Parallel Systems

A Few Words About the Lecture Organization

Parallel Systems

Four lecturers
> Arnaud Legrand, CNRS, INRIA MESCAL project.
» Vincent Danjean, UJF, INRIA MOAIS project.
> Derrick Kondo, INRIA, INRIA MESCAL project.
» Jean-Louis Roch, INPG, INRIA MOAIS project.
Twelve 3-hours lectures (tentative roadmap)
> Parallel Architectures [28 sep] (A. Legrand)
» High Performance Networks. How to Efficiently Program High
Performance Architectures? [5,12 oct] (V. Danjean)
> Parallel algorithms: base notions [19 oct, 2 nov] (A. Legrand)
Home project [2 nov]
Practical Session [9 nov] (V. Danjean)
Scheduling [16,23 nov] (A. Legrand)
Cloud/Desktop Grids [30 nov] (D. Kondo)
Parallel Algorithms: work-stealing, advanced notions [7,14
dec] (J.L. Roch)
Student Show! [11,18 jan] (1/3 of the final mark)
> Exam [end jan] (2/3 of the final mark)
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Parallel Systems

A Few Words About What We Expect From You

Parallel Systems

The content of this lecture is rather dense and is intended to give
you a broad overview of this area.

» Many of the comments we do are very general and will be enlightening
only if you spend time trying to figure out the whole picture.

» You cannot reasonably expect to have understood everything at the
end of the slides.

1 hour of lecture = at least 1 hour of personal work to re-read and
understand the corresponding slides

> At the beginning of each lecture, you will thus certainly have questions
about last lecture.
If not...that's too bad for you because it will probably mean you
missed some things that will prevent you from fully understanding
the rest of the lecture.

> At the beginning of every lecture, we may ask some of you to briefly
summarize what we talked about in the previous lecture.

2/111



Parallel Systems

Communication

Parallel Systems

There is a website with all the slides as well as practical information
(room location, roadmap, homeworks ... ).

http://mescal.imag.fr/membres/arnaud.legrand /teaching/2009/
M2R_PC.php

If you have a question:
mailto:arnaud.legrand@imag.fr

Send me an email to this address this evening so that | can set up the
mailing list.

| will then send you a very short survey to estimate your current knowl-
edge and background on parallel computing. It is only meant to help
me organizing the lectures.
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Parallel Systems

What is Parallel Computing?

* Parallel computing: using multiple processors/cores in
parallel to solve problems more quickly than with a
single processor/core

* Examples of parallel machines:
* A Chip Multi-Processor (CMP) contains multiple processors
(called cores) on a single chip
* A shared memory multiprocessor (SMP*) by connecting
multiple processors to a single memory system
* A cluster computer that contains multiple PCs combined
together with a high speed network
* A grid is a cluster of networked, loosely-coupled computers
acting to perform very large tasks
* Concurrent execution comes from desire for
performance; unlike the inherent concurrency in a multi-
user distributed system

* * Technically, SMP stands for “Symmetric Multi-Processor” Courtesy of Jean-Francois 2"61'?'1"



Parallel Systems

Motivations of this first course...

* Details of machine are important for performance
* Processor, memory system, communication (not just parallelism)

* Before you parallelize, make sure you’re getting good serial
performance

* What to expect? Use understanding of hardware limits
* There is parallelism hidden within processors
* Pipelining, SIMD, etc
* Locality is at least as important as computation
* Temporal: re-use of data recently used
* Spatial: using data nearby that recently used
* Machines have memory hierarchies
* 100s of cycles to read from DRAM (main memory)
* Caches are fast (small) memory that optimize average case
* Can rearrange code/data to improve locality

Courtesy of Jean-Francois Méhaut
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Parallel Systems

Why Parallel Computing Now?

* Researchers have been using parallel computing for
decades:
* Mostly used in computational science and engineering
* Problems too large to solve on one computer; use 100s or 1000s

* Many companies in the 80s/90s “bet” on parallel
computing and failed
» Computers got faster too quickly for there to be a large market

Courtesy of Jean-Francois Méhaut
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Parallel Systems

Why Parallelism (2008)?

* These arguments are no long theoretical

* All major processor vendors are producing multicore chips
* Every machine will soon be a parallel machine
* All programmers will be parallel programmers???

* New software and programming model
* Want a new feature? Hide the “cost” by speeding up the code first
* All programmers will be performance programmers???

* Some may eventually be hidden in libraries, compilers, and

high level languages

* But a lot of work is needed to get there

* Big open questions:
* What will be the killer apps for parallel machines?

* How should the chips be designed, and how will they be
programmed?

Courtesy of Jean-Francois Méhaut
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Parallel Architectures

Arnaud Legrand, CNRS, University of Grenoble

LIG laboratory, arnaud.legrand@imag.fr

September 28, 2009
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Mool © Killer applications
e Why All Computers must be Parallel
@ Moore Law and Computing Limits
@ Multiple Cores Save Power
@ The Memory Limit
@ Conclusion
© Concurrency Within a CPU
@ Pipelining
@ Instruction Level Parallelism
@ Vector Units
@ Hardware Support for Multi-Threading
@ Concurrency Within a Box
e SMP
@ Multi-cores
© Concurrency Across Boxes
@ Clusters
@ What next?
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Intensive Computation Applications

Killer applications

Courtesy of Jean-Francois Méhaut
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Computing Power Drivers

Killer applications

“Grand Challenge” Applications using computing power
and also memory

Models, simulations and analysis

Wt AN
A/ AS I

E-commerce

CAD/CAM Digital Biology Milifary-Appitentios Meru:




Parallel
Architectures

The Large Hadron Collider Pro;ect
4 detectors

Killer applications

Courtesy of Jean-Francois Méhaut
13/111




Parallel
Architectures

Killer applications

The Large Hadron Collider Project
4 detectors

Storage capacity—
Raw recording rate 0.1 — 1 GBytes/sec

Accumulating at 5-8 PetaBytes/year
10 PetaBytes of disk

Computing Power —
200,000 of today’s fastest PCs

| Muon Chambers

Photon
Inner  Spectrometer

Teadiin
Siem

2

M3

Down-Stream Region
[ e R R |
15 20

Courtesy of Jean-Francois Méhaut
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Earthquake Hazard Assessment
2001 Gujarati (M 7.7) Earthquake, India

