File Systems
Operating System Design — MOSIG 1

Instructor: Arnaud Legrand
Class Assistants: Benjamin Negrevergne, Sascha Hunold

November 24, 2010

A. Legrand File Systems — 1/95



Outline

[/O Systems
Organization
Communicating With a Device
Hard drives
Flash Memory

A. Legrand File Systems 1/O Systems — 2/95



Outline

[/O Systems
Organization

A. Legrand File Systems 1/O Systems — Organization 3/95



Memory and /O buses

1880Mbps

1/O bus
1056Mbps
—

» CPU accesses physical memory over a bus

» Devices access memory over |/0O bus with DMA
» Devices can appear to be a region of memory
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Realistic PC architecture
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What is memory?

» SRAM - Static RAM
» Like two NOT gates circularly wired input-to-output
» 4-6 transistors per bit, actively holds its value
» Very fast, used to cache slower memory
» DRAM - Dynamic RAM
» A capacitor + gate, holds charge to indicate bit value
» 1 transistor per bit — extremely dense storage
» Charge leaks—need slow comparator to decide if bit 1 or 0
» Must re-write charge after reading, and periodically refresh

» VRAM - “Video RAM”

» Dual ported, can write while someone else reads
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What is 1/O bus? E.g., PCI

monitor processor

| }—{ cache ‘
graphics bridge/memory SCS! controller
controller controller

(} PCI bus
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IDE disk controller ex;;ﬁpesrit:r;ebus keyboard

@ @ { ‘—remansionbUS_i_ )

@ @ parallel serial
port port

A. Legrand File Systems 1/O Systems — Organization 7/ 95

2000




Outline

[/O Systems

Communicating With a Device

A. Legrand File Systems 1/O Systems — Communicating With a Device 8 /95



Communicating with a device

» Memory-mapped device registers

» Certain physical addresses correspond to device registers
» Load/store gets status/sends instructions — not real memory

» Device memory — device may have memory OS can write
to directly on other side of 1/0 bus
» Special 1/0 instructions
» Some CPUs (e.g., x86) have special 1/0 instructions
> Like load & store, but asserts special I/O pin on CPU
» OS can allow user-mode access to 1/O ports with finer granu-
larity than page
» DMA - place instructions to card in main memory

» Typically then need to “poke” card by writing to register
» Overlaps unrelated computation with moving data over (typi-
cally slower than memory) 1/0 bus
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DMA buffers

Memory buffers
—'ﬂ
4
y
y
y

Buffer

descriptor
list

» Include list of buffer locations in main memory

A. Legrand

» Card reads list then accesses buffers (w. DMA)

» Descriptions sometimes allow for scatter/gather 1/0
File Systems
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Example: Network Interface Card

Ay Ay .
Bus |~ <~ Link Network link
interface —= — [} interface

Host I/O bus

Adaptor

Y

» Link interface talks to wire/fiber/antenna
» Typically does framing, link-layer CRC

» FIFOs on card provide small amount of buffering

» Bus interface logic uses DMA to move packets to and
from buffers in main memory
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Example: IDE disk read w. DMA

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to

buffer X, increasing transfer C bytes
memory address from disk to buffer E“E
and decreasing C at address X

untilC =0 VAT
_ us, X
& m?;rr]ucpts_gPB ,\tAoAsignaI interrupt [~ CPU memory bus —| memory
transfer completion contioller
i | I PCl bus )
| 3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller
1T
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Driver architecture

v

Device driver provides several entry points to kernel
» Reset, ioctl, output, interrupt, read, write, strategy ...
How should driver synchronize with card?

» E.g., Need to know when transmit buffers free or packets arrive
» Need to know when disk request complete

One approach: Polling

» Sent a packet? Loop asking card when buffer is free
» Waiting to receive? Keep asking card if it has packet
» Disk 1/0? Keep looping until disk ready bit set

Disadvantages of polling?

v

v

v
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Driver architecture

v

Device driver provides several entry points to kernel
» Reset, ioctl, output, interrupt, read, write, strategy ...
How should driver synchronize with card?

» E.g., Need to know when transmit buffers free or packets arrive
» Need to know when disk request complete

One approach: Polling

» Sent a packet? Loop asking card when buffer is free
» Waiting to receive? Keep asking card if it has packet
» Disk 1/0? Keep looping until disk ready bit set

Disadvantages of polling?

v

v

v

» Can’t use CPU for anything else while polling
» Or schedule poll in future and do something else, but then high
latency to receive packet or process disk block
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Interrupt driven devices

v

Instead, ask card to interrupt CPU on events

> Interrupt handler runs at high priority
» Asks card what happened (xmit buffer free, new packet)
» This is what most general-purpose OSes do

Bad under high network packet arrival rate

Packets can arrive faster than OS can process them

Interrupts are very expensive (context switch)

Interrupt handlers have high priority

In worst case, can spend 100% of time in interrupt handler and
never make any progress — receive livelock

» Best: Adaptive switching between interrupts and polling

v

vV vy vYyy

v

Very good for disk requests

v

Rest of today: Disks (network devices in 1.5 weeks)
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Anatomy of a disk

» Stack of magnetic platters
» Rotate together on a central spindle @3,600-15,000 RPM
> Drive speed drifts slowly over time
» Can't predict rotational position after 100-200 revolutions
» Disk arm assembly
» Arms rotate around pivot, all move together
Pivot offers some resistance to linear shocks
Arms contain disk heads—one for each recording surface
Heads read and write data to platters

v vy
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Disk
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Disk
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Disk
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Storage on a magnetic platter

Platters divided into concentric tracks

v

v

A stack of tracks of fixed radius is a cylinder
Heads record and sense data along cylinders
» Significant fractions of encoded stream for error correction

v

v

Generally only one head active at a time

» Disks usually have one set of read-write circuitry
» Must worry about cross-talk between channels
» Hard to keep multiple heads exactly aligned
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Cylinders, tracks, &
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Disk positioning system

A. Legrand

» Move head to specific track and keep it there

>

v

>

>

>

v

>

>
>
>

v

v

| 4

Resist physical socks, imperfect tracks, etc.

