Parallel Algorithms
Design

and
Implementation

Jean-Louis.Roch at imag.fr

MOAIS / Lab. Informatique Grenoble, INRIA,
France

Interactive parallel computation?

Any application is “parallel”:
scomposition of several programs / library procedures (possibly concurrent) ;
seach procedure written independently and also possibly parallel itself.

st ot

o
&

() ()
Interactive
Distributed

Simulation
3D-reconstruction
+ simulation

+ rendering

[B Raffin &E Boyer]
- 1 monitor

- 5 cameras,

-6 PCs

Overview

* Machine model and work-stealing
*Work and depth
e Fundamental theorem
» Parallel divide & conquer
» Examples
eAccumulate
*Monte Carlo simulations
Prefix/partial sum

» Work-stealing theorem

e Course 2: Work-first principle - Amortizing the overhead of parallelism
eSorting and merging

e Course 3: Amortizing the overhead of synchronization and communications
eNumerical computations : FFT, marix computations; Domain decompositions

NeW pa I‘a I Iel SI.I ppO I‘tS from small too large

& 2 f—
Parallel chips & multi-core architectures: Q
- MPSoCs (Multi-Processor Systems-on-Chips)
- GPU : graphics processors (and programmable: Shaders; Cuda SDK) m E
- Dual Core processors (Opterons, Itanium, etc.)
- Heteregoneous multi-cores : CPUs + GPUs + DSPs+ FPGAs (Cell)

Commodity SMPs:
- 8 way PCs equipped with multi-core processors (AMD Hypertransport) + 2 GPUs

Clusters:
- 72% of top 500 machines
- Trends: more processing units, faster networks (PCI- Express)
- Heterogeneous (CPUs, GPUs, FPGAs)

Grids:
- Heterogeneous networks
- Heterogeneous administration policies
- Resource Volatility

Dedicated platforms: eg Virtual Reality/Visualization Clusters:
- Scientific Visualization and Computational Steering

- PC clusters + graphics cards + multiple I/O devices
(cameras, 3D trackers, multi-projector displays)

Grimage platform




The problem

To design a single algorithm that computes efficiently prefix(a ) on

an arbitrary dynaml architecture

parallel

P=ma
Sequential parallel parallel * o
algorlthm P=100 E

Which algorithm
to choose ?

P

Heterogeneous network Multi-user SMP server Grid

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, ... but not only: SMP server in multi-users mode

2. Machine model and work stealing

Heterogeneous machine model and work-depth framework
Distributed work stealing

Work-stealing implementation : work first principle

Examples of implementation and programs:
Cilk , Kaapi/Athapascan

Application: Nqueens on an heterogeneous grid

Processor-oblivious algorithms

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, SMP server in multi-users mode,....

Networkof workstations

=> motivates the design of «processor-oblivious» parallel algorithm that:

+ is independent from the underlying architecture:
no reference to p nor II(t) = speed of processor i at time t nor ...

+ on a given architecture, has performance guarantees :
behaves as well as an optimal (off-line, non-oblivious) one

Processor speeds are assumed to change arbitrarily and adversarially:
model [Bender,Rabin 02] IT(t) = instantaneous speed of processor i at time t
(in #unit operations per second )
Assumption : Max;{ IL(t) } < constant . Min; ,{ IT(t) }

Def: for a computation with duration T

+ total speed: 1ot = Zico,..p Zeeo,., 7 1Y)
* average speed per processor: I, =1.,/P
O\ “Work” W = #total number operations performed

“Depth” D = #operations on a critical path

C{ O (~parallel “time” on oo resources)
O O }) For any greedy maximum utilization schedule:

[Graham69, Jaffe80, Bender-Rabin02]

makesan<W +1—l i
pan = n ») 1

ave ave




= A distributed and randomized algorithm that
computes a greedy schedule :

\

» Each processor manages a local task (depth-first execution)

- 10 »

Proof

= Any parallel execution can be
represented by a binary tree:
= Node with O child = TERMINATE instruction
- End of the current thread
= Node with 1 son = sequential instruction

» Node with 2 sons: parallelism = instruction that
- Creates a new (ready) thread
e eg fork, thread_create, spawn, ...

