

Principles of High
Performance Computing
(ICS 632)

Heterogeneous
Parallel Computing

Heterogeneous Platforms
(Ch. 6)

 So far we’ve only talked about platforms in which all
processors/nodes are identical
 representative of most supercomputers

 Clusters often “end up” heterogeneous
 Built as homogeneous
 New nodes are added and have faster CPUs

 A cluster that stays up 3 years will likely have several generations
of processors in it

 Network of workstations are heterogeneous
 couple together all machines in your lab to run a parallel

applications (became popular with PVM)
 “Grids”

 couple together different clusters, supercomputers, and
workstations

 It is important to develop parallel applications that can
leverage heterogeneous platforms

Heterogeneous Load
Balancing

 There is an impressively large literature on load-balancing
for heterogeneous platforms

 In this lecture we’re looking only at “static” load balancing
 before execution we know how much load is given to each

processor
 e.g., as opposed to some dynamic algorithm that assigns work

to processors when they’re “ready”
 We’ll come back to that idea when we talk about scheduling

 We will look at:
 2 simple load-balancing algorithms
 application to our 1-D stencil application
 application to the 1-D distributed LU factorization
 discussion of load-balancing for 2-D data distributions

 We assume homogeneous network and heterogeneous
compute nodes in this lecture

Static task allocation (Sec.
6.1.1/2)

 Let’s consider p processors
 Let t1,..., tp be the “cycle times” of the processors

 i.e., time to process one elemental unit of computation (work
units) for the application (Tcomp)

 Let B be the number of (identical) work units
 Let c1,..., cp be the number of work units processed by each

processor
c1 + ... + cp = B

 Perfect load balancing happens if
ci x ti is constant

or
computing speed

Static task allocation

 if B is a multiple of

then we can have perfect load balancing
 But in general, the formula for ci does not give an

integer solution
 There is a simple algorithm that give the optimal

(integer) allocation of work units to processors in
O(p2)

Simple Algorithm

// initialize with fractional values

// rounded down

For i = 1 to p

// iteratively increase the ci values

while (c1 + ... + cp < B)

 find k in {1,...,p} such that

 tk(ck + 1) = min {ti(ci + 1)}

 ck = ck + 1

Simple Algorithm

 3
processors

 10 work
units

 p1 p2 p3

p1 p2 p3

3
5

8

c1 = 5
c2 = 3
c3 = 2

An incremental algorithm

 Note that the previous algorithm can be modified slightly to
record the optimal allocation for B=1, B=2, etc...

 One can write the result as a list of processors
 B=1: P1

 B=2: P1, P2

 B=3: P1, P2, P1

 B=4: P1, P2, P1, P3

 B=5: P1, P2, P1, P3, P1

 B=6: P1, P2, P1, P3, P1, P2

 B=7: P1, P2, P1, P3, P1, P2, P1

 etc.
 We will see how this comes in handy for some load-

balancing problems (e.g., LU factorization)

Stencil Application (Sec.
6.1.3)

k

r

t+1

t+1 t t

t

 4 Processors
 Each processor

handles many rxk
blocks

 What if the
processors are
heterogeneous?

Simple Load Balancing

k

t+1

t+1 t t

t

 Just give rows to
processors
proportionally to their
speed

 Still in a cyclic pattern
 Should have perfect

efficiency
 But there could of

course be the usual
notions of rounding off
 e.g., what if a

processor is 1.0001
faster than another?

LU Decomposition

Reduction Broadcast Compute

Broadcasts Compute

to find the max aji

max aji needed to compute
the scaling factor Independent computation

of the scaling factor

Every update needs the
scaling factor and the
element from the pivot row

Independent
computations

requires
load-balancing

Load-balancing (Sect. 6.1.4)

 Our original cyclic distribution doesn’t
work well in a heterogeneous setting

At each step all processors
have the same amount of work

to do

Rebalancing at each step?
 Start with a non-cyclic distribution
 At each (or every k) steps, rebalance

Redistribution
is expensive
in terms of
communications

Cyclic and non-uniform

 Just do what we did for the stencil application

Ok... But not
great

Load-balancing

 Use the distribution obtained with the
incremental algorithm we saw before, reversed
 B=10: P1, P2, P1, P3, P1, P2, P1, P1, P2, P3

optimal load-balancing
for 10 columns

optimal load-balancing
for 7 columns

optimal load-balancing
for 4 columns

. . .