Seek time depends on:

Inertial power of the arm actuator motor

Distance between outer-disk recording radius and inner-disk record-
ing radius (data-band)

Depends on platter-size

A seek consists of up to four phases:

speedup—accelerate arm to max speed or half way point
coast—at max speed (for long seeks)

slowdown—stops arm near destination

settle—adjusts head to actual desired track

Very short seeks dominated by settle time (~1 ms)
Short (200-400 cyl.) seeks dominated by speedup

Accelerations of 40g

File Systems 1/O Systems — Hard drives 20 / 95



Seek details

» Head switches comparable to short seeks

» May also require head adjustment
> Settles take longer for writes than for reads — Why?
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Seek details

» Head switches comparable to short seeks

» May also require head adjustment

» Settles take longer for writes than for reads
If read strays from track, catch error with checksum, retry
If write strays, you've just clobbered some other track

» Disk keeps table of pivot motor power

» Maps seek distance to power and time

» Disk interpolates over entries in table

» Table set by periodic “thermal recalibration”

» But, e.g., ~500 ms recalibration every ~25 min bad for AV
» “Average seek time” quoted can be many things

» Time to seek 1/3 disk, 1/3 time to seek whole disk
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Sectors

» Bits are grouped into sectors: generally 512 bytes + over-
head information

» Error Correcting Codes

» Servo fields to properly position the head
» Disk interface presents linear array of sectors

» Also 512 bytes, written atomically (even if power failure)
» Disk maps logical sector #s to physical sectors

» Zoning—puts more sectors on longer tracks

» Track and Cylinder skewing—sector O pos. varies by track

(why?)

» Sparing—flawed sectors remapped elsewhere
» OS doesn’t know logical to physical sector mapping
Larger logical sector # difference means larger seek
Highly non-linear relationship (and depends on zone)
OS has no info on rotational positions
Can empirically build table to estimate times

v

v vy
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Sectors

» Bits are grouped into sectors: generally 512 bytes + over-
head information

» Error Correcting Codes
» Servo fields to properly position the head

» Disk interface presents linear array of sectors
» Also 512 bytes, written atomically (even if power failure)
» Disk maps logical sector #s to physical sectors

» Zoning—puts more sectors on longer tracks
» Track and Cylinder skewing—sector O pos. varies by track

(known head and cylinder switch time ~ sequential access speed optimization)
» Sparing—flawed sectors remapped elsewhere

» OS doesn’t know logical to physical sector mapping

> Larger logical sector # difference means larger seek
» Highly non-linear relationship (and depends on zone)
» OS has no info on rotational positions

» Can empirically build table to estimate times
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Disk review

» Disk reads/writes in terms of sectors, not bytes
» Read/write single sector or adjacent groups (cluster)

22>

» How to write a single byte? “Read-modify-write”

» Read in sector containing the byte I - I
» Modify that byte

» Write entire sector back to disk - I
» Key: if cached, don’t need to read in

» Sector = unit of atomicity.

» Sector write done completely, even if crabh in middle - |
(disk saves up enough momentum to complete)

» Larger atomic units have to be synthesized by OS
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Disk interface

A. Legrand

» Controls hardware, mediates access

Computer, disk often connected by bus (e.g., SCSI)
» Multiple devices may contentd for bus

Possible disk/interface features:

» Disconnect from bus during requests

Command queuing: Give disk multiple requests
» Disk can schedule them using rotational information
Disk cache used for read-ahead

» Otherwise, sequential reads would incur whole revolution
» Cross track boundaries? Can't stop a head-switch

Some disks support write caching
» But data not stable—not suitable for all requests

File Systems 1/O Systems — Hard drives 24 / 95



Disk performance

v

Placement & ordering of requests a huge issue

» Sequential 1/O much, much faster than random
» Long seeks much slower than short ones
» Power might fail any time, leaving inconsistent state

Must be careful about order for crashes
» More on this in next lecture
Try to achieve contiguous accesses where possible
» E.g., make big chunks of individual files contiguous
Try to order requests to minimize seek times

» OS can only do this if it has a multiple requests to order
» Requires disk 1/0O concurrency
» High-performance apps try to maximize 1/O concurrency

v

v

v

v

Next: How to schedule concurrent requests
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Scheduling: FCFS

» “First Come First Served”
» Process disk requests in the order they are received
» Advantages

» Disadvantages
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Scheduling: FCFS

» “First Come First Served”
» Process disk requests in the order they are received
» Advantages