- Unblocks a previously blocked thread
 eg signal, unlock, send

"

= A distributed and randomized algorithm that
computes a greedy schedule :

» Each processor manages a local stack (depth-first execution)

= -
]
L
» When idle, a processor steals the topmost task on a remote -non idle- victim processor
(randomly

chosen)

» Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]

w

> #steals < p.D
N — =—+0
> execution time pIl,,

¢¢¢¢¢¢

> Interest:
if Windependent of p and D is small, work stealing achieves near-optimal schedule

Proof (cont)
= Assume the deque implemented by an
array: each ready task stored according to
its depth in the binary tree
On processoriattopt:
= H(t) = the index of the oldest ready task
Prop 1: When non zero, H;(t) is increasing
Prop 2: Min ,ciive at oy{ Hi(t) } is increasing
Prop 3: Each steal request on i makes

H, strictly decrease.

Corollary: if at each steal, the victim is a

processor i with minimum H; then
< (p- i < (p-




Proof (randomized)
= Group the steal operations in blocks of p
consecutive steals:

= After p.log p consecutive steals requests after top t,
with probability > 2, any active processor at t have
been victim of a steal request. [Coupon collector problem]

- Then Min; H; has increased of at least 1
* In average, after 2plog p. M consecutive
steals requests,
Min, H; has increased of M at least

= So, after 2plog p D steal requests, this is the end!

= Chernoff bounds: With high probability (w.h.p.),
= #steal requests = O(pD log p)

Proof (cont)

= With additional hypothesis:
- Initially, only one active processor

- When several steal requests are performed on a same
victim processor at the same top,
only the first one is considered (others fail)

= Then #steal requests = O(p.D) w.h.p.

= Remarks:
= This proof can be extended to
- asynchronous machines (synchronization = steal)

- Other steal policies then steal the “topmost=oldest”
ready tasks, but with impact on the bounds on the steals

Steal requests and execution time

= At each top, a processor j is
= Either active: performs a “work” operation
- Let wj be the number of unit work operations by j

= Either idle: performs a steal requests
- Let sj be the number of unit steal operations by j

= Summing on all p processors :

o W D
Execution time = —+ O ——

p ave ave

15

Work stealing implementation
Scheduling

control of the policy

efficient policy e e

(close to optimal)

Difficult in general (coarse grain) Expensive in general (fine grain)
But easy if D is small workstealing But small overhead if a small
D number of tasks

+0| —
I, e\ ) . i
Pl (fing yrain) (coarse grain)

Execution time =

If D is small, a work stealing algorithm performs a small number of steals

=> Work-first principle: “scheduling overheads should be borne by the critical path
of the computation” [Frigo 98]

Implementation: since all tasks but a few are executed in the local stack, overhead
of task creation should be as close as possible as sequential function call

At any time on any non-idle processor,
efficient local degeneration of the parallel program in a sequential execution




Work-stealing implementations following
the work-first principle : Cilk

= Cilk-5 http://supertech.csail.mit.edu/cilk/ : C extension
= Spawn f(a); sync (serie-parallel programs)
= Requires a shared-memory machine
= Depth-first execution with synchronization (on sync) with the end of a task :
- Spawned tasks are pushed in double-ended queue

= “Two-clone” compilation strategy [Frigo-Leiserson-Randall9g] :
« on a successfull steal, a thief executes the continuation on the topmost ready task ;
« When the continuation hasn’t been stolen, “sync” = nop ; else synchronization with its thief

01 cilk int fib (int n) 1 int f£ib (int n)
02 { 5t . ot frome pointer
03 if (n < 2) return n; 4 £ = alloc(sizeof(+£)); allocate frame
5 £->sig = fib_sig; initialize frame
04 else 6 it (n<2) {
05 { 7 free(f, sizeof(+£)); Jree frame
8 return n;
s . 9 3
06 int X, ¥i 10 else {
07 11 . v
N 12 £->entry = 1;
08 x = spawn fib (n-1); 13 £on =n;
09 y = spawn £ib (n-2); W ;
10 16 x = fib (n-1);
17 if (pop(x) == FAILURE)
11 sync; 18 return 0;
19 .. second spawn
12 20 ; sync is free!
. 21 free(f, sizeof(+£)); Jree frame
13 return (x+y); 2 return (x+y);
14 } 23 ¥
24}
15 }

= won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2,
SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

Experimental results on SOFA ICIMIT-ETZH-INRIIS

— N T [Allard 06]
O T T
L l,‘]pl.‘]pl.‘ll;lm
Bar-fem-implicit-32 Bar-fem-implicit-32

