
1

Parallel Algorithms

Design
and

Implementation

 Jean-Louis.Roch at imag.fr

MOAIS / Lab. Informatique Grenoble, INRIA,

France

2

Overview

•! Machine model and work-stealing!

•!Work and depth!
•! Fundamental theorem !

•! Parallel divide & conquer!

•! Examples!

•!Accumulate!

•!Monte Carlo simulations!

•!Prefix/partial sum!

•! Work-stealing theorem !

•! Course 2: Work-first principle - Amortizing the overhead of parallelism!

•!Sorting and merging"

•! Course 3: Amortizing the overhead of synchronization and communications!

•!Numerical computations : FFT, marix computations; Domain decompositions"

3

Interactive

Distributed

Simulation
3D-reconstruction

+ simulation

+ rendering
[B Raffin &E Boyer]
- 1 monitor

- 5 cameras,

- 6 PCs

Any application is “parallel”:
•!composition of several programs / library procedures (possibly concurrent) ;

•!each procedure written independently and also possibly parallel itself.

Interactive parallel computation?
4

!! Parallel chips & multi-core architectures: "
-! MPSoCs (Multi-Processor Systems-on-Chips)"

-! GPU : graphics processors (and programmable: Shaders; Cuda SDK)"

-! Dual Core processors (Opterons, Itanium, etc.)"

-! Heteregoneous multi-cores : CPUs + GPUs + DSPs+ FPGAs (Cell)"

!! Commodity SMPs:"
-! 8 way PCs equipped with multi-core processors (AMD Hypertransport) + 2 GPUs"

!! Clusters: "

-! 72% of top 500 machines"

-! Trends: more processing units, faster networks (PCI- Express)"

-! Heterogeneous (CPUs, GPUs, FPGAs)"

!! Grids:"

- Heterogeneous networks"

-! Heterogeneous administration policies"

-! Resource Volatility"

!! Dedicated platforms: eg Virtual Reality/Visualization Clusters:"

-! Scientific Visualization and Computational Steering"

-! PC clusters + graphics cards + multiple I/O devices #
" "(cameras, 3D trackers, multi-projector displays)"

!! "

New parallel supports from small too large

Grimage platform

5

Dynamic architecture : non-fixed number of resources, variable speeds

 eg: grid, … but not only: SMP server in multi-users mode

The problem
To design a single algorithm that computes efficiently prefix(a) on

an arbitrary dynamic architecture

Sequential

algorithm
parallel

P=2
parallel

P=100

parallel

P=max

. . .

Multi-user SMP server Grid Heterogeneous network

?
Which algorithm

to choose ?

… …

6

Dynamic architecture : non-fixed number of resources, variable speeds

 eg: grid, SMP server in multi-users mode,….

 => motivates the design of «processor-oblivious» parallel algorithm that:

 + is independent from the underlying architecture:

 no reference to p nor !i(t) = speed of processor i at time t nor …

 + on a given architecture, has performance guarantees :

 behaves as well as an optimal (off-line, non-oblivious) one

Processor-oblivious algorithms

7

2. Machine model and work stealing

!! Heterogeneous machine model and work-depth framework"

!! Distributed work stealing#

!! Work-stealing implementation : work first principle #

!! Examples of implementation and programs: #
" "Cilk , Kaapi/Athapascan #

!! Application: Nqueens on an heterogeneous grid "

8

Processor speeds are assumed to change arbitrarily and adversarially:!
model [Bender,Rabin 02] !i(t) = instantaneous speed of processor i at time t

 (in #unit operations per second)

 Assumption : Maxi,t { !i(t) } < constant . Mini,t { !i(t) }

Def: for a computation with duration T

•! total speed: !tot = !i=0,..,P !t=0,..,T !i(t)

•! average speed per processor: !ave = !tot / P

Heterogeneous processors, work and depth

“Work” W = #total number operations performed

“Depth” D = #operations on a critical path

 (~parallel “time” on " resources)

For any greedy maximum utilization schedule:

 [Graham69, Jaffe80, Bender-Rabin02]

 makespan

!

