic

I Main tasks of file system:
I Don’t go away (ever)
I Associate bytes with name (files)
I Associate names with each other (directories)
I Can implement file systems on disk, over network, in memory,

in non-volatile ram (NVRAM), on tape, w/ paper.
I We’ll focus on disk and generalize later

I Today: files, directories, and a bit of performance
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The medium is the message

I Disk = First thing we’ve seen that doesn’t go away

I So: Where all important state ultimately resides

I Slow (ms access vs ns for memory)

I Huge (100–1,000x bigger than memory)
I How to organize large collection of ad hoc information?
I Taxonomies! (Basically FS = general way to make these)
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Files: named bytes on disk
I File abstraction:

I User’s view: named sequence of bytes

I FS’s view: collection of disk blocks
I File system’s job: translate name & offset to disk blocks:

{file, offset}−−−→ FS −−−→disk address

I File operations:
I Create a file, delete a file
I Read from file, write to file
I Repositionning withing a file
I Truncating a file, append, rename, . . .

I File meta-informations (size, owner, access rights, times-
tamps, . . . )

I Want: operations to have as few disk accesses as possible
& have minimal space overhead
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What’s hard about grouping blocks?

I Like page tables, file system meta data are simply data
structures used to construct mappings

I Page table: map virtual page # to physical page #

23−−−−−−−−−−→ Page table −−−−−−−−−−→33

I File meta data: map byte offset to disk block address

418−−−−−−−−−→ Unix inode −−−−−→8003121

I Directory: map name to disk address or file #

foo.c−−−−−−−−→ directory −−−−−−−−−−→44

I Inode stores meta-information (not name!) and file bytes
location.
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FS vs. VM

I In both settings, want location transparency
I In some ways, FS has easier job than than VM:

I CPU time to do FS mappings not a big deal (= no TLB)
I Page tables deal with sparse address spaces and random access,

files often denser (0 . . . filesize− 1) & ∼sequentially accessed

I In some ways FS’s problem is harder:
I Each layer of translation = potential disk access
I Space a huge premium! (But disk is huge?!?!) Reason?

Cache space never enough; amount of data you can get in one
fetch never enough

I Range very extreme: Many files <10 KB, some files many GB
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Some working intuitions

I FS performance dominated by # of disk accesses
I Each access costs ∼10 milliseconds
I Touch the disk 100 extra times = 1 second
I Can easily do 100s of millions of ALU ops in same time

I Access cost dominated by movement, not transfer:

seek time + rotational delay + # bytes/disk-bw

I Can get 50x the data for only ∼3% more overhead
I 1 sector: 10ms + 8ms + 10µs (= 512 B/(50 MB/s)) ≈ 18ms
I 50 sectors: 10ms + 8ms + .5ms = 18.5ms

I Observations that might be helpful:
I All blocks in file tend to be used together, sequentially
I All files in a directory tend to be used together
I All names in a directory tend to be used together
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Common addressing patterns

I Sequential:
I File data processed in sequential order
I By far the most common mode
I Example: editor writes out new file, compiler reads in file, etc

I Random access:
I Address any block in file directly without passing through pre-

decessors
I Examples: data set for demand paging, databases

I Keyed access
I Search for block with particular values
I Examples: associative data base, index
I Usually not provided by OS
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Problem: how to track file’s data

I Disk management:
I Need to keep track of where file contents are on disk
I Must be able to use this to map byte offset to disk block
I Structure tracking a file’s sectors is called an index node or

inode
I File descriptors must be stored on disk, too

I Things to keep in mind while designing file structure:
I Most files are small
I Much of the disk is allocated to large files
I Many of the I/O operations are made to large files
I Want good sequential and good random access

(what do these require?)

I Just like VM: good data structures
I Arrays, linked list, trees (of arrays), hash tables.
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Straw man: contiguous allocation

I “Extent-based”: allocate files like segmented memory
I When creating a file, make the user specify pre-specify its length

and allocate all space at once
I Inode contents: location and size

I Example: IBM OS/360
I Pros?

I Simple, fast access, both sequential and random

I Cons? (What VM scheme does this correspond to?)

I External fragmentation
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Linked files
I Basically a linked list on disk.