Load-balancing

 Of course, this should be done for blocks of
columns, and not individual columns

 Also, should be done in a “motif” that spans
some number of columns (B=10 in our example)
and is repeated cyclically throughout the matrix
 provided that B is large enough, we get a good

approximation of the optimal load-balance

2-D Data Distributions (Sec
6.2)

 What we’ve seen so far works well for 1-D data
distributions
 use the simple algorithm
 use the allocation pattern over block in a cyclic

fashion
 We have seen that a 2-D distribution is what’s

most appropriate, for instance for matrix
multiplication

 We use matrix multiplication as our driving
example

2-D Matrix Multiplication

 C = A x B
 Let us assume that we have a pxp processor grid, and that

p=q=n
 all 3 matrices are distributed identically

P3,3P3,2P3,1

P2,3P2,2P2,1

P1,3P1,2P1,1

Processor Grid A3,3A3,2A3,1

A2,3A2,2A2,1

A1,3A1,2A1,1

2-D Matrix Multiplication

 We have seen 3 algorithms to do a matrix
multiplication (Cannon, Fox, Snyder)
 Pretty difficult to generalize them for a

heterogeneous platform
 The outer product is much simpler, and

thus easier to adapt and modify
 Let’s look at the outer product algorithm

on a heterogeneous 2-D distribution

Outer-product Algorithm

 Proceeds in k=1,...,n steps
 Horizontal broadcasts: Pi,k, for all i=1,...,p,

broadcasts aik to processors in its processor row

 Vertical broadcasts: Pk,j, for all j=1,...,q,
broadcasts akj to processors in its processor
column

 Independent computations: processor Pi,j can
update cij = cij + aik x akj

Outer-product Algorithm

Load-balancing

 Let ti,j be the cycle time of processor Pi,j

 We assign to processor Pi,j a rectangle of size ri x
cj

P3,3P3,2P3,1

P2,3P2,2P2,1

P1,3P1,2P1,1

c1 c2 c3

r1

r2

r3

Load-balancing

 First, let us note that it is not always possible to
achieve perfect load-balacing
 There are some theorems that show that it’s

only possible if the processor grid matrix, with
processor cycle times, tij, put in their spot is of
rank 1

 Each processor computes for ri x cj x tij time
 Therefore, the total execution time is

T = maxi,j {ri x cj x tij}

Load-balancing as
optimization

 Load-balancing can be expressed as
a constrained minimization problem

 minimize maxi,j {ri x cj x tij}
 with the constraints

Load-balancing as
optimization

 The load-balancing problem is in fact much more
complex
 One can place processors in any place of the processor

grid
 One must look for the optimal given all possible

arrangements of processors in the grid (and thus solve
an exponential number of the the optimization problem
defined on the previous slide)

 The load-balancing problem is NP-hard
 Complex proof
 A few (non-guaranteed) heuristics have been

developed
 they are quite complex

“Free” 2-D distribution

 So far we’ve looked at things that looked like this

 But how about?

Free 2-D distribution

 Each rectangle must have a surface that’s
proportional to the processor speed

 One can “play” with the width and the height of
the rectangles to try to minimize communication
costs
 A communication involves sending/receiving rectangles’

half-perimeters
 One must minimize the sum of the half-perimeters if

communications happen sequentially
 One must minimize the maximum of the half-perimeters

if communications happen in parallel

Problem Formulation

 Let us consider p numbers s1, ..., sp such that
s1+...+sp = 1
 we just normalize the sum of the processors’

cycle times so that they all sum to 1
 Find a partition of the unit square in p rectangles

with area si, and with shape hixvi such that

h1+v1 + h2+v2 + ... + hp+vp

 is minimized.
 This problem is NP-hard

Guaranteed Heuristic

 There is a guaranteed heuristic (that is within some fixed
factor of the optimal)
 non-trivial (look in the Section 6.3 if you’re curious)

 It only works with processor columns

Heterogeneous Load-
Balancing

 This all we’re going to say about heterogeneous
load balancing

 We’ll talk more about heterogeneity when we talk
about scheduling

 The terms “scheduling” and “load balancing” are
often confused

 In the class, when we say “load-balancing” we
mean a static data distribution that matches
amount of work to processors capabilities

 When we say “scheduling” we mean that there is
a notion of timing, sequencing when assigning
work to processors (as we shall see in an
upcoming lecture)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