"
W

p.#ave

+ 1$
1

p

%

&
'

(

)
*

D

 #ave

9

The work stealing algorithm

!! A distributed and randomized algorithm that

computes a greedy schedule :
"! Each processor manages a local task (depth-first execution)

P0 P2 P1 P3

10

P0 P2 P1 P3

"! When idle, a processor steals the topmost task on a remote -non idle- victim processor
 (randomly

chosen)

"! Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]

"! #steals < p.D

"! execution time

"! Interest:

 if W independent of p and D is small, work stealing achieves near-optimal schedule

steal

The work stealing algorithm

!! A distributed and randomized algorithm that

computes a greedy schedule :
"! Each processor manages a local stack (depth-first execution)

!

"
W

p.#ave

+O
D

#ave

$

%
&

'

(
)

Proof

!! Any parallel execution can be
represented by a binary tree:!

!!Node with 0 child = TERMINATE instruction"

-! End of the current thread"

!!Node with 1 son = sequential instruction"

!!Node with 2 sons: parallelism = instruction that"

-! Creates a new (ready) thread "

•! eg fork, thread_create, spawn, …"

-! Unblocks a previously blocked thread "

•! eg signal, unlock, send"

11

Proof (cont)
!! Assume the deque implemented by an

array: each ready task stored according to

its depth in the binary tree!

!! On processor i at top t :!

!!Hi(t) = the index of the oldest ready task"

!! Prop 1: When non zero, Hi(t) is increasing!

!! Prop 2: Min(i active at t){ Hi(t) } is increasing!

!! Prop 3: Each steal request on i makes "
! !Hi strictly decrease. !

!! Corollary: if at each steal, the victim is a
processor i with minimum Hi then"

!#steals # (p-1).Height(tree) # (p-1).D!

12

Proof (randomized)
!! Group the steal operations in blocks of p

consecutive steals:!

!! After p.log p consecutive steals requests after top t,
with probability > $, any active processor at t have

been victim of a steal request. [Coupon collector problem]"

-! Then Mini Hi has increased of at least 1"

!! In average, after 2plog p. M consecutive
steals requests, "
!Mini Hi has increased of M at least!

!! So, after 2plog p D steal requests, this is the end!"

!! Chernoff bounds: With high probability (w.h.p.),"

!! #steal requests = O(pD log p)"

13

Proof (cont)

!! With additional hypothesis:!
-! Initially, only one active processor"

-! When several steal requests are performed on a same

victim processor at the same top, #
only the first one is considered (others fail)"

!! Then #steal requests = O(p.D) w.h.p."

!! Remarks:!

!! This proof can be extended to"

-! asynchronous machines (synchronization = steal)"

-! Other steal policies then steal the “topmost=oldest”
ready tasks, but with impact on the bounds on the steals "

14

Steal requests and execution time

!! At each top, a processor j is!

!! Either active: performs a “work” operation "

-! Let wj be the number of unit work operations by j"

!! Either idle: performs a steal requests"

-! Let sj be the number of unit steal operations by j"

!! Summing on all p processors : "

Execution time"

15

!

"
W

p.#ave

+O
D

#ave

$

%
&

'

(
)

16

Work stealing implementation

Difficult in general (coarse grain)

But easy if D is small [Work-stealing]

 Execution time

 (fine grain)

Expensive in general (fine grain)

But small overhead if a small
number of tasks

 (coarse grain)

Scheduling
efficient policy

(close to optimal)

control of the policy
(realisation)

If D is small, a work stealing algorithm performs a small number of steals

=> Work-first principle: “scheduling overheads should be borne by the critical path

of the computation” [Frigo 98]

Implementation: since all tasks but a few are executed in the local stack, overhead

of task creation should be as close as possible as sequential function call

At any time on any non-idle processor,
 efficient local degeneration of the parallel program in a sequential execution

!

"
W

p.#ave

+O
D

#ave

$

%
&

'

(
)

17

Work-stealing implementations following
the work-first principle : Cilk
!! Cilk-5 http://supertech.csail.mit.edu/cilk/ : C extension

!! Spawn f (a) ; sync (serie-parallel programs)

!! Requires a shared-memory machine

!! Depth-first execution with synchronization (on sync) with the end of a task :
-! Spawned tasks are pushed in double-ended queue

!! “Two-clone” compilation strategy [Frigo-Leiserson-Randall98] :
•! on a successfull steal, a thief executes the continuation on the topmost ready task ;

•! When the continuation hasn’t been stolen, “sync” = nop ; else synchronization with its thief

!! won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2,
SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

01 cilk int fib (int n) !
02 {!

03 if (n < 2) return n; !
04 else!

05 {!
06 int x, y; !
07 !

08 x = spawn fib (n-1); !
09 y = spawn fib (n-2); !