Killer applications

Use parallel computing to
simulate earthquakes

Learn about structure of the
Earth based upon seismic
waves (tomography)

Produce seismic hazard
maps (local/regional scale)
e.g. Los Angeles, Tokyo, .
Mexico City, Seattle 20,000 people killed
167,000 injured

= 339,000 buildings destroyed
783,000 buildings damaged

Demo

Courtesy of Jean-Francois Méhaut
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e Why All Computers must be Parallel
@ Moore Law and Computing Limits

Computers must @ Multiple Cores Save Power

b (el @ The Memory Limit

@ Conclusion
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Technology Trends: Microprocessor Capacity

1975 1980 1985 1990 1998
9

004

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Microprocessors have
become smaller, denser,
and more powerful.

10M Micre 500
{ransistars) 2000 (me)
™ Prentim:® 25

e =
A048E Processor
100K @ lpoase 10
Bo28E
10K aoile 01
@ .[(UQU
oo

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra

Courtesy of Jean-Francois Méhaut
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Silicon Future

Moore 2005

45nm \2072

2007 3oh

2009

New Intel technology generation every 2 years
Intel R&D technologies drive this pace well into the next
decade

4+—————— Roadmap

<+— Research ——
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A. Legrand

Limit #1: Power density

Can soon put more transistors on a chip than can afford to turn on.
-- Patterson ‘07

Scaling clock speed (business as usual) will not work

Moore 10000
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Source: Patrick
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Gelsinger, Intel
2010

Courtesy of Jean-Francois Méhaut
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* Moore’s Law

Many people interpret
Moore’s law as “computer
gets twice as fast every
18/24 months”

= which is not true

* The law is about

transistor density

This wrong interpretation
is no longer true
We should have 20GHz
processors right now
And we don’t!

00000

100000

10000

1000

o

Wws w9 A7 M9 1% 199 203 2007

Courtesy of Henri Casanova
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No more Moore?

We are used to getting faster CPUs all the time

We are used for them to keep up with more
demanding software

Known as “Andy giveth, and Bill taketh away”

= Andy Grove

= Bill Gates

It’s a nice way to force people to buy
computers often

But basically, our computers get better, do
more things, and it just happens automatically
Some people call this the “performance free
lunch”

Conventional wisdom: “Not to worry, tomorrow’s
processors will have even more throughput, and anyway

today’s applications are increasingly throttledcpc% fac;gem Cosanova
ed

other than CPU throuahput and memorv spee 217111
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Commodity improvements

= There are three main ways in which commodity

processors keep improving:

= Higher clock rate

= More aggressive instruction reordering and concurrent units

= Bigger/faster caches
= All applications can easily benefit from these

improvements

= at the cost of perhaps a recompilation
= Unfortunately, the first two are hitting their limit

= Higher clock rate lead to high heat, power consumption

= No more instruction reordering without compromising
correctness

Courtesy of Henri Casanova
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Is Moore’s laws not true?

= |ronically, Moore’s law is still true
= The density indeed still doubles
= But its wrong interpretation is not
= Clock rates do not doubled any more
= But we can't let this happen: computers have to get
more powerful
= Therefore, the industry has thought of new ways to
improve them: multi-core
= Multiple CPUs on a single chip
= Multi-core adds another level of concurrency
= But unlike, say multiple functional units, hard to
compile for them
= Therefore, programmers need to be trained to develop
code for multi-core platforms
" See ICS432

Courtesy of Henri Casanova
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Limit #2: Hidden Parallelism Tapped Out

* Superscalar (SS) designs were the state of the art;
many forms of parallelism not visible to programmer
* multiple instruction issue

» dynamic scheduling: hardware discovers parallelism
between instructions

* speculative execution: look past predicted branches
* non-blocking caches: multiple outstanding memory ops
* You may have heard of these in 61C, but you haven’t
needed to know about them to write software

* Unfortunately, these sources have been used up

Courtesy of Jean-Francois Méhaut
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Architectues Limit #3: Speed of Light (Fundamental)

1 Tflop/s, 1
Tbyte sequential :n = 0.3
machine

* Consider the 1 Tflop/s sequential machine:

* Data must travel some distance, r, to get from memory
to CPU.

* To get 1 data element per cycle, this means 102 times
per second at the speed of light, ¢ = 3x108 m/s. Thusr
<c/102=0.3 mm.

* Now put 1 Tbyte of storage in a 0.3 mm x 0.3 mm area:

* Each bit occupies about 1 square Angstrom, or the size
of a small atom.

* No choice but parallelism

Courtesy of Jean-Francois Méhaut
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Parallelism Saves Power

* Exploit explicit parallelism for reducing power
* Intel Slides

Power Saving

* Using additional cores
— Increase density (= more transistors = more
capacitance)
— Can increase cores (2x) and performance (2x)

— Or increase cores (2x), but decrease frequency (1/2):
same performance at "4 the power

* Additional benefits
— Small/simple cores > more predictable performance

Courtesy of Jean-Francois Méhaut
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Why Multi-Core?

Power Savin|
G Performance

W Power

1.00x

Max Frequency
Relative single-core frequency and Vcc
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Over-clocking

Performance

Power Saving B Power

1.00x

Over-clocked Max Frequency
(+20%)

Relative single-core frequency and Vcc
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Under-clocking

Performance

Power Saving B Power

1.00x

0.51x

Over-clocked Max Frequency Under-clocked
(+20%) (-20%)

Relative single-core frequency and Vcc
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Multi-Core
Energy-Efficient Performance

M Dual-Core
1.73x Performance 1.73x

Power Saving M Power

1.00x

Over-clocked Max Frequency Dual-core
(+20%) (-20%)

Relative single-core frequency and Vcc
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Processor Performance
Flops

1.E+12

1.E+11
Power Saving

Intel® Pentium®
1.E+10 4

Intel® Pentium® |1l Architecture’ " (& o= |_me|® C
1.E+09 ) Microarchitecture

1.E+08 =

LE+07 @355

J‘-m9|® Pentium® Il Architecture

Intel® Pentium® Architecture

1.E+06

1985 1990 1995 2000 2005 2010

Reaching Petascale with ~100,000: Processors, in 2010*

Assuming approx. 100Glops_processors
* Petascale assumes 10's of PF Peak Performance and 1PF Sustained Performance on HPC Applications.