» Easy to implement
» Good fairness

» Disadvantages

» Cannot exploit request locality
> Increases average latency, decreasing throughput
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FCFS example

head starts at 53
0 14

queue = 98, 183, 37, 122, 14, 124, 65, 67
37 536567

98 122124

183199

A. Legrand
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Shortest positioning time first (SPTF)

v

Shortest positioning time first (SPTF)
> Always pick request with shortest seek time

v

Advantages

v

Disadvantages

» Improvement
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Shortest positioning time first (SPTF)

v

Shortest positioning time first (SPTF)
» Always pick request with shortest seek time

v

Advantages

» Exploits locality of disk requests
» Higher throughput

v

Disadvantages

» Starvation
» Don't always know what request will be fastest

» Improvement: Aged SPTF

» Give older requests higher priority
» Adjust “effective” seek time with weighting factor:
Teff = Tpos -Ww- Twait

Also called Shortest Seek Time First (SSTF)

v
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SPTF example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567

98 122124

183199

A. Legrand
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“Elevator” scheduling (SCAN)

» Sweep across disk, servicing all requests passed

» Like SPTF, but next seek must be in same direction
» Switch directions only if no further requests

» Advantages

» Disadvantages
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“Elevator” scheduling (SCAN)

» Sweep across disk, servicing all requests passed

» Like SPTF, but next seek must be in same direction
» Switch directions only if no further requests

Advantages

» Takes advantage of locality
» Bounded waiting

Disadvantages

» Cylinders in the middle get better service
» Might miss locality SPTF could exploit

v

v

v

CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix
Also called LOOK/CLOOK in textbook

» (Textbook uses [C]SCAN to mean scan entire disk uselessly)

v
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Flash memory

v

Today, people increasingly using flash memory
Completely solid state (no moving parts)
» Remembers data by storing charge
» Lower power consumption and heat
» No mechanical seek times to worry about
Limited # overwrites possible
» Blocks wear out after 10,000 (MLC) — 100,000 (SLC) erases
» Requires flash translation layer (FTL) to provide wear leveling,
so repeated writes to logical block don't wear out physical block
» FTL can seriously impact performance
» In particular, random writes very expensive [Birrell]

Limited durability

» Charge wears out over time
» Turn off device for a year, you can easily lose data

v

v

v
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http://research.microsoft.com/pubs/63681/TR-2005-176.pdf

Disk vs. Memory

MLC NAND

Disk Flash DRAM
Smallest write sector sector byte
Atomic write sector sector byte/word
Random read 8 ms 75 ps 50 ns
Random write 8 ms 300 ps* 50 ns
Sequential read | 100 MB/s 250 MB/s | > 1 GB/s
Sequential write | 100 MB/s | 170 MB/s* | > 1 GB/s
Cost $.08-1/GB $3/GB $10-25/GB
Persistence Non-volatile | Non-volatile Volatile

*Flash write performance degrades over time

A. Legrand File Systems
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File system fun

» File systems = the hardest part of OS
» More papers on FSes than any other single topic
» Main tasks of file system:

» Don't go away (ever)

» Associate bytes with name (files)

» Associate names with each other (directories)

» Can implement file systems on disk, over network, in memory,
in non-volatile ram (NVRAM), on tape, w/ paper.

» We'll focus on disk and generalize later

» Today: files, directories, and a bit of performance
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The medium is the message

» Disk = First thing we’ve seen that doesn’t go away

» So: Where all important state ultimately resides

» Slow (ms access vs ns for memory)
Processor speed: ~2x/yr

Disk gccess time: 7%/yr

» Huge (100-1,000x bigger than memory)

» How to organize large collection of ad hoc information?
» Taxonomies! (Basically FS = general way to make these)
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Files: named bytes on disk
» File abstraction:
» User's view: named sequence of bytes

foo.c—'}in’r main() [ "%

» FS's view: collection of disk blocks
» File system'’s job: translate name & offset to disk blocks:

{file, offset}— FS ——disk address

» File operations:

» Create a file, delete a file
Read from file, write to file
Repositionning withing a file
Truncating a file, append, rename, ...

vV vy

» File meta-informations (size, owner, access rights, times-
tamps, ...)

» Want: operations to have as few disk accesses as possible
& have minimal space overhead
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What's hard about grouping blocks?

» Like page tables, file system meta data are simply data
structures used to construct mappings

» Page table: map virtual page # to physical page #
23—  Page table |——33

» File meta data: map byte offset to disk block address

418——— | Unix inode |—— 8003121

» Directory: map name to disk address or file #
foo.c—m— directory —44

» Inode stores meta-information (not name!) and file bytes
location.
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FS vs. VM

> In both settings, want location transparency
» In some ways, FS has easier job than than VM:

» CPU time to do FS mappings not a big deal (= no TLB)

» Page tables deal with sparse address spaces and random access,
files often denser (0. .. filesize — 1) & ~sequentially accessed

» In some ways FS’s problem is harder:

» Each layer of translation = potential disk access

» Space a huge premium! (But disk is huge?!?!) Reason?
Cache space never enough; amount of data you can get in one
fetch never enough

» Range very extreme: Many files <10 KB, some files many GB
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Some working intuitions

» FS performance dominated by # of disk accesses

» Each access costs ~10 milliseconds
» Touch the disk 100 extra times = 1 second
» Can easily do 100s of millions of ALU ops in same time

» Access cost dominated by movement, not transfer:

seek time + rotational delay + # bytes/disk-bw

» Can get 50x the data for only ~3% more overhead
» 1 sector: 10ms + 8ms + 10us (= 512 B/(50 MB/s)) ~ 18ms
» 50 sectors: 10ms + 8ms + .bms = 18.5ms

» Observations that might be helpful:

» All blocks in file tend to be used together, sequentially
> All files in a directory tend to be used together
» All names in a directory tend to be used together
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Common addressing patterns

» Sequential:

> File data processed in sequential order

» By far the most common mode

» Example: editor writes out new file, compiler reads in file, etc
» Random access:

» Address any block in file directly without passing through pre-

decessors

» Examples: data set for demand paging, databases
» Keyed access

» Search for block with particular values

» Examples: associative data base, index

» Usually not provided by OS
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Problem: how to track file's data

» Disk management:
» Need to keep track of where file contents are on disk
» Must be able to use this to map byte offset to disk block
» Structure tracking a file's sectors is called an index node or
inode
File descriptors must be stored on disk, too
» Things to keep in mind while designing file structure:
Most files are small
Much of the disk is allocated to large files
Many of the 1/O operations are made to large files
Want good sequential and good random access
(what do these require?)

v

vV vy vy
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Problem: how to track file's data

» Disk management:
» Need to keep track of where file contents are on disk
» Must be able to use this to map byte offset to disk block
» Structure tracking a file's sectors is called an index node or
inode
File descriptors must be stored on disk, too
» Things to keep in mind while designing file structure:
Most files are small
Much of the disk is allocated to large files
Many of the 1/O operations are made to large files
Want good sequential and good random access
(what do these require?)

> Just like VM: good data structures
> Arrays, linked list, trees (of arrays), hash tables.

v

vV vy vy
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Straw man: contiguous allocation

v

“Extent-based” : allocate files like segmented memory
» When creating a file, make the user specify pre-specify its length
and allocate all space at once
> Inode contents: location and size

what happens if
file ¢ needs 2
/t sectors???

file a (base=1,len=3)  file b (base=5,len=2)

» Example: IBM 0S/360
Pros?

v

v

Cons? (What VM scheme does this correspond to?)
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Straw man: contiguous allocation

» “Extent-based”: allocate files like segmented memory

» When creating a file, make the user specify pre-specify its length
and allocate all space at once

> Inode contents: location and size

what happens if

file ¢ needs 2

A sectors???

/
file a (base=1,len=3)  file b (base=5,len=2)
» Example: IBM 0S/360
» Pros?
» Simple, fast access, both sequential and random

» Cons? (What VM scheme does this correspond to?)
» External fragmentation
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Linked files

> Basically a linked list on disk.
> Keep a linked list of all free blocks
» Inode contents: a pointer to file's first block
> In each block, keep a pointer to the next one

how do you find
the last block in a?

A

—
AN
—J

e )
file a (base=1)  file b (base=5)

» Examples (sort-of): Alto, TOPS-10, DOS FAT
> Pros?

» Cons?
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Linked files

> Basically a linked list on disk.
> Keep a linked list of all free blocks
» Inode contents: a pointer to file's first block
> In each block, keep a pointer to the next one

how do you find
the last block in a?

A

[ ]
L LT
——J

|
e )
file a (base=1)  file b (base=5)

» Examples (sort-of): Alto, TOPS-10, DOS FAT
> Pros?

» Easy dynamic growth & sequential access, no fragmentation
» Cons?

» Linked lists on disk a bad idea because of access times
» Pointers take up room in block, skewing alignment
> If one pointer is ever damaged, the rest of the file is lost.
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Example: DOS FS (simplified)

» Uses linked files.

Cute:

links reside in fixed-sized “file

allocation table” (FAT) rather than in the blocks.

Directory (5) (1)

free

eof

a b

1

b: 2

Ol h N

eof

3

eof

4

FAT (16-bit entries)

file a
le | 1413 ]

file b

» Still do pointer chasing, but can cache entire FAT so can
be cheap compared to disk access

A. Legrand File Systems
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FAT discussion

A. Legrand

v

v

v

Entry size = 16 bits

» What's the maximum size of the FAT?
» Given a 512 byte block, what's the maximum size of FS?
» One attack: go to bigger blocks. Pros? Cons?

Space overhead of FAT is trivial:
» 2 bytes / 512 byte block = ~ 0.4% (Compare to Unix)
Reliability: how to protect against errors?

» Create duplicate copies of FAT on disk.
» State duplication a very common theme in reliability

Bootstrapping: where is root directory?

» Fixed location on disk:

File Systems

FAT

(opt) FAT

root dir

File System — Inode Organization
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FAT discussion

A. Legrand

v

v

v

Entry size = 16 bits

» What's the maximum size of the FAT? 65,536 entries
» Given a 512 byte block, what’s the maximum size of FS? 32 MB
» One attack: go to bigger blocks. Pros? Cons?

Space overhead of FAT is trivial:
» 2 bytes / 512 byte block = ~ 0.4% (Compare to Unix)
Reliability: how to protect against errors?

» Create duplicate copies of FAT on disk.
» State duplication a very common theme in reliability

Bootstrapping: where is root directory?

» Fixed location on disk:

File Systems

FAT

(opt) FAT

root dir
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Indexed files

» Each file has an array holding all of it’s block pointers

» Just like a page table, so will have similar issues

» Max file size fixed by array’s size (static or dynamic?)

» Allocate array to hold file's block pointers on file creation
» Allocate actual blocks on demand using free list

A

file a file b

» Pros?

» Cons?
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Indexed files

» Each file has an array holding all of it’s block pointers

» Just like a page table, so will have similar issues

» Max file size fixed by array’s size (static or dynamic?)