I Keep a linked list of all free blocks
I Inode contents: a pointer to file’s first block
I In each block, keep a pointer to the next one

I Examples (sort-of): Alto, TOPS-10, DOS FAT
I Pros?

I Easy dynamic growth & sequential access, no fragmentation

I Cons?

I Linked lists on disk a bad idea because of access times
I Pointers take up room in block, skewing alignment
I If one pointer is ever damaged, the rest of the file is lost.
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Example: DOS FS (simplified)

I Uses linked files. Cute: links reside in fixed-sized “file
allocation table” (FAT) rather than in the blocks.

I Still do pointer chasing, but can cache entire FAT so can
be cheap compared to disk access
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FAT discussion

I Entry size = 16 bits
I What’s the maximum size of the FAT?

65,536 entries

I Given a 512 byte block, what’s the maximum size of FS?

32 MB

I One attack: go to bigger blocks. Pros? Cons?

I Space overhead of FAT is trivial:
I 2 bytes / 512 byte block = ∼ 0.4% (Compare to Unix)

I Reliability: how to protect against errors?
I Create duplicate copies of FAT on disk.
I State duplication a very common theme in reliability

I Bootstrapping: where is root directory?

I Fixed location on disk:
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Indexed files

I Each file has an array holding all of it’s block pointers
I Just like a page table, so will have similar issues
I Max file size fixed by array’s size (static or dynamic?)
I Allocate array to hold file’s block pointers on file creation
I Allocate actual blocks on demand using free list

I Pros?

I Both sequential and random access easy

I Cons?

I Mapping table requires large chunk of contiguous space
. . . Same problem we were trying to solve initially
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Indexed files

I Issues same as in page tables

I Large possible file size = lots of unused entries
I Large actual size? table needs large contiguous disk chunk

I Solve identically: small regions with index array, this array
with another array, . . . Downside?
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Multi-level indexed files (old BSD FS)

I inode = 14 block pointers + “stuff” (meta-informations)
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Old BSD FS discussion

I Pros:
I Simple, easy to build, fast access to small files
I Maximum file length fixed, but large.

I Cons:
I What is the worst case # of accesses?
I What is the worst-case space overhead? (e.g., 13 block file)

I An empirical problem:
I Because you allocate blocks by taking them off unordered freel-

ist, meta data and data get strewn across disk
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More about inodes

I Inodes are stored in a fixed-size array
I Size of array fixed when disk is initialized; can’t be changed
I Lives in known location, originally at one side of disk:

I Now is smeared across it (why?)

I The index of an inode in the inode array called an i-number
I Internally, the OS refers to files by inumber
I When file is opened, inode brought in memory
I Written back when modified and file closed or time elapses
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Directories

I Problem:
I “Spend all day generating data, come back the next morning,

want to use it.” F. Corbato, on why files/dirs invented.

I Approach 0: Have users remember where on disk their
files are

I (E.g., like remembering your social security or bank account #)

I Yuck. People want human digestible names
I We use directories to map names to file blocks

I Next: What is in a directory and why?

A. Legrand File Systems File System — Directory Organization 55 / 95



A short history of directories

I Approach 1: Single directory for entire system
I Put directory at known location on disk
I Directory contains 〈name, inumber〉 pairs
I If one user uses a name, no one else can
I Many ancient personal computers work this way

I Approach 2: Single directory for each user
I Still clumsy, and ls on 10,000 files is a real pain

I Approach 3: Hierarchical name spaces
I Allow directory to map names to files or other dirs
I File system forms a tree (or graph, if links allowed)
I Large name spaces tend to be hierarchical (ip addresses, domain

names, scoping in programming languages, etc.)
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Hierarchical Unix

I Used since CTSS (1960s)
I Unix picked up and used really nicely

I Directories stored on disk just like regular files

〈name,inode#〉
〈afs,1021〉

〈tmp,1020〉
〈bin,1022〉

〈cdrom,4123〉
〈dev,1001〉
〈sbin,1011〉

...

I Inode contains special flag bit set dir
I User’s can read just like any other file
I Only special programs can write (why?)
I Inodes at fixed disk location
I File pointed to by the index may be

another directory
I Makes FS into hierarchical tree (what needed to make a DAG?)