* The Memory Bottleneck

® The memory is a very common
bottleneck that beginning programmers
often don’t think about
= When you look at code, you often pay
more attention to computation
= a[i] = b[j] + c[k]
= The access to the 3 arrays take more time than
doing an addition

* For the code above, the memory is the
bottleneck for many machines!

Courtesy of Henri Casanova
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* Why the Memory Bottleneck?

® In the 70’s, everything was balanced

= The memory kept pace with the CPU

" n cycles to execute an instruction, n cycles to
bring in a word from memory

® No longer true
= CPUs have gotten 1,000x faster
= Memory have gotten 10x faster and
1,000,000x larger
= Flops are free and bandwidth is
expensive and processors are
STARVED for data

Courtesy of Henri Casanova
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* Current Memory Technology

Memory Latency Peak Bandwidth
DDR400 SDRAM 10 ns 6.4 GB/sec
DDR533 SDRAM 9.4 ns 8.5 GB/sec
DDR2-533 SDRAM |11.2ns 8.5 GB/sec
DDR2-600 SDRAM |13.3 ns 9.6 GB/sec
DDR2-667 SDRAM | ??? 10.6 GB/sec
DDR2-800 SDRAM | ??? 12.8 GB/sec

source: http://www.xbitlabs.com/articles/memory/display/ddr2-ddr_2.html

Courtesy of Henri Casanova
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Memory Limit

* Memory Bottleneck: Example

= Fragment of code: a[i] = b[j] + c[K]
= Three memory references: 2 reads, 1 write
= One addition: can be done in one cycle
= |f the memory bandwidth is 12.8GB/sec, then the rate
at which the processor can access integers (4 bytes)
is: 12.8*1024*1024*1024 / 4 = 3.4GHz
= The above code needs to access 3 integers
= Therefore, the rate at which the code gets its data is
~1.1GHz
= But the CPU could perform additions at 4GHz!
= Therefore: The memory is the bottleneck
= And we assumed memory worked at the peak!!!
= We ignored other possible overheads on the bus
= In practice the gap can be around a factor 15 or higher

Courtesy of Henri Casanova
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Memory Limit

* Reducing the Memory Bottleneck

® The way in which computer architects
have dealt with the memory bottleneck
is via the memory hierarchy

larger, slower, cheaper R
c
c
CPU | ¢ a
c Memory
: h
e
——
register  L1-cache L2-cache | L3-cache | memory (DRAM) disk
reference  (SRAM) (SRAM) (DRAM) reference reference
reference reference | reference hundreds tens of thousands
subns  1-2cycles 10cycles 20 cycles cycles cycles

Courtesy of Henri Casanova
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Memory Limit

Locality

The memory hierarchy is useful because of “locality”

Temporal locality: a memory location that was
referenced in the past is likely to be referenced again
Spatial locality: a memory location next to one that
was referenced in the past is likely to be referenced
in the near future

This is great, but what we write our code for
performance we want our code to have the maximum
amount of locality

= The compiler can do some work for us regarding locality

= But unfortunately not everything

Courtesy of Henri Casanova
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* Programming for Locality

= Essentially, a programmer should keep
a mental picture of the memory layout of
the application, and reason about
locality
= When writing concurrent code on a multi-
core architecture, one must also thing of
which caches are shared/private
® This can be extremely complex, but
there are a few well-known techniques

® The typical example is with 2-D arrays

Courtesy of Henri Casanova
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Increasing I/O Signaling Rate
to Fillithe Gap

Memory Limit
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e =, == Silicon Photonics
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Source: Intel
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Increasing Memory Bandwidth
e Keep Pace

3D Memory Stacking
BW (GB/sec) Under 2W. -
Power and 10 Signals Go
Memory Limit 3D Memory * Through DRAM to CPU
Higher BW within Thin DRAM Die

Power Envelope Through DRAM Vias

Heat-Sink

CPU /

DRAM

SECEEEEENEEEE
1990 2010
Package

Source: Intel
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Memory Limit

1 ZFlops
100 EFlops
10 EFlops
1 EFlops
100 PFlops
10 PFlops
1 PFlops
100 TFlops
10 TFlops
1 TFlops
100 GFlops

10 GFlops

1 GFlops

100 MFlops
1993

Source: HPC - www.top500.0rg, June 2006, Intel
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Revolution is Happening Now

* Chip density is 10.000.000
continuing increase
~2X every 2 years 1,000,000
* Clock speed is not
e * Number of processor 100,000
cores may double
instead —
* There is little or no
hidden parallelism
(ILP) to be found oo
* Parallelism must be oo

exposed to and

managed by software
10

/
]

\

A GE

i
1 / ‘/{: . B (o00) |
B e « Clock Speed (MHz)
. vegle s aPower (W)
Source: Intel, Microsoft (Sutter) and -‘P"f'C'“‘k (Lp)
Stanford (Olukotun, Hammond) 0
1970 1975 1980 1985 1990 19@Hurt2epdf JeNoFrargooMéhaut
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Conclusion

Multicore in Products

* “We are dedicating all of our future product development to
multicore designs. ... This is a sea change in computing”
Paul Otellini, President, Intel (2005)

* All microprocessor companies switch to MP (2X CPUs / 2 yrs)

O Procrastination penalized: 2X sequential perf. / 5 yrs

Manufacturer/Year AMD/ 05 Intel/”06 IBM/'04 Sun/07
Processors/chip 2 2 2 8
Threads/Processor 1 16
Threads/chip 2 128

And at the same time,

* The STI Cell processor (PS3) has 8 cores

* The latest NVidia Graphics Processing Unit (GPU) has 128 cores
* Intel has demonstrated the TeraScale processor (80-core),

research chip

Courtesy of Jean-Francois Méhaut
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Moore's Law still holds but we are limited by the law of physics.