8 8

® Linear ® Linear
77|m 8x8xoxa - F——— 71. 8x8xOx4

v 4xax16 Il et e e v 4xax16
6 0 6

4 6x6x26 S S ‘.sxaxza e
sle Bx8x36 3= Sippdotny BNEES S

x 10x10x46 ) § ‘x 10x10x46 i T
4 4 -

3 Y

? 7 :  C———— 7
1 14
0 o

012345678 910111213141516 0123 45678 910111213141516

Kaapi (c++,~500 lines) Cilk (c, ~240 lines)

Speedup GPU Bar-spring-euler

Preliminary results on GPU NVIDIA 8800 GTX

« speed-up ~9 on Bar 10x10x46 to Athlon64 24GHz - B
128 “cores” in 16 groups ) b
*CUDA SDK : “BSP”-like, 16 X [16 .. 512] threads
*Supports most operations available on CPU
*~2000 lines CPU-side + 1000 GPU-side

0 T T T

‘ s
Objects

Work-stealing implementations following
the work-first principle : KAAPI

= Kaapi / Athapascan http:/kaapi.gforge.inria.fr : C++ library
= Fork<f>()(a, ...) with access mode to parameters (value;read;write;r/w;cw) specified
in f prototype (macro dataflow programs)
= Supports distributed and shared memory machines; heterogeneous processors

= Depth-first (reference order) execution with synchronization on data access :
« Double-end queue (mutual exclusion with compare-and-swap)
* on a successful steal, one-way data communication (write&signal)

1 struct sum { e | |
2 void operator() (Shared r < int > a, =
3 Shared_r < int > b,
4 Shared w < int > r )
5 { r.write(a.read() + b.read()); }
6 '}
7

—
8 struct fib { =
9 void operator() (int n, Shared w<int> r) T
10 { if (n <2) r.write( n );
11 else
12 { int rl1, r2;
13 Fork< fib >() ( n-1, rl ) ;
14 Fork< fib >() ( n-2, r2 ) ;
15 Fork< sum >() ( rl, r2, r ) ; 4
16 } |
17 } Topk
18} ;

() Shared fnks

= Kaapi won the 2006 award “Prix special du Jury” for the best performance at NQueens contest, Plugtests-
Grid&Work’06, Nice, Dec.1, 2006 [Gautier-Guelton] on Grid’5000 1458 processors with different speeds.

Algorithm design
* From work-stealing theorem, optimizing
the execution time

» Find a parallel algorithm with W = Tseq and
small depth

= Double criteria
- Minimum work : W (ideally Tseq)
- Small depth: ideally polylog in the work: = log®(") W

20




Algorithm design
= Cascading divide & Conquer

» W(n) < a.W(n/K) + f(n) with a>1
- If f(n) << nXlogk a} => W(n) = O( nNlogk a})
- If f(n) >> nNlogy a} =>W(n) = O( f(n) )
- If f(n) = ©( nNlogyk a} => W(n) = O( f(n) log n )

= D(n) = D(n/K) + f(n)
- Iff(n) = O(log' n) =>D(n) = O( log*' n)

= D(n) = D( sqrt(n) ) + f(n)
- Iff(n) = O(1) =>D(n) = O( loglog n)
- Iff(n) =0O(logn) =>D(n)=0(logn) !l

21

Example: Recursive and Monte Carlo
computations

= X Besseron, T. Gautier, E Gobet, &G Huard won the nov. 2008 Plugtest-
Grid&Work’08 contest — Financial mathematics application (Options pricing)

= |n 2007, the team won the Nqueens contest; Some facts [on on Grid’5000, a grid
of processors of heterogeneous speeds]
NQueens( 21) in 78 s on about 1000 processors
- Nqueens (22 )in 502.9s on 1458 processors
- Nqueens(23) in 4435s on 1422 processors [~24.1033 solutions]
- 0.625% idle time per processor
- < 20s to deploy up to 1000 processes on 1000 machines [Taktuk, Huard]

CPU

R - 15% oflmprovement%f H%&ﬁﬂ}ﬁﬂg Idue to C++ (tel | oswovisteer
::: = O durmg contest @._m

,,,,,,,, B eI croelm et 6 instances Nqueens(22)
N 3 -
: >§ t = ug Q Network
: g 2 = =2 2 Orsay Netvork Tast hour
. s 2 = S =
$5 L8 & A
LEof 3
S = Al A
58 S5 2 e

