Parallel complexity

Jean-Louis Roch, Grenoble Univ.

Books / Readings

Parallel algorithms for shared memory machine, RM Karp, V Ramachandran,
Chap 17, HTCS, volA “Algorithms and Complexity” pp 871—932

* Limits to parallel computation - P-Completeness Theory
Ray Greenlaw, Jim Hoover, and Larry Ruzzo

* Anintroduction to Parallel Algorithms, J. Jaja

* Slides from Ray Greenlaw: An Introduction to Parallel Computation and P-
Completeness Theory,

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions

P-Complete Problems

Open Problems

Parallel evaluation of arithmetic circuits

14/12/09

Introduction

Sequential computation: Feasible ~ n 9% time

(polynomial time).

Parallel computation: Feasible ~ n () operations (or processors)

(polynomial work).

Goal of parallel computation: to develop fast algorithms:
feasible highly parallel
Both polylog time ~log®Y n and polynomial work ~n 9@ (procs).

A problem is inherently sequential if it is feasible but has no
feasible highly parallel algorithm for its solution.

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions
P-Complete Problems

Open Problems

Parallel evaluation of arithmetic circuits

14/12/09

Parallel Models of Computation

e Parallel Random Access Machine Model
e Boolean Circuit Model
e Circuits and PRAMs

Parallel Random Access Machine = PRAM
RAM Processors

P, | |P, | [P, | @@

| [c] |c| eoe

Global Memory Cells

Memory ACCESS: EREW /CREW / CRCW [common/arbitrary/priority]

Theorem: A priority-CRCW PRAM that runs in time t(n)= O(logkn)
using p(n) e n°1) processors can be simulated by an EREW

PRAM in time t(n)= O(log**'n) using n°®1) processors.

14/12/09

Boolean Circuit Model

AND OR

!

OR AND

Circuits and PRAMS

Theorem:

A function f from {0,1}* to {0,1}* can be computed
by a logarithmic space uniform Boolean circuit family {c,}
with depth(a,) e (logn)°™ and size(c,) e n°M)

if and only if

f can be computed by a CREW-PRAM M on inputs of length
n in time t(n) € (logn)°® using p(n) e n°W),

14/12/09

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions
P-Complete Problems

Open Problems

Parallel evaluation of arithmetic circuits

Basic Complexity

Decision, Function, and Search Problems
Complexity Classes

Reducibility

Completeness

14/12/09

Decision, Function, and Search Problems

. 4 4
Spanning Tree-D
Given: An undirected graph G = (V,E) with weights from N labeling edges in E and a natural
number k.
Problem: Is there a spanning tree of G with cost less than or equal to k ?

Spanning Tree-F
Given: Same (no k).
Problem: Compute the weight of a minimum cost spanning tree.

Spanning Tree-S
Given: Same.
Problem: Find a minimum cost spanning tree.

Complexity Classes

Definitions:
P is the set of all languages L that are decidable in sequential
time n °1),

NC is the set of all languages L that are decidable in parallel time (logn)°®)
and processors n),

FP is the set of all functions from {0,1}* to {0,1}* that are computable in
sequential time n °(),

FNC is the set of all functions from {0,1}* to {0,1}* that are computable in
parallel time (logn)°™) and processors n 21,

NCk, k =1, is the set of all languages L such that L is recognized by a
uniform Boolean circuit family {a, } with size(ct,) = n°) and
depth (a,) = O((logn)*).

14/12/09

NC - Reducibility

Definitions:

A language L is reducible to a language L’, written L <L) if there is
a function f such that: xeLifandonlyif f(x)eL’.

L is P reducible to L’, written L <P L’, if the function f is in FP.
. . . (;k . . -
For k =1, Lis NC* reducible to L’, written L N L, if the function f is in FNC*.

L is NC many-one reducible to L’, written L <N¢ L’, if the function f is in FNC.

Turing-Reducibility: A function fis NC1-Turing-reducible to a function g, f=,V¢g, iff
there exists a uniform circuit family {c, }
which gates are boolean or oracles for g,
with size(a,,) = n°W and depth () = O((logn)).

NB An oracle gate for g with m inputs has depth log m

Properties: <P, <"“(o1), ¢ and =M1, <N are transitive.
Thus: If L<M“l’ and LU eNCk(fork>1) then LeNCk.