» With a single CPU, the speed of light will keep us away from
TeraFlops.

> Increasing clock rate is bad (higher energy consumption, higher
temperature ~ need for cooling and thus even higher energy con-
sumption).

Conclusion

» Automatic concurrency inside CPU is already there without you
even noticing it. Don't expect too much on this side.

To improve performances:
» we need many different computation units
» data need to be close to computation units and well managed

» we need to expose parallelism and program with such architectures
in mind.

44 /111
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© Concurrency Within a CPU
e ® Pipelining
@ Instruction Level Parallelism
@ Vector Units
@ Hardware Support for Multi-Threading

45 /111
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* Concurrency within a CPU

Registers
+ ALUs
+ Hardware to decode
instructions and do all
Concurrency types of useful things

Within a CPU
Caches

I/O devices
Displays
Keyboards

Busses

Courtesy of Henri Casanova
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* Concurrency within a CPU

= Several techniques to allow
concurrency within a single CPU
= Pipelining
* RISC architectures
= Pipelined functional units

= [LP
= Vector units
= Hardware support of multi-threading

= |et’s look at them briefly

Courtesy of Henri Casanova
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Courtesy of Henri Casanova
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Pipelining

= |f one has a sequence of tasks to do

= |f each task consists of the same n steps or stages

= |f different steps can be done simultaneously

®= Then one can have a pipelined execution of the tasks
" e.g., for assembly line

fpelinine = Goal: higher throughput (i.e., number of tasks per

time unit)

-:]_ Time to do 1 task =9
Time to do 2 tasks =13
Time to do 3 tasks =17
Time to do 4 tasks =21
Time to do 10 tasks =45

Time to do 100 tasks =409

Pays off if many tasks

Courtesy of Henri Casanova
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Pipelining

* Pipelining

Each step goes as fast as the
sIowest stage

Therefore, the asymptotic throughput
(i.e., the throughput when the number
of tasks tends to infinity) is equal to: duration of the

1/ (duration of the slowest stage) slowest stage

Therefore, in an ideal pipeline, all
stages would be identical (balanced
pipeline)

Question: Can we make computer
instructions all consist of the same
number of stage, where all stages take
the same number of clock cycles?

Courtesy of Henri Casanova
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Pipelining

* RISC

= Having all instructions doable in the same number of
stages of the same durations is the RISC idea

= Example:
= MIPS architecture (See THE architecture book by Patterson
and Hennessy)
= 5 stages
Instruction Fetch (IF)
Instruction Decode (ID)

Instruction Execute (EX) .
Memory accesses (MEM) Concurrent execution

Register Write Back (WB) of two instructions

= Each stage takes one clock cycle
cone e i D

oaoo s fs,re | ) NN ER

Courtesy of Henri Casanova
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* Pipelined Functional Units

Although the RISC idea is attractive, some operations are just
too expensive to be done in on clock cycle (during the EX stage)

= Common example: floating point operations

= Solution: implement them as a sequence of stages, so that they
can be pipelined

Pipelining

Courtesy of Henri Casanova
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Pipelining Today

= Pipelined functional units are common

= Fallacy: All computers today are RISC

= RISC was of course one of the most fundamental “new”
ideas in computer architectures

= x86: Most commonly used Instruction Set Architecture today

Pipelining = Kept around for backwards compatibility reasons, because
it's easy to implement (not to program for)

= BUT: modern x86 processors decode instructions into
“micro-ops”, which are then executed in a RISC manner

= New Itanium architecture uses pipelining
= Bottom line: pipelining is a pervasive (and
conveniently hidden) form of concurrency in
computers today
= Take a computer architecture course to know all about it

Courtesy of Henri Casanova
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* Concurrency within a CPU

= Several techniques to allow
concurrency within a single CPU
= Pipelining
= |LP
= Vector units
= Hardware support of multi-threading

Courtesy of Henri Casanova
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* Instruction Level Parallelism

Instruction Level Parallelism is the set of techniques
by which performance of a pipelined processor can
be pushed even further
ILP can be done by the hardware

= Dynamic instruction scheduling

= Dynamic branch predictions

= Multi-issue superscalar processors

ILP can be done by the compiler

= Static instruction scheduling

= Multi-issue VLIW processors

= with multiple functional units

Broad concept: More than one instruction is issued
per clock cycle

" e.g., 8-way multi-issue processor

Courtesy of Henri Casanova
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* Concurrency within a CPU

= Several techniques to allow
concurrency within a single CPU
= Pipelining
= |LP
= Vector units
= Hardware support of multi-threading

Courtesy of Henri Casanova
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* Vector Units

= A functional unit that can do elt-wise operations
on entire vectors with a single instruction, called
a vector instruction
= These are specified as operations on vector registers

= A “vector processor” comes with some number of such
registers
* MMX extension on x86 architectures

Vector Units

#elts #elts
A A

Courtesy of Henri Casanova
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* Vector Units

= Typically, a vector register holds ~ 32-64 elements

= But the number of elements is always larger than the
amount of parallel hardware, called vector pipes or lanes,
say 2-4

Vector Units

#elts / #pipes adds in
parallel

Courtesy of Henri Casanova
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Vector Units n

* MMX Extension

Many techniques that are initially implemented in the
“supercomputer” market, find their way to the mainstream
Vector units were pioneered in supercomputers
= Supercomputers are mostly used for scientific computing
= Scientific computing uses tons of arrays (to represent mathematical
vectors and often does regular computation with these arrays
= Therefore, scientific code is easy to “vectorize”, i.e., to generate
assembly that uses the vector registers and the vector instructions
Intel's MMX or PowerPC’s AltiVec
= MMX vector registers
= eight 8-bit elements
= four 16-bit elements
* two 32-bit elements
= AltiVec: twice the lengths
Used for “multi-media” applications
= image processing
= rendering

Courtesy of Henri Casanova
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Parallel
Architectures