I Simple, plus speeding up file ops speeds up dir ops!
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Naming magic

I Bootstrapping: Where do you start looking?
I Root directory always inode #2 (0 and 1 historically reserved)

I Special names:
I Root directory: “/”
I Current directory: “.”
I Parent directory: “..”

I Special names not implemented in FS:
I User’s home directory: “∼”
I Globbing: “foo.*” expands to all files starting “foo.”

I Using the given names, only need two operations to nav-
igate the entire name space:

I cd name: move into (change context to) directory name
I ls : enumerate all names in current directory (context)
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Unix example: /a/b/c.c
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Default context: working directory

I Cumbersome to constantly specify full path names
I In Unix, each process associated with a “current working direc-

tory”
I File names that do not begin with “/” are assumed to be relative

to the working directory, otherwise translation happens as before

I Shells track a default list of active contexts
I A “search path” for programs you run
I Given a search path A : B : C , a shell will check in A, then

check in B, then check in C
I Can escape using explicit paths: “./foo”
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Hard and soft links (synonyms)

I More than one dir entry can refer to a given file

”/bar”
refcount = 1

foo

inode #31279
refcount = 2

foo bar
I Unix stores count of pointers (“hard

links”) to inode

I To make: “ln foo bar” creates a
synonym (bar) for file foo

I Soft links = synonyms for names
I Point to a file (or dir) name, but object can be deleted from

underneath it (or never even exist).
I Unix implements like directories: inode has special

“sym link” bit set and contains pointed to name

I To make: “ln -sf bar baz
I When the file system encounters a symbolic link it automatically

translates it (if possible).
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Case study: speeding up FS

I Original Unix FS: Simple and elegant:

I Components:
I Data blocks
I Inodes (directories represented as files)
I Hard links
I Superblock. (specifies number of blks in FS, counts of max #

of files, pointer to head of free list)

I Problem: slow
I Only gets 20Kb/sec (2% of disk maximum) even for sequential

disk transfers!
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A plethora of performance costs

I Blocks too small (512 bytes)
I File index too large
I Too many layers of mapping indirection
I Transfer rate low (get one block at time)

I Sucky clustering of related objects:
I Consecutive file blocks not close together
I Inodes far from data blocks
I Inodes for directory not close together
I Poor enumeration performance: e.g., “ls”, “grep foo *.c”

I Next: how FFS fixes these problems (to a degree)
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Problem: Internal fragmentation

I Block size was to small in Unix FS

I Why not just make bigger?

Block size space wasted file bandwidth
512 6.9% 2.6%
1024 11.8% 3.3%
2048 22.4% 6.4%
4096 45.6% 12.0%
1MB 99.0% 97.2%

I Bigger block increases bandwidth, but how to deal with
wastage (“internal fragmentation”)?

I Use idea from malloc: split unused portion.
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Solution: fragments

I BSD FFS:
I Has large block size (4096 or 8192)
I Allow large blocks to be chopped into small ones (“fragments”)
I Used for little files and pieces at the ends of files

I Best way to eliminate internal fragmentation?
I Variable sized splits of course
I Why does FFS use fixed-sized fragments (1024, 2048)?
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Clustering related objects in FFS

I Group 1 or more consecutive cylinders into a “cylinder
group”

I Key: can access any block in a cylinder without performing a
seek. Next fastest place is adjacent cylinder.

I Tries to put everything related in same cylinder group
I Tries to put everything not related in different group (?!)
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Clustering in FFS

I Tries to put sequential blocks in adjacent sectors
I (Access one block, probably access next)

I Tries to keep inode in same cylinder as file data:
I (If you look at inode, most likely will look at data too)

I Tries to keep all inodes in a dir in same cylinder group
I Access one name, frequently access many, e.g., “ls -l”
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What does a cyl. group look like?

I Basically a mini-Unix file system:

I How how to ensure there’s space for related stuff?
I Place different directories in different cylinder groups
I Keep a “free space reserve” so can allocate near existing things
I When file grows too big (1MB) send its remainder to different

cylinder group.
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Finding space for related objs

I Old Unix (& dos): Linked list of free blocks
I Just take a block off of the head. Easy.

I Bad: free list gets jumbled over time. Finding adjacent blocks
hard and slow

I FFS: switch to bit-map of free blocks
I 1010101111111000001111111000101100
I Easier to find contiguous blocks.
I Small, so usually keep entire thing in memory
I Key: keep a reserve of free blocks. Makes finding a close block

easier
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Using a bitmap

I Usually keep entire bitmap in memory:
I 4G disk / 4K byte blocks. How big is map?