10 !
11 sync;!
12 !

13 return (x+y); !
14 }!

15 }"

18

Work-stealing implementations following
the work-first principle : KAAPI
!! Kaapi / Athapascan http://kaapi.gforge.inria.fr : C++ library

!! Fork<f>()(a, …) with access mode to parameters (value;read;write;r/w;cw) specified
in f prototype (macro dataflow programs)

!! Supports distributed and shared memory machines; heterogeneous processors

!! Depth-first (reference order) execution with synchronization on data access :
•! Double-end queue (mutual exclusion with compare-and-swap)

•! on a successful steal, one-way data communication (write&signal)

•!

!! Kaapi won the 2006 award “Prix special du Jury” for the best performance at NQueens contest, Plugtests-
Grid&Work’06, Nice, Dec.1, 2006 [Gautier-Guelton] on Grid’5000 1458 processors with different speeds.

 1 struct sum {!
 2 void operator()(Shared_r < int > a, "

 3 Shared_r < int > b, "
 4 Shared_w < int > r) "

 5 { r.write(a.read() + b.read()); }"
 6 } ;"
 7"

 8 struct fib {"
 9 void operator()(int n, Shared_w<int> r) "

 10 { if (n <2) r.write(n);"
 11 else "
 12 { int r1, r2;"

 13 Fork< fib >() (n-1, r1) ;"
 14 Fork< fib >() (n-2, r2) ;"

 15 Fork< sum >() (r1, r2, r) ;"
 16 } "
 17 } "

 18 } ;!

19

Experimental results on SOFA

 [Allard 06]

[CIMIT-ETZH-INRIA]

Kaapi (C++, ~500 lines)! Cilk (C, ~240 lines)!

Preliminary results on GPU NVIDIA 8800 GTX!
•! speed-up ~9 on Bar 10x10x46 to Athlon64 2.4GHz!

•!128 “cores” in 16 groups!

•!CUDA SDK : “BSP”-like, 16 X [16 .. 512] threads!

•!Supports most operations available on CPU!

•!~2000 lines CPU-side + 1000 GPU-side!

Algorithm design
!! From work-stealing theorem, optimizing

the execution time!

!! Find a parallel algorithm with W = Tseq and
small depth"

!! Double criteria"

-! Minimum work : W (ideally Tseq)"

-! Small depth: ideally polylog in the work: = logO(1) W"

20

Algorithm design
!! Cascading divide & Conquer"

!!W(n) % a.W(n/K) + f(n) with a>1"

-! If f(n) << n^{logK a} => W(n) = O(n^{logK a})"

-! If f(n) >> n^{logK a} => W(n) = O(f(n))"

-! If f(n) = &(n^{logK a} => W(n) = O(f(n) log n)#

!!D(n) = D(n/K) + f(n)"

-! If f(n) = O(logi n) => D(n) = O(logi+1 n) #

!!D(n) = D(sqrt(n)) + f(n)"

-! If f(n) = O(1) => D(n) = O(loglog n)"

-! If f(n) = O(log n) => D(n) = O(log n) !! #

21

Examples

!! Accumulate:!

!! Find!

!! Maximum on CRCW!

!! Matrix-vector product – Matrix multiplication --

Triangular matrix inversion"

!! Exercise: parallel merge and sort!

!! Next lecture: Partial sum, adaptive parallelism,
communications"

22

23

Example: Recursive and Monte Carlo
computations

!! X Besseron, T. Gautier, E Gobet, &G Huard won the nov. 2008 Plugtest-
Grid&Work’08 contest – Financial mathematics application (Options pricing)

!! In 2007, the team won the Nqueens contest; Some facts [on on Grid’5000, a grid
of processors of heterogeneous speeds]

-! NQueens(21) in 78 s on about 1000 processors

-! Nqueens (22) in 502.9s on 1458 processors

-! Nqueens(23) in 4435s on 1422 processors [~24.1033 solutions]

-! 0.625% idle time per processor

-! < 20s to deploy up to 1000 processes on 1000 machines [Taktuk, Huard]

-! 15% of improvement of the sequential due to C++ (template)

N
-Q

u
ee

n
s(

2
3

)!

G
ri

d
’5

0
0

0
 f

re
e!

C
o

m
p

et
it

o
r

Z
!

C
o

m
p

et
it

o
r

Y
!

C
o

m
p

et
it

o
r

X
!

CPU!

6 instances Nqueens(22)!