Vectorization Example

= Conversion from RGB to YUV

Y = (9798*R + 19235*G + 3736*B) / 32768;
U = (-4784*R - 9437*G + 4221*B) / 32768 + 128;
V = (20218*R - 16941*G - 3277*B) / 32768 + 128;

= This kind of code is perfectly parallel as all pixels can
ecior fnis be computed independently
= Can be done easily with MMX vector capabilities

* Load 8 R values into an MMX vector register

= Load 8 G values into an MMX vector register

® Load 8 B values into an MMX vector register

® Do the *, +, and/in parallel

* Repeat

Courtesy of Henri Casanova

60 /111



* Concurrency within a CPU

= Several techniques to allow
concurrency within a single CPU
= Pipelining
" ILP
= Vector units

MUl Thresding = Hardware support of multi-threading

Courtesy of Henri Casanova
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* Multi-threaded Architectures

= Computer architecture is a difficult field
to make innovations in
= Who'’s going to spend money to
manufacture your new idea?
= Who’s going to be convinced that a new
compiler can/should be written
= Who’s going to be convinced of a new
approach to computing?
= One of the “cool” innovations in the last
decade has been the concept of a
“Multi-threaded Architecture”

Multi-Threading

Courtesy of Henri Casanova
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* Multi-threading

= Multi-threading has been arounds for
years, so what’s new about this???

® Here we're talking about Hardware
Support for threads
= Simultaneous Multi Threading (SMT)
= SuperThreading
= HyperThreading

= | et’s try to understand what all of these
mean before looking at multi-threaded
Supercomputers

Multi-Threading

Courtesy of Henri Casanova
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* Single-threaded Processor

® The processor provides the illusion
of concurrent execution
= Front-end: fetching/decoding/reordering
= Execution core: actual execution

® Multiple programs in memory

= Only one executes at a time
= 4-issue CPU with bubbles
= 7-unit CPU with pipeline bubbles

® Time-slicing via context switching

Multi-Threading

Courtesy of Henri Casanova
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Parallel

* Simplified Example CPU

Front-end

Execution
Multi-Threading Core

LN (0000
H[TH {0000
[T | 0000
T[] {0000

®= The front-end can issue four instructions to the
execution core simultaneously
= 4-stage pipeline

®= The execution core has 8 functional units

" eaCh a 6'Stage pipeline Courtesy of Henri Casanova
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Parallel

* Simplified Example CPU

o =
Front-end 1
— ||
1|
.

Execution
Multi-Threading Core

[TT] | HONO
[T} |CHO

= The front-end is about to issue 2 instructions

= The cycle after it will issue 3

= The cycle after it will issue only 1

= The cycle after it will issue 2

= There is complex hardware that decides what can be issued

Courtesy of Henri Casanova
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Parallel

* Simplified Example CPU

"~ Ie=jem]
] -
Front-end ] =] |
=] |-
Execution
Multi-Threading Core

= At the current cycle, two functional units are used

= Next cycle one will be used

= Andsoon

- Thekwhile slots are “pipeline bubbles”: lost opportunity for doing useful
wor

= Due to low instruction-level parallelism in the program
Courtesy of Henri Casanova
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Architectures

Multiple Threads in Memory

I I . . - .
el el ) frmp—
 E . . 1
RAM |[=== == ==
H BN BN BN B . [rpp——
LA RN N N | fmp——
EN BN BN BN . . - .
o B g B Jrm——
g B g BN rmp——
Multi-Threading
[~ [l )
[ o | ] = Four thre.a.ds in mempry
= e = |n a “traditional” architecture,

only the “red” thread is

CPU executing

=  When the O/S context switches
it out, then another thread gets
torun

Courtesy of Henri Casanova
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* Single-threaded SMP?

Exmcsten Lo

Multi-Threading E EE

nnE| I
[T
[
111

= Two threads execute at once, so threads spend
less time waiting

= The number of “bubbles” is also doubled
2> Twice as much speed and twice as much waste

Courtesy of Henri Casanova
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Super-threading

= Principle: the processor can execute more
than one thread at a time

= Also called time-slice multithreading
= The processor is then called a multithreaded
processor
= Requires more hardware cleverness
® logic switches at each cycle

= Leads to less Waste - =
= Athread can run during a cycle while another
it lreed i thread is waiting for the memory —~um.
= Just a finer grain of interleaving e

= But there is a restriction

= Each stage of the front end or the execution -
core only runs instructions from ONE thread! =
=

-

= Does not help with poor instruction parallelisi
within one thread
= Does not reduce bubbles within a row w

Courtesy of Henri Casanova
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Parallel

* Hyper-threading

Principle: the processor can execute
more than one thread at a time, even
within a single clock cycle!!

= Requires even more hardware
cleverness

= |ogic switches within each cycle

® On the diagram: Only two threads

execute simultaneously.

Multi-Threading = Inter’s hyper-threading only adds 5% to
the die area

= Some people argue that “two” is not
“hyper” ©
= Finest level of interleaving
= From the OS perspective, there are two
“logical” processors -

Courtesy of Henri Casanova
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A Legrand Multi-threaded Cores

All Large Core

| ey L
X
[ | |

and

- - Small Core [N PR
| ELL

| | All Small Core

Multi-Threading - - - - - - -
L ]| | [ 0 | |

Goal: Energy Efficient Petascale with Multi-threaded Cores

Note: the above pictures don't represent any current or future Inte! products
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Increasing Processor Performance

Threugh Mulu=threaded Cores
Flops

1.E+15Peta

1.E+14

1.E+13

1E+12Tera

1.E+11
1.E+10

Multi-Threading —— Pentium® 11 Archigu‘rZF IUm® 4 Architecture
E+H iga
Pentium® I Architecture
1.E+08 Pentium®-Architecture
4
1.E+0 86 ® s

7
1.E+06

1985 1990 1995 P100[0) 2005

Reaching Petascale with ~5,000 Processors.
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Concurrency

Within a Box o Concurrency Within a Box
e SMP
@ Multi-cores
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* Concurrency within a “Box”

® Two main techniques
= SMP
= Multi-core

= |et’s look at both of them

Courtesy of Henri Casanova
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Parallel

* Multiple CPUs

®= We have seen that there are many ways in
which a single-threaded program can in fact
achieve some amount of true concurrency in
a modern processor
= ILP, vector instructions

= On a hyper-threaded processors, a single-
threaded program can also achieve some
amount of true concurrency

= But there are limits to these techniques, and
many systems provide increased true
concurrency by using multiple CPUs

Courtesy of Henri Casanova
76 /111



Parallel
Architectures | S M P

= Symmetric Multi-Processors
= often mislabeled as “Shared-Memory Processors”, which
has now become tolerated

= Processors are all connected to a single memory

= Symmetric: each memory cell is equally close to all
processors
= Many dual-proc and quad-proc systems

= e.g., for servers e e
o o o

Main memory

Courtesy of Henri Casanova
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Parallel

* Shared Memory and Caches?