I Allocate block close to block x?
I Check for blocks near bmap[x/32]
I If disk almost empty, will likely find one near
I As disk becomes full, search becomes more expensive and less

effective.

I Trade space for time (search time, file access time)
I Keep a reserve (e.g, 10%) of disk always free, ideally

scattered across disk
I Don’t tell users (df → 110% full)
I With 10% free, can almost always find one of them free
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So what did we gain?

I Performance improvements:
I Able to get 20-40% of disk bandwidth for large files
I 10-20x original Unix file system!
I Better small file performance (why?)

I Is this the best we can do? No.
I Block based rather than extent based

I Name contiguous blocks with single pointer and length
I (Linux ext2fs)

I Writes of meta data done synchronously
I Really hurts small file performance
I Make asynchronous with write-ordering (“soft updates”) or log-

ging (the episode file system, ∼LFS)
I Play with semantics (/tmp file systems)
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Other hacks

I Obvious:
I Big file cache.

I Fact: no rotation delay if get whole track.
I How to use?

I Fact: transfer cost negligible.
I Recall: Can get 50x the data for only ∼3% more overhead
I 1 sector: 10ms + 8ms + 10µs (= 512 B/(50 MB/s)) ≈ 18ms
I 50 sectors: 10ms + 8ms + .5ms = 18.5ms
I How to use?

I Fact: if transfer huge, seek + rotation negligible
I How to use ?

Use read ahead + cluster read/write (hoard data, write
out MB at a time)
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Fixing corruption – fsck

I Must run FS check (fsck) program after crash
I Summary info usually bad after crash

I Scan to check free block map, block/inode counts

I System may have corrupt inodes (not simple crash)
I Bad block numbers, cross-allocation, etc.
I Do sanity check, clear inodes with garbage

I Fields in inodes may be wrong
I Count number of directory entries to verify link count, if no

entries but count 6= 0, move to lost+found
I Make sure size and used data counts match blocks

I Directories may be bad
I Holes illegal, “.” and “..” must be valid, . . .
I All directories must be reachable
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Crash recovery permeates FS code

I Have to ensure fsck can recover file system

I Example: Suppose all data written asynchronously
I Delete/truncate a file, append to other file, crash

I New file may reuse block from old
I Old inode may not be updated
I Cross-allocation!
I Often inode with older mtime wrong, but can’t be sure

I Append to file, allocate indirect block, crash
I Inode points to indirect block
I But indirect block may contain garbage
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Ordering of updates

I Must be careful about order of updates
I Write new inode to disk before directory entry
I Remove directory name before deallocating inode
I Write cleared inode to disk before updating CG free map

I Solution: Many metadata updates synchronous
I Doing one write at a time ensures ordering
I Of course, this hurts performance
I E.g., untar much slower than disk bandwidth

I Note: Cannot update buffers on the disk queue
I E.g., say you make two updates to same directory block
I But crash recovery requires first to be synchronous
I Must wait for first write to complete before doing second
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Performance vs. consistency

I FFS crash recoverability comes at huge cost
I Makes tasks such as untar easily 10-20 times slower
I All because you might lose power or reboot at any time

I Even while slowing ordinary usage, recovery slow
I If fsck takes one minute, then disks get 10× bigger . . .

I One solution: battery-backed RAM
I Expensive (requires specialized hardware)
I Often don’t learn battery has died until too late
I A pain if computer dies (can’t just move disk)
I If OS bug causes crash, RAM might be garbage

I Better solution: Advanced file system techniques
I Topic of rest of lecture
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First attempt: Ordered updates

I Must follow three rules in ordering updates:
1. Never write pointer before initializing the structure it points to
2. Never reuse a resource before nullifying all pointers to it
3. Never clear last pointer to live resource before setting new one

I If you do this, file system will be recoverable
I Moreover, can recover quickly

I Might leak free disk space, but otherwise correct
I So start running after reboot, scavenge for space in background

I How to achieve?
I Keep a partial order on buffered blocks
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Ordered updates (continued)

I Example: Create file A
I Block X contains an inode
I Block Y contains a directory block
I Create file A in inode block X , dir block Y