Network!

Grid’5000 utilization!

during contest!

24

•! Prefix problem :

•! input : a0, a1, …, an

•! output : "1, …, "n with

 Parallelism induces overhead :
 e.g. Parallel prefix on fixed architecture

•! Tight lower bound on p identical processors:

Optimal time Tp = 2n / (p+1)

but performs 2.n.p/(p+1) ops
[Nicolau&al. 1996]

Parallel

requires

twice more

operations

 than

sequential !!

 performs only n operations

•! Sequential algorithm :

•! for ("[0] = a[0], i = 1 ; i <= n; i++) "[i] = "[i – 1] * a [i] ;

Critical time = 2. log n

but performs 2.n ops

[Ladner-
Fisher-81]

•! Fine grain optimal parallel algorithm :

25

Lower bound(s) for the prefix

Prefix circuit of depth d !

 # [Fitch80] !

 #operations > 2n - d!

26

Overview

•! Introduction : interactive computation, parallelism and processor oblivious!

•! Overhead of parallelism : parallel prefix "

•! Machine model and work-stealing!

•! Scheme 1: !Extended work-stealing : concurently sequential and parallel!

27

3. Work-first principle and adaptability

•! Work-first principle: -implicit- dynamic choice between two executions :

•! a sequential “depth-first” execution of the parallel algorithm (local, default) ;

•! a parallel “breadth-first” one.

•! Choice is performed at runtime, depending on resource idleness:

 rare event if Depth is small to Work

•! WS adapts parallelism to processors with practical provable performances

•! Processors with changing speeds / load (data, user processes, system, users,

•! Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, …])

•! The choice is justified only when the sequential execution of the parallel

algorithm is an efficient sequential algorithm:

•! Parallel Divide&Conquer computations

•! …

 -> But, this may not be general in practice

28

•! General approach: to mix both !
•! a sequential algorithm with optimal work W1 "

•! and a fine grain parallel algorithm with minimal critical time W"

•! Folk technique : parallel, than sequential !
•! Parallel algorithm until a certain «'grain'»; then use the sequential one"

•! Drawback : W" increases ;o) …and, also, the number of steals #

•! Work-preserving speed-up technique [Bini-Pan94] sequential, then parallel Cascading [Jaja92] :
Careful interplay of both algorithms to build one with both !

 ! ! ! ! ! !W" small and W1 = O(Wseq) "

•! Use the work-optimal sequential algorithm to reduce the size "

•! Then use the time-optimal parallel algorithm to decrease the time "

•! Drawback : sequential at coarse grain and parallel at fine grain ;o(#

How to get both optimal work W1 and W" small?

29

Extended work-stealing: concurrently sequential and parallel

SeqCompute

Extract_par LastPartComputation
SeqCompute

Based on the work-stealing and the Work-first principle : "

Instead of optimizing the sequential execution of the best parallel algorithm, #
let optimize the parallel execution of the best sequential algorithm #

Execute always a sequential algorithm to reduce parallelism overhead!
$! parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,…]

to extract parallelism from the remaining work a sequential computation #

Assumption : two concurrent algorithms that are complementary: "
•! - one sequential : SeqCompute (always performed, the priority)

- the other parallel, fine grain : LastPartComputation (often not performed)"

30

Based on the work-stealing and the Work-first principle : "

Instead of optimizing the sequential execution of the best parallel algorithm, #
let optimize the parallel execution of the best sequential algorithm #

Execute always a sequential algorithm to reduce parallelism overhead!
$! parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,…]

to extract parallelism from the remaining work a sequential computation #

Assumption : two concurrent algorithms that are complementary: "
•! - one sequential : SeqCompute (always performed, the priority)

- the other parallel, fine grain : LastPartComputation (often not performed)"

SeqCompute

SeqCompute

preempt
SeqCompute_main

SeqCompute

merge/jump

complete

Seq

Note:

•! merge and jump operations to ensure non-idleness of the victim

•! Once SeqCompute_main completes, it becomes a work-stealer

Extended work-stealing : concurrently sequential and parallel

31

Overview

•! Introduction : interactive computation, parallelism and processor oblivious!

•! Overhead of parallelism : parallel prefix "

•! Machine model and work-stealing!

•! Scheme 1: !Extended work-stealing : concurently sequential and parallel!