23

Examples =

= Accumulate:

Find

Maximum on CRCW

Matrix-vector product — Matrix multiplication --
Triangular matrix inversion

Exercise: parallel merge and sort

Next lecture: Partial sum, adaptive parallelism,
communications

24

Parallelism induces overhead :
e.g. Parallel prefix on fixed architecture

® Prefix problem :

7
*input:ay, ay, ..., a, ™= H ay,
e output : =y, ..., m, with

® Sequential algorithm :

® for (nf0]=al0], i=1;i<=n; i++) afi]=nfi-1]~a[i]; ’ performs only n operations

® Fine graln optlmal paraIIeI algorithm :
dpajazazay ...

-1 8n

[Ladner- ‘ Critical time = 2. log n
Fisher-81] : LGl
l. but performs 2.n ops requires
twice more
nz m n,,_, operations
than

* Tight lower bound on p identical processors:

Optimal time T, =2n / (p+1)
but performs 2 n.p/(p+1) ops

sequential !!




25

Lower bound(s) for the prefix

Prefix circuit of depth d
U [Fitch80]
#operations > 2n - d

2n

parallel time > GF1) Mave

3. Work-first principle and adaptability )

*  Work-first principle: -implicit- dynamic choice between two executions :
»  asequential “depth-first” execution of the parallel algorithm (local, default) ;
e aparallel “breadth-first’ one.
*  Choice is performed at runtime, depending on resource idleness:
rare event if Depth is small to Work
* WS adapts parallelism to processors with practical provable performances
*  Processors with changing speeds / load (data, user processes, system, users,
¢ Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, ...])

*  The choice is justified only when the sequential execution of the parallel
algorithm is an efficient sequential algorithm:
e Parallel Divide&Conquer computations

-> But, this may not be general in practice

Overview

¢ Introduction : interactive computation, parallelism and processor oblivious
* Overhead of parallelism : parallel prefix

* Machine model and work-stealing

¢ Scheme 1: Extended work-stealing : concurently sequential and par

28

How to get both optimal work W, and W, small?

+ General approach: to mix both
+ asequential algorithm with optimal work W,
+ and a fine grain parallel algorithm with minimal critical time W,

» Folk technique : parallel, than sequential
Parallel algorithm until a certain « grain »; then use the sequential one
Drawback : W, increases ;0) ...and, also, the number of steals

»  Work-preserving speed-up technique ini-pansa) Sequential, then parallel Cascading paissz :
Careful interplay of both algorithms to build one with both

W, small and W;=0( W)

« Use the work-optimal sequential algorithm to reduce the size
« Then use the time-optimal parallel algorithm to decrease the time
« Drawback : sequential at coarse grain and parallel at fine grain ;o(




29

Extended work-stealing: concurrently sequential and parallel

Based on the work-stealing and the Work-first principle :
Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead

= parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,...]
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:

. - one sequential : SeqCompute (always performed, the priority)
- the other parallel, fine grain : LastPartComputation (often not performed)

30

Extended work-stealing : concurrently sequential and parallel

Based on the work-stealing and the Work-first principle :
Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead

= parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,...]
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:

- one sequential : SeqCompute (always performed, the priority)
- the other parallel, fine grain : LastPartComputation (often not performed)

SeqC - R merge/jum '_S 1
eqCompute main I_g_]_p_d e 1
=2 reempt'-—q--—--J

I |
SeqCompute [T Comp:e_te:

Note:
* merge and jump operations to ensure non-idleness of the victim

» Once SeqCompute_main completes, it becomes a work-stealer

Overview

¢ Introduction : interactive computation, parallelism and processor oblivious
* Overhead of parallelism : parallel prefix

* Machine model and work-stealing

e Scheme 1: Extended work-stealing : concurently sequential and parallel

* Scheme 2: Amortizing the overhead of synchronization (Nano-loop)

32

Extended work-stealing and granularity

= Scheme of the sequential process : nanoloop
While (not completed(Wrem) ) and (next_operation hasn’t been stolen)

{
atomic { extract_next k operations ; Wrem -= k ; }
process the k operations extracted ;
}
= Processor-oblivious algorithm
= Whatever pis, it performs O( p.D ) preemption operations (« continuation faults »)
-> D should be as small as possible to maximize both speed-up and locality

= If no steal occurs during a (sequential) computation, then its arithmetic work is optimal
to the one Wop, of the sequential algorithm (no spawn/fork/copy )
- Wshould be as close as possible to W,