I We say Y → X , pronounced “Y depends on X ”
I Means Y cannot be written before X is written
I X is called the dependee, Y the depender

I Can delay both writes, so long as order preserved
I Say you create a second file B in blocks X and Y
I Only have to write each out once for both creates
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Problem: Cyclic dependencies

I Suppose you create file A, unlink file B
I Both files in same directory block & inode block

I Can’t write directory until inode A initialized
I Otherwise, after crash directory will point to bogus inode
I Worse yet, same inode # might be re-allocated
I So could end up with file name A being an unrelated file

I Can’t write inode block until dir entry B cleared
I Otherwise, B could end up with too small a link count
I File could be deleted while links to it still exist

I Otherwise, fsck has to be very slow
I Check every directory entry and inode link count
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Cyclic dependencies illustrated

Inode #5

Inode #6

Inode #7

Inode Block Directory Block

< C,#7 >

< B,#5 >

Inode #4 < A,#4 >

Inode #4

Inode #5

Inode #6

Inode #7

Inode Block Directory Block

< −−,#0 >

< C,#7 >

< B,#5 >

(a) Original Organization

Inode #6

Inode #7

Inode Block Directory Block

< C,#7 >

Inode #5
< −−,#0 >

< A,#4 >Inode #4

(b) Create File A (c) Remove file B

= in use

= free

Original

Modified
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More problems

I Crash might occur between ordered but related writes
I E.g., summary information wrong after block freed

I Block aging
I Block that always has dependency will never get written back

I Solution: “Soft updates” [Ganger]
I Write blocks in any order
I But keep track of dependencies
I When writing a block, temporarily roll back any changes you

can’t yet commit to disk
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Breaking dependencies w. rollback

Inode #4

Inode #5

Inode #6

Inode #7

Inode Block Directory Block

< −−,#0 >

< C,#7 >

< B,#5 >

Inode #4

Inode #5

Inode #6

Inode #7

Inode Block Directory Block

< A,#4 >

< C,#7 >

< −−,#0 >

(a) After Metadata Updates

Main Memory Disk

I Now say we decide to write directory block. . .

I Can’t write file name A to disk—has dependee
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Breaking dependencies w. rollback

Main Memory Disk

Inode #4

Inode #5

Inode #6

Inode #7

Inode Block Directory Block

< −−,#0 >

< C,#7 >

< −−,#0 >

Inode #4

Inode #5

Inode #6

Inode #7

Inode Block Directory Block

< A,#4 >

< C,#7 >

< −−,#0 >

(b) Safe Version of Directory Block Written

I Undo file A before writing dir block to disk
I Even though we just wrote it, directory block still

I But now inode block has no dependees
I Can safely write inode block to disk as-is. . .
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Breaking dependencies w. rollback

Main Memory Disk

Inode #4

Inode #5

Inode #6

Inode #7

Inode Block Directory Block

< −−,#0 >

< C,#7 >

< −−,#0 >

Inode #4

Inode #5

Inode #6

Inode #7

Inode Block Directory Block

< A,#4 >

< C,#7 >

< −−,#0 >

(c) Inode Block Written

I Now inode block clean (same in memory as on disk)

I But have to write directory block a second time. . .
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Breaking dependencies w. rollback

Main Memory Disk

Inode #4

Inode #5

Inode #6

Inode #7

Inode Block Directory Block

< A,#4 >

< C,#7 >

< −−,#0 >

Inode #4

Inode #5

Inode #6

Inode #7

Inode Block Directory Block

< A,#4 >

< C,#7 >

< −−,#0 >

(d) Directory Block Written

I All data stably on disk

I Crash at any point would have been safe
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Soft updates

I Structure for each updated field or pointer, contains:
I old value
I new value
I list of updates on which this update depends (dependees)

I Can write blocks in any order
I But must temporarily undo updates with pending dependencies
I Must lock rolled-back version so applications don’t see it
I Choose ordering based on disk arm scheduling

I Some dependencies better handled by postponing in-memory
updates

I E.g., when freeing block (e.g., because file truncated), just mark
block free in bitmap after block pointer cleared on disk
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Simple example