» Allocate array to hold file's block pointers on file creation
» Allocate actual blocks on demand using free list

A

file a file b

> Pros?
» Both sequential and random access easy
» Cons?
» Mapping table requires large chunk of contiguous space
... Same problem we were trying to solve initially
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Indexed files

> Issues same as in page tables
[CITITITTITITITITTITITIT1«——2"20 entries!

IIII/—%

2732 file size

K blocks

> Large possible file size = lots of unused entries
> Large actual size? table needs large contiguous disk chunk

» Solve identically: small regions with index array, this array
with another array, ... Downside?
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Multi-level indexed files (old BSD FS)

» inode = 14 block pointers + “stuff” (meta-informations)

stuff

data blocks Tndirect M

Pir 1

ptr 2 1
pir 3 1

pir 4

pir 13

AV

pir 14

A. Legrand File Systems

Ptr 1

pir 2 7

oir 126 _——

Ptr 1

[ JIndirectblks

ptr 2

— [

pTr 128

/
Double indirect block
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Old BSD FS discussion

» Pros:

» Simple, easy to build, fast access to small files
» Maximum file length fixed, but large.

» Cons:

» What is the worst case # of accesses?
» What is the worst-case space overhead? (e.g., 13 block file)

» An empirical problem:

» Because you allocate blocks by taking them off unordered freel-
ist, meta data and data get strewn across disk
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More about inodes

A. Legrand

» Inodes are stored in a fixed-size array

» Size of array fixed when disk is initialized; can’t be changed
» Lives in known location, originally at one side of disk:

vV vy vVvYy

/

—_—

Inode array

file blocks ...

Now is smeared across it (why?)

>

//\
N
\

T\
\\/f

a
—

The index of an inode in the inode array called an i-number
Internally, the OS refers to files by inumber

When file is opened, inode brought in memory

Written back when modified and file closed or time elapses

File Systems

File System — Inode Organization
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Directories

Problem:
» “Spend all day generating data, come back the next morning,
want to use it." F. Corbato, on why files/dirs invented.
Approach 0: Have users remember where on disk their
files are
» (E.g., like remembering your social security or bank account #)

v

v

v

Yuck. People want human digestible names
» We use directories to map names to file blocks

v

Next: What is in a directory and why?
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A short history of directories

» Approach 1: Single directory for entire system
Put directory at known location on disk
Directory contains (name, inumber) pairs
If one user uses a name, no one else can
Many ancient personal computers work this way
» Approach 2: Single directory for each user

» Still clumsy, and 1s on 10,000 files is a real pain

vV vy vVvyy

» Approach 3: Hierarchical name spaces
» Allow directory to map names to files or other dirs
» File system forms a tree (or graph, if links allowed)
» Large name spaces tend to be hierarchical (ip addresses, domain
names, scoping in programming languages, etc.)
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Hierarchical Unix

\.

afs bin cdrom dev sbin tmp
» Used since CTSS (1960s)

» Unix picked up and used really nicely

» Directories stored on disk just like regular files

awk chmod chown

(name,inode#)
(afs,1021)
» Inode contains special flag bit set dir (tmp,1020)
) ! X : (bin,1022)
» User’s can read just like any other file

. . (cdrom,4123)
» Only special programs can write (why?) (dev,1001)
» Inodes at fixed disk location (sbin,1011)

» File pointed to by the index may be :

another directory

» Makes FS into hierarchical tree (what needed to make a DAG?)
» Simple, plus speeding up file ops speeds up dir ops!
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Naming magic

v

Bootstrapping: Where do you start looking?
» Root directory always inode #2 (0 and 1 historically reserved)

v

Special names:
» Root directory: “/"
» Current directory: “."
» Parent directory:

v

Special names not implemented in FS:

» User's home directory: “~
» Globbing: “foo.*" expands to all files starting “foo."

v

Using the given names, only need two operations to nav-
igate the entire name space:

» cd name: move into (change context to) directory name
» 1s: enumerate all names in current directory (context)
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Unix example: /a/b/c.c

«« Name space Physical organization

.;. disk
@ - wi \Inode table

What inode holds file for
a? b?c.c?

c.c
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Default context: working directory

» Cumbersome to constantly specify full path names
» In Unix, each process associated with a “current working direc-
tory”
» File names that do not begin with "/ are assumed to be relative
to the working directory, otherwise translation happens as before
» Shells track a default list of active contexts

» A “search path” for programs you run

» Given a search path A : B : C, a shell will check in A, then
check in B, then check in C

» Can escape using explicit paths: “./foo”
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Hard and soft links (synonyms)

» More than one dir entry can refer to a given file

foo bar
» Unix stores count of pointers (“hard \ /

links") to inode

inode #31279

» To make: “1n foo bar” creates a ¢ _
synonym (bar) for file foo rercount = S

» Soft links = synonyms for names

\
» Point to a file (or dir) name, but object can be deleted from
underneath it (or never even exist). [

» Unix implements like directories: inode has special !
“sym link" bit set and contains pointed to name //
7~
foo ——= /bar” e - B

refcount = 1

» To make: “ln -sf bar baz
» When the file system encounters a symbolic link it automatically
translates it (if possible).
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Case study: speeding up FS

» Original Unix FS: Simple and elegant:

I inodes data blocks (512 bytes)

supler'block disk

» Components:

Data blocks

Inodes (directories represented as files)

Hard links

Superblock. (specifies number of blks in FS, counts of max #
of files, pointer to head of free list)

vV vy vy

» Problem: slow
» Only gets 20Kb/sec (2% of disk maximum) even for sequential
disk transfers!
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A plethora of performance costs

» Blocks too small (512 bytes)

» File index too large
» Too many layers of mapping indirection
» Transfer rate low (get one block at time)
» Sucky clustering of related objects:
» Consecutive file blocks not close together
Inodes far from data blocks
Inodes for directory not close together
Poor enumeration performance: e.g., “1s", “grep foo *.c”

v vy

> Next: how FFS fixes these problems (to a degree)
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Problem: Internal fragmentation

A. Legrand

» Block size was to small in Unix FS

» Why not just make bigger?