Outline

Introduction

Parallel Models of Computation

Basic Complexity

Example of reduction

P-Complete Problems

Open Problems

14/12/09

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions

— Example of reduction

P-Complete Problems

Open Problems

Parallel evaluation of arithmetic circuits

Linear Algebra — DET class

Triangular Matrix Inversion <;N¢ Matrix Power

Matrix Power <N¢? Triangular Matrix Inversion

Sequential: MatrixInversion=0(MatrixMultiplication)

Parallel: Matrix Multiplication <<
MatrixInversion=,N¢ MatrixPower

14/12/09

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions
P-Complete Problems

Open Problems

Parallel evaluation of arithmetic circuits

Completeness

Definitions:
A language L is P-hard under NC reducibility if L’ s;N¢ L for every L’ e P.
A language L is P-complete under NC reducibility if L € P and L is P-hard.

Theorem:
If any P-complete problem is in NC then NC equals P.

Remark:
It is conjectured that NC # P (proved with R-arithmetic).

14/12/09

P-Complete Problems

There are approximately 175 P-complete problems (500

with variations).

Categories:
— Circuit complexity — Formal languages
— Graph theory — Algebra
— Searching graphs ~ Geometry
. . — Real analysis
— Combinatorial — Games

optimization and flow
Local optimality
Logic

— Miscellaneous

Eg: Gaussian elimination with pivot: P-complete, but
MatrixInversion is in NC2

Circuit Value Problem

Given:
An encoding o of a Boolean circuit o, inputs x,,...,x,,, and a
designated output y.

Problem:
Is output y of o TRUE on input x;,...,x,,?

Theorem: [Ladner 75]

The Circuit Value Problem is P-complete under
reductions.

2

c

14/12/09

10

P-Complete Variations of CVP

— Topologically Ordered [Folklore]

— Monotone [Goldschlager 77]

— Alternating Monotone Fanin 2, Fanout 2 [Folklore]
— NAND [Folklore]

— Topologically Ordered NOR [Folklore]

— Synchronous Alternating Monotone Fanout 2 CVP
[Greenlaw, Hoover, and Ruzzo 87]

— Planar [Goldschlager 77]

NAND Circuit Value Problem

Given:
An encoding o of a Boolean circuit o that consists solely of NAND gates,

inputs x,...,x,, and a designated output y.

Problem:
Is output y of o TRUE on input xj,...,x,,?

Theorem:
The NAND Circuit Value Problem is P-complete.

14/12/09

11

NAND Circuit Value Problem

Proof:

Reduce AM2CVP to NAND CVP. Complement all inputs. Relabel all gates as NAND.

LI/ L1
OR OR NAND NAND
o~ N T
AND - NAND
™~ o\
OR NAND
1] 1]
Graph Theory

— Lexicographically First Maximal Independent Set
[Cook 85]

— Lexicographically First (A + 1)-Vertex Coloring
[Luby 84]

— High Degree Subgraph
[Anderson and Mayr 84]

— Nearest Neighbor Traveling Salesman Heuristic
[Kindervater, Lenstra, and Shmoys 89]

14/12/09

12

Lexicographically First Maximal Independent Set

Theorem: [Cook 85]
LFMIS is P-complete.

Proof:
Reduce TopNOR CVP to LFMIS. Add new vertex 0. Connect to all false inputs.

EREE!
1 2 3 4 5
NOR NOR
6 7
et
NOR !
8
0
NOR
9
ol
Searching Graphs

— Lexicographically First Depth-First Search Ordering [Reif
85]

— Stack Breadth-First Search
[Greenlaw 92]

— Breadth-Depth Search
[Greenlaw 93]

14/12/09

13

Context-Free Grammar Empty

Given: A context-free grammar G=(N,T,R.S).
Problem: Is L(G) empty?

Theorem: [Jones and Laaser 76], [Goldschlager 81], [Tompa
91]
CFGempty is P-complete.

Proof: Reduce Monotone CVP to CFGempty. Given o
construct G=(N,T,P,S) with N, T, S, and P as follows:

Context-Free Grammar Empty

N ={i| v;is a vertex in a}

T={a}

S =n, where v, is the output of a.
P as follows:

1. Forinput v, i — a if value of v;is 1,
2.i—jkifv;<=v;Av, and

3.i—j| kifv,<=v;Vy,.

Then the value of v;is 1 if and only if i =, where ye{alt.

14/12/09

14

CFGempty Example

x,=0,%x=0,x;=1,and x, = 1.