I Say you create a zero-length file A
I Depender: Directory entry for A

I Can’t be written untill dependees on disk

I Dependees:
I Inode – must be initialized before dir entry written
I Bitmap – must mark inode allocated before dir entry written

I Old value: empty directory entry

I New value: 〈filename A, inode #〉
I Can write directory block to disk any time

I Must substitute old value until inode & bitmap updated on disk
I Once dir block on disk contains A, file fully created
I Crash before A on disk, worst case might leak the inode
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Operations requiring soft updates (1)

1. Block allocation
I Must write the disk block, the free map, & a pointer
I Disk block & free map must be written before pointer
I Use Undo/redo on pointer (& possibly file size)

2. Block deallocation
I Must write the cleared pointer & free map
I Just update free map after pointer written to disk
I Or just immediately update free map if pointer not on disk

I Say you quickly append block to file then truncate
I You will know pointer to block not written because of the allo-

cated dependency structure
I So both operations together require no disk I/O!
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Operations requiring soft updates (2)

3. Link addition (see simple example)
I Must write the directory entry, inode, & free map (if new inode)
I Inode and free map must be written before dir entry
I Use undo/redo on i# in dir entry (ignore entries w. i# 0)

4. Link removal
I Must write directory entry, inode & free map (if nlinks==0)
I Must decrement nlinks only after pointer cleared
I Clear directory entry immediately
I Decrement in-memory nlinks once pointer written
I If directory entry was never written, decrement immediately

(again will know by presence of dependency structure)

I Note: Quick create/delete requires no disk I/O
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Soft update issues

I fsync – sycall to flush file changes to disk
I Must also flush directory entries, parent directories, etc.

I unmount – flush all changes to disk on shutdown
I Some buffers must be flushed multiple times to get clean

I Deleting large directory trees frighteningly fast
I unlink syscall returns even if inode/indir block not cached!
I Dependencies allocated faster than blocks written
I Cap # dependencies allocated to avoid exhausting memory

I Useless write-backs
I Syncer flushes dirty buffers to disk every 30 seconds
I Writing all at once means many dependencies unsatisfied
I Fix syncer to write blocks one at a time
I Fix LRU buffer eviction to know about dependencies
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Soft updates fsck

I Split into foreground and background parts
I Foreground must be done before remounting FS

I Need to make sure per-cylinder summary info makes sense
I Recompute free block/inode counts from bitmaps – very fast
I Will leave FS consistent, but might leak disk space

I Background does traditional fsck operations
I Do after mounting to recuperate free space
I Can be using the file system while this is happening
I Must be done in forground after a media failure

I Difference from traditional FFS fsck:
I May have many, many inodes with non-zero link counts
I Don’t stick them all in lost+found (unless media failure)
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An alternative: Journaling

I Reserve a portion of disk for write-ahead log
I Write any metadata operation first to log, then to disk
I After crash/reboot, re-play the log (efficient)
I May re-do already committed change, but won’t miss anything

I Performance advantage:
I Log is consecutive portion of disk
I Multiple log writes very fast (at disk b/w)
I Consider updates committed when written to log

I Example: delete directory tree
I Record all freed blocks, changed directory entries in log
I Return control to user
I Write out changed directories, bitmaps, etc. in background

(sort for good disk arm scheduling)
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Journaling details

I Must find oldest relevant log entry
I Otherwise, redundant and slow to replay whole log

I Use checkpoints
I Once all records up to log entry N have been processed and

affected blocks stably committed to disk. . .
I Record N to disk either in reserved checkpoint location, or in

checkpoint log record
I Never need to go back before most recent checkpointed N

I Must also find end of log
I Typically circular buffer; don’t play old records out of order
I Can include begin transaction/end transaction records
I Also typically have checksum in case some sectors bad
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Journaling vs. soft updates

I Both much better than FFS alone
I Some limitations of soft updates

I Very specific to FFS data structures (E.g., couldn’t easily com-
plex data structures like B-trees in XFS—even directory rename
not quite right)

I Metadata updates may proceed out of order (E.g., create A,
create B, crash—maybe only B exists after reboot)

I Still need slow background fsck to reclaim space

I Some limitations of journaling
I Disk write required for every metadata operation (whereas create-

then-delete might require no I/O w. soft updates)
I Possible contention for end of log on multi-processor
I fsync must sync other operations’ metadata to log, too
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