= When building a shared memory system with
multiple processors / cores, one key question is:
where does one put the cache?

= Two options

Inteconnectlon network

Multi-cores

Main memory Main memory

Shared Cache Private Caches

Courtesy of Henri Casanova
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Architectures | S h ared CaC h eS

= Advantages
= Cache placement identical to single cache
= Only one copy of any cached block
= Can't have different values for the same memory location
= Good interference
= One processor may prefetch data for another
= Two processors can each access data within the same cache block,
enabling fine-grain sharing
= Disadvantages
= Bandwidth limitation
= Difficult to scale to a large number of processors
= Keeping all processors working in cache requires a lot of bandwidth
Multi-cores = Size limitation
= Building a fast large cache is expensive
= Bad interference
= One processor may flush another processor’s data

Courtesy of Henri Casanova
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Shared Caches

= Shared caches have known a strange evolution

= Early 1980s
= Alliant FX-8

= 8 processors with crossbar to interleaved 512KB cache

= Encore & Sequent
= first 32-bit microprocessors
= two procs per board with a shared cache

®= Then disappeared
= Only to reappear in recent MPPs
= Cray X1: shared L3 cache
= IBM Power 4 and Power 5: shared L2 cache
= Typical multi-proc systems do not use shared
caches
= But they are common in multi-core systems

Courtesy of Henri Casanova
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* Caches and multi-core

= Typical multi-core architectures use
distributed L1 caches

| L1 Cache | | L1 Cache |

= But lower levels of caches are shared

| L1 Cache | | L1 Cache |

‘ L2 Cache ‘

Courtesy of Henri Casanova
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* Multi-proc & multi-core systems

Processor #1 Processor #2
[ Core#1 | [ Core#2 | [ Core#1 | [ Core#2 |
| L1 Cache | | L1 Cache | | L1 Cache | | L1 Cache |

‘ L2 Cache ‘ ‘ L2 Cache ‘

Courtesy of Henri Casanova
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* Private caches

® The main problem with private caches is that
of memory consistency

= Memory consistency is jeopardized by having
multiple caches
= P1 and P2 both have a cached copy of a data item
= P1 write to it, possibly write-through to memory
= At this point P2 owns a stale copy

® When designing a multi-processor system,
one must ensure that this cannot happen
= By defining protocols for cache coherence

Courtesy of Henri Casanova
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Parallel

Architectures | Snoopy CaChe_COherence

State

Address
/ Data

memory bus

= The memory bus is a broadcast medium
= Caches contain information on which addresses they store
= Cache Controller “snoops” all transactions on the bus

Multi-cores = A transaction is a relevant transaction if it involves a cache
block currently contained in this cache

= Take action to ensure coherence
= invalidate, update, or supply value

Courtesy of Henri Casanova
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Multi-cores

* Limits of Snoopy Coherence

MEM

°|MEM

1.28 GB/s

gache

25.6 GB/s
ﬁ

Assume:
4 GHz processor

=> 16 GB/s inst BW per processor (32-
bit)

=> 9.6 GB/s data BW at 30% load-store
of 8-byte elements

Suppose 98% inst hit rate and 90% data
hit rate

=> 320 MB/s inst BW per processor
=> 960 MB/s data BW per processor
=>1.28 GB/s combined BW

Assuming 10 GB/s bus bandwidth
8 processors will saturate the bus
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Parallel
Architectures

Sample Machines

= |ntel Pentium Pro Quad
= Coherent
= 4 processors

= Sun Enterprise server
Multi-cores = Coherent

= Up to 16 processor and/or
memory-1/O cards

cPU
Interrupt | 256-KB.
controller | Lo$

Bus interface

P-Pro P-Pro || P-Pro
module || module || module

(64-bit dala, 36-bil addr ess, 66 MHz)

< P-Probus

i

Memory
controller

1, 2., or d-way
interleaved
DRAM

GPU/mem
cards

10 cards

[

M

M ;
Ul u

g@F

LSl s »

Courtesy of Henri Casanova
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Directory-based Coherence

= |dea: Implement a “directory” that keeps track of
where each copy of a data item is stored
= The directory acts as a filter
= processors must ask permission for loading data from
memory to cache
= when an entry is changed the directory either update or
invalidate cached copies
= Eliminate the overhead of broadcasting/snooping, a
thus bandwidth consumption

= But is slower in terms of latency

Multicorss = Used to scale up to numbers of processors that
would saturate the memory bus

Courtesy of Henri Casanova
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* Example machine

= SGI Altix 3000

® A node contains up to 4
ltanium 2 processors and
32GB of memory

Uses a mixture of snoopy
and directory-based
coherence

Up to 512 processors that
are cache coherent (global
address space is possible for
larger machines)

“Best of Show"
—LinuxWorld 2003

Courtesy of Henri Casanova
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* Sequential Consistency?

= A lot of hardware and technology to ensure
cache coherence

= But the sequential consistency model may be
broken anyway
= The compiler reorders/removes code
= Prefetch instructions cause reordering
= The network may reorder two write messages

= Basically, a bunch of things can happen

= Virtually all commercial systems give up on
the idea of maintaining strong sequential
consistency

Courtesy of Henri Casanova
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* Weaker models

® The programmer must program with
weaker memory models than Sequential
Consistency

® Done with some rules
= Avoid race conditions
= Use system-provided synchronization

primitives

= We will see how to program shared-
memory machines
= |CS432 is “all” about this
= We’'ll just do a brief “review” in 632

Courtesy of Henri Casanova
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Concurrency
Across Boxes

© Concurrency Across Boxes
@ Clusters
@ What next?
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Motivation

Parallel

Architectures Parallel Machines

> Parallel machines are expensive.