= Choosing k = Depth(W,,,,, ) does not increase the depth of the parallel algorithm
while ensuring O(W / D ) atomic operations :
since D> log, W,,, thenifp=1: W~W,,

= [Implementation : atomicity in nano-loop based without lock
= Efficient mutual exclusion between sequential process and parallel work-stealer

= Self-adaptive granularity




33

Interactive application with time constraint

Anytime Algorithm:
+ Can be stopped at any time (with a result)
+ Result quality improves as more time is allocated

In Computer graphics, anytime algorithms are common:
Level of Detail algorithms (time budget, triangle budget, etc...)
Example: Progressive texture loading, triangle decimation (Google Earth)

Anytime processor-oblivious algorithm:

On p processors with average speed IT,,, it outputs in a fixed time T
a result with the same quality than

a sequential processor with speed IT,,,, in time p.IL,,,.

Example: Parallel Octree computation for 3D Modeling

34

Parallel 3D Modeling

3D Modeling :

build a 3D model of a scene from a set of calibrated images

On-line 3D modeling for interactions: 3D modeling from
multiple video streams (30 fps)

Octree Carving 1. soares 06]

A classical recursive anytime 3D modeling algorithm.

Standard algorithms with time control:

Level 0 i Level O
State of a cube:

- Grey: mixed => split Levell .~ gl //’
i - Black: full  : stop 7
Level 1 % - White: empty : stop @ ED ? .
774

Level 2. I

g RN N
SISl T EEEIEE) 555

(]
Level 2 % Width first
s

Depth first
+ iterative deepening

At termination: quick test to decide all grey cubes time control

Width first parallel octree carving36

Well suited to work-stealing
-Small critical path, while huge amount of work (eg. D = 8, W = 164 000)
- non-predictable work, non predictable grain :
For cache locality, each level is processed by a self-adaptive grain :
“sequential iterative” / "parallel recursive split-half”

Octree needs to be “balanced” when stopping:
« Serially computes each level (with small overlap)
+ Time deadline (30 ms) managed by signal protocol

Unbalanced Balanced

Theorem: W.r.t the adaptive in time T on p procs., the sequential algorithm:
- goes at most one level deeper : 1dg-d,1s1;
- computes at most : ng<n, + O(log ny) .




Time(ms)

37
- 16 core Opteron machine, 64 images
- Sequential: 269 ms, 16 Cores: 24 ms
- 8 cores: about 100 steals (167 000 grey cells)

Results
[L. Soares 06]

Time

Time

s HEFEREN]
A A A cPUs

64 cameras, levels 2 to 7

8 cameras, levels 2 to 10

Preliminary result: CPUs+GPU

1000

a Time GPU

-1GPU + 16 CPUs S
- GPU programmed in OpenGL 2 v Ideal
- efficient coupling till 8 but £ [y
does not scale £ *\,\'
2 R .

S e e A e A
78 9 10 11 12 13 14 15 16
CPUs

39

4. Amortizing the arithmetic overhead
of parallelism

Adaptive scheme : extract_seqg/nanoloop // extract_par
» ensures an optimal number of operation on 1 processor
+ but no guarantee on the work performed on p processors

Eg (C++ STL): find_if (first, last, predicate)
locates the first element in [First, Last) verifying the predicate

This may be a drawback (unneeded processor usage) :
* undesirable for a library code that may be used in a complex application,
with many components
+ (or not fair with other users)
« increases the time of the application :
any parallelism that may increase the execution time should be avoided

Motivates the building of work-optimal parallel adaptive algorithm
(processor oblivious)

Overview

¢ Introduction : interactive computation, parallelism and processor oblivious
* Overhead of parallelism : parallel prefix

* Machine model and work-stealing

e Scheme 1: Extended work-stealing : concurently sequential and parallel
* Scheme 2: Amortizing the overhead of synchronization (Nano-loop)
¢ Scheme 3: Amortizing the overhead of parallelism (Macro-loop)

40

4. Amortizing the arithmetic overhead
of parallelism (cont’'d)

Similar to nano-loop for the sequential process :
« that balances the -atomic- local work by the depth of the remaindering one

Here, by amortizing the work induced by the extract_par operation,
ensuring this work to be small enough :

+ Either w.r.t the -useful- work already performed

+ Or with respect to the - useful - work yet to performed (if known)
+ or both.