•! Scheme 2: !Amortizing the overhead of synchronization (Nano-loop)"

32

Extended work-stealing and granularity

!! Scheme of the sequential process : nanoloop
 While (not completed(Wrem)) and (next_operation hasn’t been stolen) "
{"

 atomic { extract_next k operations ; Wrem -= k ; }"

 process the k operations extracted ;"

}"

!! Processor-oblivious algorithm !

!! Whatever p is, it performs O(p.D) preemption operations («'continuation faults'»)"

-> D should be as small as possible to maximize both speed-up and locality #

!! If no steal occurs during a (sequential) computation, then its arithmetic work is optimal
to the one Wopt of the sequential algorithm (no spawn/fork/copy) "

-> W should be as close as possible to Wopt "

!! Choosing k = Depth(Wrem) does not increase the depth of the parallel algorithm
while ensuring O(W / D) atomic operations :!
 "since D > log2 Wrem , then if p = 1: W ~ Wopt "

!! Implementation : atomicity in nano-loop based without lock
!! Efficient mutual exclusion between sequential process and parallel work-stealer"

!! Self-adaptive granularity!

33

Anytime Algorithm:!
•! Can be stopped at any time (with a result)"

•! Result quality improves as more time is allocated"

In Computer graphics, anytime algorithms are common: "

"Level of Detail algorithms (time budget, triangle budget, etc…)"

"Example: Progressive texture loading, triangle decimation (Google Earth)"

Anytime processor-oblivious algorithm: !
On p processors with average speed !ave, it outputs in a fixed time T "

 a result with the same quality than "

a sequential processor with speed !ave in time p.!ave. "

Example: Parallel Octree computation for 3D Modeling !"

Interactive application with time constraint

34

3D Modeling : !

!build a 3D model of a scene from a set of calibrated images"

On-line 3D modeling for interactions: 3D modeling from

multiple video streams (30 fps) "

Parallel 3D Modeling

…

…

A classical recursive anytime 3D modeling algorithm."

Standard algorithms with time control:"

At termination: quick test to decide all grey cubes time control"

Octree Carving [L. Soares 06]

State of a cube:
- Grey: mixed => split
- Black: full : stop
- White: empty : stop

Depth first "

+ iterative deepening!

Width first !

36

Well suited to work-stealing "

-!Small critical path, while huge amount of work (eg. D = 8, W = 164 000)"

-! non-predictable work, non predictable grain : "

For cache locality, each level is processed by a self-adaptive grain :

" "“sequential iterative” / ”parallel recursive split-half”"

Octree needs to be “balanced” when stopping:"

•! Serially computes each level (with small overlap)!

•! Time deadline (30 ms) managed by signal protocol"

Theorem: W.r.t the adaptive in time T on p procs., the sequential algorithm: ""

"- goes at most one level deeper : | ds - dp | ! 1 ;

 - computes at most : ns ! np + O(log ns) .!

Width first parallel octree carving

Unbalanced ! Balanced !

37

-! 16 core Opteron machine, 64 images "

-! Sequential: 269 ms, 16 Cores: 24 ms"

-! 8 cores: about 100 steals (167 000 grey cells)"

Results

8 cameras, levels 2 to 10! 64 cameras, levels 2 to 7!

Preliminary result: CPUs+GPU

-! 1 GPU + 16 CPUs "

-! GPU programmed in OpenGL"

- efficient coupling till 8 but #
 does not scale"

lo
g

 (
T

im
e

(m
s)

)!

[L. Soares 06]

38

Overview

•! Introduction : interactive computation, parallelism and processor oblivious!

•! Overhead of parallelism : parallel prefix "

•! Machine model and work-stealing!

•! Scheme 1: !Extended work-stealing : concurently sequential and parallel!

•! Scheme 2: !Amortizing the overhead of synchronization (Nano-loop)"

•! Scheme 3: !Amortizing the overhead of parallelism (Macro-loop)"

39

Adaptive scheme : extract_seq/nanoloop // extract_par!

•! ensures an optimal number of operation on 1 processor"

•! but no guarantee on the work performed on p processors!

Eg (C++ STL): find_if (first, last, predicate) !

locates the first element in [First, Last) verifying the predicate!

This may be a drawback (unneeded processor usage) :"

•! undesirable for a library code that may be used in a complex application, #

 with many components "

•! (or not fair with other users)"
•! increases the time of the application :"

•!any parallelism that may increase the execution time should be avoided "

Motivates the building of work-optimal parallel adaptive algorithm

(processor oblivious)"

4. Amortizing the arithmetic overhead
of parallelism

40

Similar to nano-loop for the sequential process :!