Block size
512

1024

2048

4096
1MB

space wasted
6.9%

11.8%
22.4%
45.6%
99.0%

file bandwidth
2.6%

3.3%

6.4%

12.0%

97.2%

» Bigger block increases bandwidth, but how to deal with

wastage (“internal fragmentation”)?
» Use idea from malloc: split unused portion.

File Systems

File System — Speeding Up: FFS
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Solution: fragments

» BSD FFS:

» Has large block size (4096 or 8192)
» Allow large blocks to be chopped into small ones (“fragments”)
» Used for little files and pieces at the ends of files

A

file a

» Best way to eliminate internal fragmentation?

» Variable sized splits of course
» Why does FFS use fixed-sized fragments (1024, 2048)?
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Clustering related objects in FFS

A. Legrand

» Group 1 or more consecutive cylinders into a “cylinder
group”

Cylinder group 1

cylinder group 2\

» Key: can access any block in a cylinder without performing a
seek. Next fastest place is adjacent cylinder.

» Tries to put everything related in same cylinder group

» Tries to put everything not related in different group (?!)
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Clustering in FFS

> Tries to put sequential blocks in adjacent sectors
» (Access one block, probably access next)

file b

» Tries to keep inode in same cylinder as file data:
» (If you look at inode, most likely will look at data too)

file a

» Tries to keep all inodes in a dir in same cylinder group
» Access one name, frequently access many, e.g., “ls -1"
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What does a cyl. group look like?

» Basically a mini-Unix file system:

1 inodes data blocks (512 bytes)

|
superblock

» How how to ensure there’s space for related stuff?

» Place different directories in different cylinder groups
» Keep a “free space reserve” so can allocate near existing things
» When file grows too big (IMB) send its remainder to different

cylinder group.
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Finding space for related objs

» Old Unix (& dos): Linked list of free blocks
» Just take a block off of the head. Easy.

/‘ 4\\ //f P

AL ST

» Bad: free list gets jumbled over time. Finding adjacent blocks
hard and slow
» FFS: switch to bit-map of free blocks
1010101111111000001111111000101100
Easier to find contiguous blocks.

Small, so usually keep entire thing in memory
Key: keep a reserve of free blocks. Makes finding a close block

easier

vV vy vy
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Using a bitmap

v

Usually keep entire bitmap in memory:
» 4G disk / 4K byte blocks. How big is map?
Allocate block close to block x?

» Check for blocks near bmap[x/32]

» If disk almost empty, will likely find one near

» As disk becomes full, search becomes more expensive and less
effective.

v

v

Trade space for time (search time, file access time)
Keep a reserve (e.g, 10%) of disk always free, ideally
scattered across disk

» Don't tell users (df — 110% full)
» With 10% free, can almost always find one of them free

v
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So what did we gain?

A. Legrand

v

v

v

Performance improvements:
» Able to get 20-40% of disk bandwidth for large files
» 10-20x original Unix file system!
» Better small file performance (why?)
Is this the best we can do? No.
Block based rather than extent based
» Name contiguous blocks with single pointer and length
» (Linux ext2fs)
Writes of meta data done synchronously

» Really hurts small file performance

» Make asynchronous with write-ordering ( “soft updates”) or log-
ging (the episode file system, ~LFS)

» Play with semantics (/tmp file systems)
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Other hacks

v

Obvious:
» Big file cache.

» Fact: no rotation delay if get whole track.
» How to use?

v

Fact: transfer cost negligible.

Recall: Can get 50x the data for only ~3% more overhead

» 1 sector: 10ms 4+ 8ms + 10us (= 512 B/(50 MB/s)) =~ 18ms
» 50 sectors: 10ms + 8ms + .bms = 18.5ms

» How to use?

v

v

Fact: if transfer huge, seek + rotation negligible
» How to use ?
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Other hacks

v

Obvious:
» Big file cache.

» Fact: no rotation delay if get whole track.
» How to use?

v

Fact: transfer cost negligible.

Recall: Can get 50x the data for only ~3% more overhead

» 1 sector: 10ms 4+ 8ms + 10us (= 512 B/(50 MB/s)) =~ 18ms
» 50 sectors: 10ms + 8ms + .bms = 18.5ms

» How to use?

v

v

Fact: if transfer huge, seek + rotation negligible
» How to use ?

Use read ahead + cluster read/write (hoard data, write
out MB at a time)
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Fixing corruption — fsck

v

Must run FS check (fsck) program after crash
Summary info usually bad after crash

» Scan to check free block map, block/inode counts
System may have corrupt inodes (not simple crash)

» Bad block numbers, cross-allocation, etc.
» Do sanity check, clear inodes with garbage

v

v

» Fields in inodes may be wrong
» Count number of directory entries to verify link count, if no
entries but count # 0, move to lost+found
» Make sure size and used data counts match blocks
» Directories may be bad

won ”

» Holes illegal, and “.."” must be valid, ...
» All directories must be reachable
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Crash recovery permeates FS code

» Have to ensure fsck can recover file system

» Example: Suppose all data written asynchronously
» Delete/truncate a file, append to other file, crash

» New file may reuse block from old

» Old inode may not be updated

» Cross-allocation!