Eg : find_if (first, last, predicate) :
« only the work already performed is known (on-line)
+ then prevent to assign more than a(Wy,,) operations to work-stealers
» Choices fora(n) :
+n/2 : similar to Floyd’s iteration ( approximation ratio = 2)
* n/log* n : to ensure optimal usage of the work-stealers




Results on find_if

[S. Guelton]

N doubles : time predicate ~ 0.31 ms

With amortization macroloop

41

42

5. Putting things together

processor-oblivious prefix computation

Parallel algorithm based on :
- compute-seq/ extract-par scheme
- nano-loop for compute-seq

- macro-loop for extract-par

P-Oblivious Prefix on 3 proc.

Sequential

Ty 84 Ay, 83 84 85 8z8738ga98 984 @
Main >
Seq. &

A

Parallel

Work-
stealer 1

Work-
stealer 2

P-Oblivious Prefix on 3 proc.

Sequential
Tpa, a, as a,
Main
sea. — MARAZRIE!
Parallel
ai=ab*...*ai

dgdg A7 dg Ag Agdqq a
Work- —
stealer 1
Po
St
ea\(eo\“e
S Py I |
Work-
stealer 2 P,

time

43

44




P-Oblivious Prefix on 3 proc.

Sequential
Tpa, A, az a,

ot
e 71 T, T3 Ty Og

Preempt\ Ty g
Parallel
ci=a5*...ai

ds dg d; lag
Work- I
stealer 1 a6a7a8

Pi=a9*...*ai
a, d.. d
Work-
stealer 2

PD
P | I
= 5]

P-Oblivious Prefix on 3 proc.

Sequential
Tay, a, as a,~ >

Main R
Seq. J[‘"] ﬂ:z ﬂ:s H M m

Preempt | JTg B11

45

Parallel

ai=ab*...*ai

A58 a7 ag
Work-
stealer 1

Pi=a9*...*ai

9 319 dj1 38

Work-
stealer 2

P-Oblivious Prefix on 3 proc.

Sequential
mya, a, az a,~ >

Main
Seq. g U1 T T3 T L Ty o

Parallel

as ag ay ai=ab*...*ai

Wolrk-1 —
stealer ns TEG J'E7
Pi=a9*...*ai
8y a4
Work-
stealer 2 JT,'g JT;1 0

P-Oblivious Prefix on 3 proc.

Sequential
Tyay, a, as a,~ >

.
- B P
i

Implicit critical path on the sequential process

Parallel

as ag ay ai=ab*...*ai

Wolrk-1
stealer J-CS nG J'E7
Pi=a9*...*ai
8y a4
Work-
stealer 2 J'[:g TI:1 0




Analysis of the algorithm

(p+ ]?;jrlave O (%)

. Execution time <

= Sketch of the proof :
Dynamic coupling of two algorithms that complete simultaneously:

= Sequential: (optimal) number of operations S on one processor

= Extract_par : work stealer perform X operations on other processors

- dynamic splitting always possible till finest grain BUT local sequential
« Critical path small (eg :log X witha W=n/log* n macroloop )
Each non constant time task can potentially be splitted (variable speeds)

Ts = —HS and Tp = —(p_l))(_nm +0 (—9—'0 X)

rlave
= Algorithmic scheme ensures T, = T, + O(log X)

=> enables to bound the whole number X of operations performed
and the overhead of parallelism = (s+X) - #ops_optimal

49

Results 2/2 [D Traore]

Prefix sum of 8.10% double on a SMP 8 procs (1A64 1.5GHz/ linux)

Multi-user context :

External charge
(9-p external processes)

Time (s)

him for p processors

#processors

Multi-user context :
Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest
15% benefit over a parallel algorithm for p processors with off-line schedule,

51

50

Results 1/2

Prefix sum of 8.10% double on a SMP 8 procs (1A64 1.5GHz/ linux)

5

[D Traore]

seq: sequential tine (s) =
static grain: average tine (s} ——
adapt grain: average time (s)

Single user context

- Pure sequential

Tinels]

Time (s)

 Optimal off-line on p procs

Oblivious
e
1 2 3 4 5 6 7 8
#processors =

Single-usercontext : processor-oblivious prefix achieves near-optimal performance :
- close to the lower bound both on 1 proc and on p processors

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p processorgk

52

Conclusion

= Fine grain parallelism enables efficient execution on a small number of
processors

= Interest : portability ; mutualization of code ;
= Drawback : needs work-first principle => algorithm design

= Efficiency of classical work stealing relies on Work-first principle :
= Implicitly defenerates a parallel algorithm into a sequential efficient ones ;

= Assumes that parallel and sequential algorithms perform about the same amount of
operations

= Processor Oblivious algorithms based on work-first principle

= Based on anytime extraction of parallelism from any sequential algorithm (may
execute different amount of operations) ;

= Oblivious: near-optimal whatever the execution context is.