•! that balances the -atomic- local work by the depth of the remaindering one"

Here, by amortizing the work induced by the extract_par operation, #

ensuring this work to be small enough :"

•! Either w.r.t the -useful- work already performed"

•! Or with respect to the - useful - work yet to performed (if known)"

•! or both."

Eg : find_if (first, last, predicate) :!

•! only the work already performed is known (on-line)!

•! then prevent to assign more than %(Wdone) operations to work-stealers"

•! Choices for %(n) :!

•! n/2 : similar to Floyd$s iteration (approximation ratio = 2)!

•! n/log* n : to ensure optimal usage of the work-stealers!

4. Amortizing the arithmetic overhead
of parallelism (cont’d)

41

Results on find_if
[S. Guelton]!

N doubles : time predicate ~ 0.31 ms!

With no amortization macroloop!

With amortization macroloop!

42

Parallel algorithm based on :"

!- compute-seq / extract-par scheme!

!- nano-loop for compute-seq"

"- macro-loop for extract-par!

5. Putting things together
processor-oblivious prefix computation

43

Parallel

Sequential

P0

P1

P3

10

 "0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Work-
stealer 1

Main
Seq.

Work-
stealer 2

"1

time

P-Oblivious Prefix on 3 proc.

44

Parallel

Sequential

P0

P1

P3

10

 "0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

"1

 a5 a6 a7 a8 a9 a10 a11 a12

2

 "2

%6

3

%7

 "3

%i=a5*…*ai

time

P-Oblivious Prefix on 3 proc.

45

Parallel

Sequential

P0

P1

P3

10

 "0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

"1

 a5 a6 a7 a8

2

 "2

%6

3

%7

 "3

 &i=a9*…*ai

 a9 a10 a11 a12

%i=a5*…*ai

"4 Preempt %8

 %8 "4

%8

&10

4

time

P-Oblivious Prefix on 3 proc.

46

Parallel

Sequential

P0

P1

P3

10

 "0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

"1

a5 a6 a7 a8

2

 "2

%6

3

 "3

 &i=a9*…*ai

a9 a10 a11 a12

%i=a5*…*ai

 "4

&10

4

%7 "5

 &11

5

 "8

"6

"8
Preempt

"9

&11

 "11

6

time

P-Oblivious Prefix on 3 proc.

47

Parallel

Sequential

P0

P1

P3

10

 "0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

"1

a5 a6 a7

2

 "2

%6

3

 "3

 &i=a9*…*ai

a9 a10

%i=a5*…*ai

 "4

4

"5

5

 "8

"6

"9

 "11

6

"10

"7

 "12

7

time

P-Oblivious Prefix on 3 proc.

48

Parallel

Sequential

P0

P1

P3

10

 "0 a1 a2 a3 a4

Work-
stealer 1

Main
Seq.

Work-
stealer 2

"1

a5 a6 a7

2

 "2

%6

3

 "3

 &i=a9*…*ai

a9 a10

%i=a5*…*ai

 "4

4

"5

5

 "8

"6

"9

 "11

6

"10

"7

 "12

7

Implicit critical path on the sequential process Tp = 7 Tp
*
 = 6

time

P-Oblivious Prefix on 3 proc.

49

Analysis of the algorithm

!! "

!! Sketch of the proof :!

Dynamic coupling of two algorithms that complete simultaneously:"

!! Sequential: (optimal) number of operations S on one processor"

!! Extract_par : work stealer perform X operations on other processors"
-! dynamic splitting always possible till finest grain BUT local sequential"

•! Critical path small (eg : log X with a W= n / log* n macroloop) "

•! Each non constant time task can potentially be splitted (variable speeds)"

!! Algorithmic scheme ensures Ts = Tp + O(log X)#

=> enables to bound the whole number X of operations performed #
and the overhead of parallelism = (s+X) - #ops_optimal #

Lower bound

Execution time"

50

 Results 1/2 [D Traore]

Single-usercontext : processor-oblivious prefix achieves near-optimal performance :
 - close to the lower bound both on 1 proc and on p processors

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p processors :

Optimal off-line on p procs

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)

T
im

e
 (

s
)

#processors

Pure sequential

Single user context

51

Results 2/2

External charge

 (9-p external processes)

Off-line parallel algorithm for p processors

Oblivious

Prefix sum of 8.106 double on a SMP 8 procs (IA64 1.5GHz/ linux)

T
im

e
 (

s
)

#processors

Multi-user context :

Multi-user context :

Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest

 15% benefit over a parallel algorithm for p processors with off-line schedule,

[D Traore]

52

Conclusion
!! Fine grain parallelism enables efficient execution on a small number of

processors!