» Often inode with older mtime wrong, but can't be sure
» Append to file, allocate indirect block, crash

» Inode points to indirect block
» But indirect block may contain garbage
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Ordering of updates

» Must be careful about order of updates
» Write new inode to disk before directory entry
» Remove directory name before deallocating inode
» Write cleared inode to disk before updating CG free map
» Solution: Many metadata updates synchronous
» Doing one write at a time ensures ordering
» Of course, this hurts performance
» E.g., untar much slower than disk bandwidth
» Note: Cannot update buffers on the disk queue
» E.g., say you make two updates to same directory block
> But crash recovery requires first to be synchronous
» Must wait for first write to complete before doing second

A. Legrand File Systems Recovering from failures — 77/ 95



Performance vs. consistency

v

FFS crash recoverability comes at huge cost

» Makes tasks such as untar easily 10-20 times slower
» All because you might lose power or reboot at any time

v

Even while slowing ordinary usage, recovery slow

> If fsck takes one minute, then disks get 10x bigger ...
One solution: battery-backed RAM

» Expensive (requires specialized hardware)

» Often don't learn battery has died until too late

» A pain if computer dies (can't just move disk)

» If OS bug causes crash, RAM might be garbage
Better solution: Advanced file system techniques

» Topic of rest of lecture

v

v
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First attempt: Ordered updates

v

Must follow three rules in ordering updates:
1. Never write pointer before initializing the structure it points to
2. Never reuse a resource before nullifying all pointers to it
3. Never clear last pointer to live resource before setting new one

v

If you do this, file system will be recoverable

v

Moreover, can recover quickly

» Might leak free disk space, but otherwise correct
» So start running after reboot, scavenge for space in background

» How to achieve?
» Keep a partial order on buffered blocks
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Ordered updates (continued)

» Example: Create file A

» Block X contains an inode
» Block Y contains a directory block
» Create file A in inode block X, dir block Y

» We say Y — X, pronounced “Y depends on X"

» Means Y cannot be written before X is written
» X is called the dependee, Y the depender

» Can delay both writes, so long as order preserved

» Say you create a second file B in blocks X and Y
» Only have to write each out once for both creates
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Problem: Cyclic dependencies

v

Suppose you create file A, unlink file B
» Both files in same directory block & inode block
» Can’t write directory until inode A initialized
» Otherwise, after crash directory will point to bogus inode
» Worse yet, same inode # might be re-allocated
» So could end up with file name A being an unrelated file
» Can’t write inode block until dir entry B cleared

» Otherwise, B could end up with too small a link count
» File could be deleted while links to it still exist

v

Otherwise, fsck has to be very slow
» Check every directory entry and inode link count
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Cyclic dependencies illustrated
Inode Block  Directory Block

Inode #4 <——#0 3
Inode #5

<B#5 >
Inode #6
Inode #7 <C#7 >

(a) Original Organization

Inode Block  Directory Block

Inode #4 — <A#4>
Inode #5

<B#5>
Inode #6
Inode #7 <C#7>

(b) Create File A

A. Legrand File Systems

|:|=in use

D = free

Inode Block  Directory Block

Inode #4

[

Inode #5

<A#4 >

4>

Inode #6

< —#0

Inode #7

< C#7 >

(c) Remove file B

Recovering from failures — Ordered Updates
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More problems

» Crash might occur between ordered but related writes
» E.g., summary information wrong after block freed
> Block aging
» Block that always has dependency will never get written back
> Solution: “Soft updates” [Ganger]

» Write blocks in any order

» But keep track of dependencies

» When writing a block, temporarily roll back any changes you
can't yet commit to disk
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Breaking dependencies w. rollback

Main Memory

Inode Block Directory Block

Inode #4

<A#4 >

Inode #5 >
Inode #6

< —,#0

Inode #7

<CH#7 >

» Now say we decide to write directory block. ..

Inode Block  Directory Block

Inode #4

Inode #5

< —,#0 >

Inode #6

<B#5 >

Inode #7

< CH#7 >

(a) After Metadata Updates

» Can’t write file name A to disk—has dependee

A. Legrand File Systems
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Breaking dependencies w. rollback

Main Memory
Inode Block Directory Block
Inode #4 4—— <A#4>
Inode #5
< —,#0
Inode #6
Inode #7 <CH#7 >

(b) Safe Version of Directory Block Written
» Undo file A before writing dir block to disk

» Even though we just wrote it, directory block still
» But now inode block has no dependees

» Can safely write inode block to disk as-is. ..

A. Legrand File Systems

Inode Block  Directory Block

Inode #4

Inode #5

Inode #6

Inode #7

< —,#0 >
< —,#0 >
<C#7 >
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Breaking dependencies w. rollback

Main Memory

Inode Block Directory Block

Inode #4

Inode #5

<A#4 >

Inode #6

< —#0

Inode #7

<CH#7 >

Inode Block Directory Block

Inode #4

Inode #5

Inode #6

Inode #7

< —,#0 >
< —,#0 >
< CH#7 >

(c) Inode Block Written

» Now inode block clean (same in memory as on disk)

» But have to write directory block a second time...