» The development tools for workstations are more mature than
the contrasting proprietary solutions for parallel computers -
mainly due to the non-standard nature of many parallel sys-
tems.

Workstation evolution

> Surveys show utilization of CPU cycles of desktop workstations
is typically < 10%.

» Performance of workstations and PCs is rapidly improving

» The communications bandwidth between workstations is in-
creasing as new networking technologies and protocols are
implemented in LANs and WAN:Ss.

- » As performance grows, percent utilization will decrease even

further! Organizations are reluctant to buy large supercom-

puters, due to the large expense and short useful life span.
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Towards clusters of workstations

Parallel
Architectures

» Workstation clusters are easier to integrate into existing networks
than special parallel computers.

» Workstation clusters are a cheap and readily available alternative
to specialized High Performance Computing (HPC) platforms.

» Use of clusters of workstations as a distributed compute resource
is very cost effective - incremental growth of system!!!

Definition.

A cluster is a type of parallel or distributed processing system (MIMD),
which consists of a collection of interconnected stand-alone/complete
computers cooperatively working together as a single, integrated com-
puting resource.

Clusters
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Definition

Parallel

Architactures A typical cluster
» A cluster is mainly homogeneous and is made of high perfor-
mance and generally rather low cost components (PCs, Work-
stations, SMPs).
» Composed of a few to hundreds of machines.
> Network: Faster, closer connection than a typical LAN net-
work; often a high speed low latency network (e.g. Myrinet,
InfiniBand, Quadrix, etc.); low latency communication proto-
cols; looser connection than SMP.
Typical usage
> Dedicated computation (rack, no screen and mouse).
> Non dedicated computation: Classical usage during the day
(word, latex, mail, gcc) / HPC applications usage during the
night and week-end.
Clusters Biggest clusters can be split in several parts:
» computing nodes; » front (interactive) node.

> |/0 nodes;
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A few examples

Parallel
Architectures

Berkeley NOW (1997)
100 SUN UltraSPARCs.
Myrinet 160MB/s.

Fast Ethernet.

Clusters
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A few examples

Parallel
Architectures

‘ Icluster (2000)
_ > 225 HP iVectra PIIl 733 Mhz.
» Fast Ethernet.
i’ 81.6 Gflops (216 nodes).

> top 500 (385) June 2001.

Clusters
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A few examples

Parallel
Architectures

Digitalis (2008)
34 nodes (2 xeon quad cores
~» 272 cores) with 2 x 8Gb of

RAM and 2 x 160Gb of HD
each.

Infiniband.
Giga Ethernet.

Clusters
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Clusters of clusters (HyperClusters)

Parallel
Architectures

DAS3: ASCI (Advanced School for Computing and
Imaging),Netherlands.

Five Linux supercomputer
clusters with 550 AMD
Opteron processors.

1TB of memory and 100TB of
storage.

Myricom Myri-10G network
inside clusters.

Clusters are interconnected by
a SURFnet’s multi-color opti-
cal backbone.

What next?
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The concept of Grid. ..

Parallel
Architectures

A. Legrand

The Grid: Blueprint for a New Comput-
ing Infrastructure (1998); lan Foster, Carl
Kesselman, Jack Dongarra, Fran Berman,

Analogy with the electric supply:

» You don't know where the energy
comes from when you turn on your
coffee machine.

» You don't need to know where your
computations are done.

What next?
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The concept of Grid (cont'd)

Parallel
Architectures

A grid is an infrastructure that couples:

» Computers (PCs, workstations, clusters, traditional supercomput-
ers, and even laptops, notebooks, mobile computers, PDA, and
so on);

> Software Databases (e.g., transparent access to human genome
database);

> Special Instruments (e.g., radio telescope-SETI@Home Searching
for Life in galaxy, Astrophysics@Swinburne for pulsars, a cave);

» People (maybe even animals who knows ?;-)

across the local/wide-area networks (enterprise, organizations, or In-
ternet) and presents them as an unified integrated (single) resource.

What next?
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What does a Grid look like?

Parallel
Architectures

A. Legrand

What next?

It is very big and very heterogeneous!
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Various versions of “Grid "

Parallel

Architectures You have probably heard of many buzzwords.
Super-computing; » Web Services;
Global Computing; » Cloud Computing;
» Ambient computing;
Grid Computing; > Peer-to-peer;
>

>
>
> Internet Computing;
| 4
> Web;

Meta-computing;

Large Scale Distributed Systems

“A distributed system is a collection of independent com-
puters that appear to the users of the system as a single
computer”

Distributed Operating System. A. Tannenbaum, Pren-
What next? tice Hall, 1994
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Tentative taxonomy

Parallel

P Purpose
» Information: share knowledge.
» Data: large-scale data storage.
» Computation: aggregate computing power.
Deployment model
> Not necessarily fully centralized.

» Use of caches and proxys to reduce c

gestion.
» Hierarchical structure is often used.

» Centralized information

Client/server

Peer-to-peer
(& ’ -

» Each peer acts both as a client and a
server.
» The load is distributed over the whole net
work.

What next?

» Distributed information.
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Example: Web sites

Client/server; information grid

Parallel
Architectures

Context
> Probably the first “grid”.
> Information is accessed through a URL or more often through
a search engine.
> Information access is fully transparent: you generally don't
know where the informations comes from (mirrors, RSS feeds,...).

Challenges Going peer-to-peer ? Web 2.0: users also contribute.

» Social networks (Facebook).

» Recommendations (google and amazon.com).

» Crowdsourcing (wikipedia, marmiton).

» Video and photo sharing (youtube).

» Media improvement (e.g., linking picassa and google maps).
» Ease of finding relevant information and ability to tag data.