!! Interest : portability ; mutualization of code ; "

!! Drawback : needs work-first principle => algorithm design"

!! Efficiency of classical work stealing relies on work-first principle : !

!! Implicitly defenerates a parallel algorithm into a sequential efficient ones ; "

!! Assumes that parallel and sequential algorithms perform about the same amount of
operations"

!! Processor Oblivious algorithms based on work-first principle!
!! Based on anytime extraction of parallelism from any sequential algorithm (may

execute different amount of operations) ;"

!! Oblivious: near-optimal whatever the execution context is. "

!! Generic scheme for stream computations :!
" parallelism introduce a copy overhead from local buffers to the output"

" "gzip / compression, MPEG-4 / H264 ""

53

FlowVR (flowvr.sf.net)!
•! Dedicated to interactive applications"

•! Static Macro-dataflow "
•! Parallel Code coupling #

Kaapi!

 Thank you !

Kaapi (kaapi.gforge.inria.fr)"

•! Work stealing / work-first principle"

•! Dynamics Macro-dataflow : #

"partitioning (Metis, …)"
•! Fault Tolerance (add/del resources)"

[E Boyer, B Raffin 2006]!
54

Back slides

55

The Prefix race:
sequential/parallel fixed/ adaptive

Race between 9 algorithms (44 processes) on

an octo-SMPSMP

0 5 10 15 20 25

1

2

3

4

5

6

7

8

9

Execution time (seconds)

Série1

Adaptative 8 proc.

Parallel 8 proc.

Parallel 7 proc.

Parallel 6 proc.

Parallel 5 proc.

Parallel 4 proc.

Parallel 3 proc.

Parallel 2 proc.

Sequential

On each of the 10 executions, adaptive completes first

56

Adaptive prefix : some experiments

 Single user context

Adaptive is equivalent to:

 - sequential on 1 proc

 - optimal parallel-2 proc. on 2 processors

 - …

 - optimal parallel-8 proc. on 8 processors

External charge

Parallel

Adaptive

Parallel

Adaptive

Prefix of 10000 elements on a SMP 8 procs (IA64 / linux)

#processors

T
im

e
 (

s
)

T
im

e
 (

s
)

#processors

Multi-user context

Adaptive is the fastest
15% benefit over a static grain algorithm

57

With * = double sum (r[i]=r[i-1] + x[i])

Single user Processors with variable speeds

Remark for n=4.096.000 doubles :

 - “pure” sequential : 0,20 s
 - minimal ”grain” = 100 doubles : 0.26s on 1 proc

 and 0.175 on 2 procs (close to lower bound)

Finest “grain” limited to 1 page = 16384 octets = 2048 double

58

The Moais Group

Interactivity

Coupling

Scheduling

Adaptive

Algorithms

Execution

Control

59

Moais Platforms

!! Icluster 2 :"

-! 110 dual Itanium bi-processors with Myrinet network"

!! GrImage (“Grappe” and Image): "

-! Camera Network "

-! 54 processors (dual processor cluster)"

-! Dual gigabits network"

-! 16 projectors display wall"

!! Grids: "

-! Regional: Ciment"

-! National: Grid5000 "

•! Dedicated to CS experiments"

!! SMPs: "

-! 8-way Itanium (Bull novascale)"

-! 8-way dual-core Opteron + 2 GPUs"

!! MPSoCs"

-! Collaborations with ST Microelectronics on STB7100 "

60

Parallel Interactive App.

!! Human in the loop"

!! Parallel machines (cluster) to enable large interactive applications"

!! Two main performance criteria:"
-! Frequency (refresh rate)"

•! Visualization: 30-60 Hz"

•! Haptic : 1000 Hz"

-! Latency (makespan for one iteration)"

•! Object handling: 75 ms"

!! A classical programming approach: data-flow model"

-! Application = static graph "
•! Edges: FIFO connections for data transfert"

•! Vertices: tasks consuming and producing data"

•! Source vertices: sample input signal (cameras)"

•! Sink vertices: output signal (projector)"

!! One challenge:"
Good mapping and scheduling of tasks on processors"