A. Legrand File Systems
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Breaking dependencies w. rollback

Main Memory Disk
Inode Block  Directory Block Inode Block  Directory Block
Inode #4 <A#4 > Inode #4 <A#4>
Inode #5 Inode #5
< —#0 < —#0
Inode #6 Inode #6
Inode #7 <CH#7 > Inode #7 <CH#7 >

(d) Directory Block Written
> All data stably on disk

» Crash at any point would have been safe
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Soft updates

» Structure for each updated field or pointer, contains:
> old value
> new value
» list of updates on which this update depends (dependees)
» Can write blocks in any order
» But must temporarily undo updates with pending dependencies
» Must lock rolled-back version so applications don't see it
» Choose ordering based on disk arm scheduling

» Some dependencies better handled by postponing in-memory
updates

» E.g., when freeing block (e.g., because file truncated), just mark
block free in bitmap after block pointer cleared on disk
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Simple example

v

Say you create a zero-length file A
Depender: Directory entry for A
» Can’t be written untill dependees on disk

v

v

Dependees:
» Inode — must be initialized before dir entry written
» Bitmap — must mark inode allocated before dir entry written

v

Old value: empty directory entry

v

New value: (filename A,inode #)
Can write directory block to disk any time

» Must substitute old value until inode & bitmap updated on disk
» Once dir block on disk contains A, file fully created
» Crash before A on disk, worst case might leak the inode

v
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Operations requiring soft updates (1)

1. Block allocation

» Must write the disk block, the free map, & a pointer

» Disk block & free map must be written before pointer

» Use Undo/redo on pointer (& possibly file size)
2. Block deallocation

» Must write the cleared pointer & free map

» Just update free map after pointer written to disk

» Or just immediately update free map if pointer not on disk
» Say you quickly append block to file then truncate

» You will know pointer to block not written because of the allo-

cated dependency structure
» So both operations together require no disk /0!
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Operations requiring soft updates (2)

3. Link addition (see simple example)
» Must write the directory entry, inode, & free map (if new inode)
» Inode and free map must be written before dir entry
» Use undo/redo on i# in dir entry (ignore entries w. i# 0)

4. Link removal

» Must write directory entry, inode & free map (if nlinks==0)
Must decrement nlinks only after pointer cleared

Clear directory entry immediately

Decrement in-memory nlinks once pointer written

If directory entry was never written, decrement immediately
(again will know by presence of dependency structure)

vV vy VvVYyy

» Note: Quick create/delete requires no disk 1/0
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Soft update issues

v

fsync — sycall to flush file changes to disk

» Must also flush directory entries, parent directories, etc.
unmount — flush all changes to disk on shutdown

» Some buffers must be flushed multiple times to get clean
Deleting large directory trees frighteningly fast

» unlink syscall returns even if inode/indir block not cached!
» Dependencies allocated faster than blocks written
» Cap # dependencies allocated to avoid exhausting memory

Useless write-backs

v

v

v

v

Syncer flushes dirty buffers to disk every 30 seconds
Writing all at once means many dependencies unsatisfied
Fix syncer to write blocks one at a time

Fix LRU buffer eviction to know about dependencies

vV vy
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Soft updates fsck

v

Split into foreground and background parts
Foreground must be done before remounting FS
» Need to make sure per-cylinder summary info makes sense
» Recompute free block/inode counts from bitmaps — very fast
» Will leave FS consistent, but might leak disk space
Background does traditional fsck operations
» Do after mounting to recuperate free space
» Can be using the file system while this is happening
» Must be done in forground after a media failure
Difference from traditional FFS fsck:

» May have many, many inodes with non-zero link counts
» Don't stick them all in lost+found (unless media failure)

v

v

v
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An alternative: Journaling

> Reserve a portion of disk for write-ahead log

» Write any metadata operation first to log, then to disk

» After crash/reboot, re-play the log (efficient)

» May re-do already committed change, but won't miss anything
» Performance advantage:

» Log is consecutive portion of disk

» Multiple log writes very fast (at disk b/w)

» Consider updates committed when written to log
» Example: delete directory tree

» Record all freed blocks, changed directory entries in log

» Return control to user

» Write out changed directories, bitmaps, etc. in background

(sort for good disk arm scheduling)
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Journaling details

» Must find oldest relevant log entry
» Otherwise, redundant and slow to replay whole log
» Use checkpoints

» Once all records up to log entry N have been processed and
affected blocks stably committed to disk. . .

» Record N to disk either in reserved checkpoint location, or in
checkpoint log record

» Never need to go back before most recent checkpointed N

» Must also find end of log

» Typically circular buffer; don't play old records out of order
» Can include begin transaction/end transaction records
» Also typically have checksum in case some sectors bad

A. Legrand File Systems Recovering from failures — Journaling 94 / 95



Journaling vs. soft updates

» Both much better than FFS alone
» Some limitations of soft updates

» Very specific to FFS data structures (E.g., couldn't easily com-
plex data structures like B-trees in XFS—even directory rename
not quite right)

» Metadata updates may proceed out of order (E.g., create A,
create B, crash—maybe only B exists after reboot)

» Still need slow background fsck to reclaim space

» Some limitations of journaling

» Disk write required for every metadata operation (whereas create-
then-delete might require no I/O w. soft updates)

» Possible contention for end of log on multi-processor

» fsync must sync other operations’ metadata to log, too
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