G=(N,T,S, P), where
N={1,2,3,4,5,6,7}
T={a}
S=7
P={3—0,4—0a,5—1]|2,6—34,7—56}

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions
P-Complete Problems

Parallel evaluation of arithmetic circuits
Open Problems

14/12/09

15

14/12/09

Circuits and parallelism

* General CVP is P-complete.
— What subset instances are in P ?

e Arithmetic Expression evaluation

e Arithmetic Circuit evaluation

Tree contraction

» Tree-contraction is used in parallel
expression evaluation

» Since the structure of a expression is a tree
there are different tree-contraction techniques

» Basic operations are:
- redirecting edges of the tree
- removing nodes marking (pebbling) nodes
- creating additional edges

« the final aim is to guarantee that logarithmic
number of contractions is sufficient

16

Basic Tree contraction operations

Case 2: u has one or more sons, w has no sons
delete edge e

Case 1: u, w have exactly one son each

replace e by ¢’

tree-contraction related to SimSub

repeat
for each edge e do in parallel

perform local action on e
until there are no edges

Parallel pebble game on binary tree

Within the game each node v of the tree has
associated with it similar node denoted by
cond(v).

At the outset of the game cond(v)=v, for all v

During the game the pairs (v,cond(v)) can be
thought of as additional edges

Node v is “active” if and only if cond(v)=v

14/12/09

17

Operations: active, square and pebble

Activate
for all non-leaf nodes v in parallel do

if vis not active and precisely one of its sons is pebbled then
cond(v) becomes the other son
if v is not active and both sons are pebbled then
cond(v) becomes one of the sons arbitrarily
Square
for all nodes v in parallel do cond(v)<— cond(cond(v))
Pebble
for all nodes v in parallel do
if cond(v) is pebbled then pebble v

One Step: Activate;square;square; pebbling

N N
PO N SN

AN /

e o Ve Ve o/ >o\
° o N\ ° °
z RN

square z

14/12/09

18

Application of the pebbling game

@ Consider the arithmetic expression
((3+(2*2))*3+5)

@ We assign a processor to each non-leaf

node of the tree. ’/'\'
RO
&‘“

So® e
S 2
e

3(2x+3)+5

3(2x)+9

2x+3

14/12/09

19

Expression evaluation

e Algorithm:
while not(all nodes are evaluated) do
{ activate; square; square; pebble; }

* Theorem

Let T be a binary tree with n leaves. After log,n
stepsof the pebbling game, T is evaluated.

=> Arithmetic expressions can be evaluated on a
PRAM in O(log n) time using O(n) processors.

Circuit evaluation

 Straight line arithmetic program
— (+, *) in a semi-ring (extensionq to boolean or to a a field)

— Circuit with arithmetic gates : n-ary +
and binary * (and dummy+ to avoid non consecutive *)

* Algorithm: Loop while not (all nodes evaluated) {

7N
p\V N
— 1. MM (gather +nodes) 0 \7 e
\',\‘\"‘ /L)¢ et ¢_'\‘,
. n\\A‘,/v,‘ N . 2
— 2. Rake (eval nodes with leaves) (e D2
. N, ™,
— 3. Shunt (bypass * nodes with P8 N
only one son not evaluated) N l'“’““f*"“'c
} ‘[\4 ‘ '/ ¥ \ I‘]("\; II) ;‘,\‘
4
I] u .) |

14/12/09

20

Cl rCUit eva | UatIOn [Miller Ramachandran Kaltofen]

* Consider a straight line arithmetic program

— (+, *)in a semi-ring

— Each output can be seen as a polynomial in the input
Let n = # gates; let d= max. degree of an output

gate w.r.t. input gates

Theorem: MRK straight line evaluation evaluates the circuit in

Depth = (log n)(log d + log n) and Work = O(M(n))=0(n3)

Application: triangular linear system inversion: k=dim(system)
— Sequential: n=k? degree=k
— => circuit with depth = O(log? k) and work O(k®)

Outline

Introduction

Parallel Models of Computation

Basic Complexity — NC and Reductions
P-Complete Problems

Parallel evaluation of arithmetic circuits
Open Problems

14/12/09

21

14/12/09

Open Problems

Find an NC algorithm or classify as P-complete:

— Edge Ranking

— Edge-Weighted Matching

— Integer Greatest Common Divisor
* Polynomial GCD is in DET, so in NC2.

— Modular Powering

22