What next?
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Example: Napster

Client/server; data grid

Parallel
Architectures

Context

» The first massively popular “peer-to-
peer” file (MP3 only) sharing system
(1999).

» Central servers maintain indexes of con-
nected peers and the files they provide.

» Actual transactions are conducted di-
rectly between peers.

Drawbacks

> More client/server than truly peer-to-
peer.

» Hence, servers have been attacked (by
courts and by others to track peers of-

Wizt el fering copyrighted materials).
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Example: Gnutella, Kazaa, Freenet, Chord

P2P; data grid

Parallel

Architectures Context

> Removal of servers: searching can be done by flooding in
unstructured overlays.

» Use of supernodes/ultrapeers (nodes with a good CPU and
high bandwidth) for searching.

» Structured (hypercubes, torus, ...) overlay networks.
» Downloading from multiple sources using hash blocks and re-
dundancy.

I
N
TR
=
N
SN

What next?
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Example: Gnutella, Kazaa, Freenet, Chord

P2P; data grid

el Context
> Removal of servers: searching can be done by flooding in
unstructured overlays.
» Use of supernodes/ultrapeers (nodes with a good CPU and
high bandwidth) for searching.

» Structured (hypercubes, torus, ...) overlay networks.
» Downloading from multiple sources using hash blocks and re-
dundancy.
Challenges

> Ensuring anonymity.

> Ensuring good throughput and efficient multi-cast (network
coding, redundancy).

» Avoiding polluted data.

» Publish-subscribe overlays for fuzzy or complex queries.

What next? > Free-riders.
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Example: Internet Computing (SETI@home)

Client/server; computation grid

Parallel
Architectures

Context

» Search for possible evidence of radio transmissions from ex-

traterrestrial intelligence using data from a telescope.

The client is generally embedded into a screensaver.

The server distributes the work-units to volunteer clients.

Attracting volunteers with hall of fame and teams.

Need to cross-check the results to detect false positives.

5.2 million participants worldwide, over two million years of

aggregate computing time since its launch in 1999. 528 Ter-

aFLOPS (Blue Gene peaks at just over 596 TFLOPS with

sustained rate of 478 TFLOPS).

» Evolved into BOINC: Berkeley Open Infrastructure for Net-
work Computing (climate prediction, protein folding, prime

oA number factorizing, fight cancer, Africa@home, ...).

vVvyVvyyypy
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Example: Internet Computing (SETI@home)

Client/server; computation grid

Parallel
Architectures

Challenges

» Attract more volunteers: credits, ribbons and medals, connect
with facebook.
> Volunteer thinking: use people’s brains (intelligence, knowl-
edge, cognition) to locate’ solar dust, fossils, fold proteins.
> Works well for computation intensive embarrassingly parallel
applications.
> Really parallel applications.
» Data intensive applications.
> Soft real-time applications.
> Security.
» Would you let anyone execute anything on your PC?
> Use sandboxing and virtual machines.

What next? > Need to go peer-to-peer (OurGrid).
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Example: Meta-computing

Client/server; computation grid

Parallel
Architectures

Context

—
» Principle: buy computing services : o A
3 ey \‘l

(pre-installed applications 4+ com- %,
puters) on the Internet.

» Examples: Netsolve (UTK), ‘
NINF (Tsukuba), DIET and AN .%f\. 4\
Scilab // (ENS Lyon/INRIA), llll W
Serveur Serveur I!r!rl 55
Challenges

» Data storage and distribution: avoid multiple transfers be-
tween clients and servers when executing a sequence of oper-
ations.

» Efficient data redistribution.

» Security for file transfers

> Peer-to-peer deployment.

What next?

107 /111



Example: grid computing

Client/server; computation grid

PRSI On text
» Principle: use a virtual supercomputer and execute applications on

remote resources.
“l need 200 64 bits machines with 1Tb of storage from 10:20 am to
10:40 pm."”

» Need to match and locate resources, schedule applications, handle
reservations, authentication, ...

» Examples: Globus, Legion, Unicore, Condor, ...

hallenges

» Obtaining good performances while deploying parallel codes on mul-
tiple domains.

» Communication and computation overlap. High-performance com-
munications on heterogeneous networks.

» Need for new parallel algorithms that handle heterogeneity, hierarchy,
dynamic resources,

» Complex applications ~ code coupling (message passing ~ dis-
tributed objects, components).

What next?
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Summary

Archvtechures Deployment Client/Server Peer-to-peer
Usage
Data Napster Gnutella, Kazaa,
Chord, Freenet. ..

Information Web 1.0 and 1.5 Web 2.0
Search Engines

Computing Internet Computing; | OurGrid
Meta-computing;
Grid Computing

A few other challenges
» Security, Authentication, Trust, Error management.
Middleware vs. Operating System.
Algorithms for Grid Computing.
Software engineering.

What next?

Social aspects (fairness, selfishness, cooperation).

vV V. v Vv Y

Energy saving!
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Conclusion

Parallel
Architectures

No real new theme but rather a combination of already existing
technologies for parallel and distributed computing.

» Such combinations and ambitious goals are very hard to achieve.

» This clearly requires a pluri-disciplinary approach with a good
understanding of all aspects (OS, network, middleware, security,
storage, algorithms, applications, ...).

» |t would be a mistake to restrict only to computing. Research on
all these aspects should be encouraged.

» It is very important to identify and discriminate new concepts
from technology and fad.

v

A crucial question is:

“Should we hide the complexity or expose it?”

What next?
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What next?

Tunnel Vision by Experts

“On several recent occasions, | have been asked
whether parallel computing will soon be relegated to
the trash heap reserved for promising technologies
that never quite make it.”

* Ken Kennedy, CRPC Directory, 1994
“640K [of memory] ought to be enough for anybody.”

* Bill Gates, chairman of Microsoft,1981.
“There is no reason for any individual to have a
computer in their home”

* Ken Olson, president and founder of Digital Equipment

Corporation, 1977.

“I think there is a world market for maybe five
computers.”

* Thomas Watson, chairman of IBM, 1943.

Slide source: Warfield et al.

|
Courtesy of Jean-Francois Méhaut
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