Generic scheme for stream computations :
parallelism introduce a copy overhead from local buffers to the output
gzip / compression, MPEG-4 / H264




53

Kaapi (kaapi.gforge.inria.fr) —
= Work stealing / work-first principle =

* Dynamics Macro-dataflow :

445 v partitioning (Metis, ...)

\ | | '+ Fault Tolerance (add/del resources)

Raapk 1 & RWR '

FlowVR (flowvr.sf.net)
+ Dedicated to interactive applications
» Static Macro-dataflow
» Parallel Code coupling

Thank you !

[E Boyer, B Raffin 2006]

55

The Prefix race:
sequential/parallel fixed/ adaptive

Race between 9 algorithms (44 processes) on
an octo-SMPSMP

9 | Adapta ive 8 proc. ;

8 Parallel 8 proc. |

7 Pargllel 7 proc.

6 Parallel 6 proc. |
5 Parallel 5 proc. |
4 Parallel 4 proc. |
3 Parallel 3 proc. |
2

. |

Parﬂllel 2 proc.,

|

‘ :

| gguenna | |
0 5 10 15 20 25
Execution time (seconds)

Sequentiel Statique Adaptatif ||

p=2 | p=4 | p=6 | p=7 | p=8 p=8 |

Minimum 21,83 18,16 | 15,89 | 1499 | 1392 1251 || 876 ‘

" Maximum 2334 | 20,73 | 17.66 | 16,51 | 1573 | 1443 | 1270 |
Moyenne 22,57 19,50 | 17,10 | 1558 | 1484 13,17 11,14 \
Mediane 22,58 19.64 | 17,38 | 1557 | 14,63 | 13,11 | 11,01 |

On each of the 10 executions, adaptive completes first

Back slides

54

Adaptive prefix : some experiments

Prefix of 10000 elements on a SMP 8 procs (I1A64 / linux)

Ok
£ O
E ®
L 18 .E
? (S
Parallel
| v
Adaptive Adaptive
& ? ? “ s 8 7 #processors

#processors

Single user context
Adaptive is equivalent to:
- sequential on 1 proc
- optimal parallel-2 proc. on 2 processors

Multi-user context
Adaptive is the fastest

15% benefit over a static grain algorithm

- optimal parallel-8 proc. on 8 processors

56




1.4

With * = double sum ( rLil=rLi-1] + x[i] )

Single user Processors with variable speeds
Remark for n=4.096.000 doubles :
- “pure” sequential : 0,20 s
- minimal "grain” = 100 doubles : 0.26s on 1 proc
and 0.175 on 2 procs (close to lower bound)

= 2048 double

57

The Moais Group

Scheduling

Adaptive
Algorithms

Execution
Control

Coupling

Moais Platforms

= |cluster 2:
- 110 dual Itanium bi-processors with Myrinet network
= Grlmage (“Grappe” and Image):
- Camera Network
- 54 processors (dual processor cluster)
- Dual gigabits network
- 16 projectors display wall
= Grids:
- Regional: Ciment
- National: Grid5000
* Dedicated to CS experiments
= SMPs:
- 8-way Itanium (Bull novascale)
- 8-way dual-core Opteron + 2 GPUs
= MPSoCs
- Collaborations with ST Microelectronics on STH

Parallel Interactive App.

= Human in the loop .
Parallel machines (cluster) to enable large interactive applications
= Two main performance criteria:

- Frequency (refresh rate)
 Visualization: 30-60 Hz

- Latency (makespan for one iteration) .

e Haptic : 1000 Hz
¢ Object handling: 75 ms
= A classical programming approach: data-flow model
- Application = static graph

« Edges: FIFO connections for data transfert
* Vertices: tasks consuming and producing data
« Source vertices: sample input signal (cameras)
¢ Sink vertices: output signal (projector)
= One challenge: Sl
Good mapping and scheduling of tasks on processors "




