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Heterogeneous Platforms 
(Ch. 6)

 So far we’ve only talked about platforms in which all 
processors/nodes are identical
 representative of most supercomputers

 Clusters often “end up” heterogeneous
 Built as homogeneous
 New nodes are added and have faster CPUs

 A cluster that stays up 3 years will likely have several generations 
of processors in it

 Network of workstations are heterogeneous
 couple together all machines in your lab to run a parallel 

applications (became popular with PVM)
 “Grids”

 couple together different clusters, supercomputers, and 
workstations

  It is important to develop parallel applications that can 
leverage heterogeneous platforms



Heterogeneous Load 
Balancing

 There is an impressively large literature on load-balancing 
for heterogeneous platforms

 In this lecture we’re looking only at “static” load balancing
 before execution we know how much load is given to each 

processor
 e.g., as opposed to some dynamic algorithm that assigns work 

to processors when they’re “ready”
 We’ll come back to that idea when we talk about scheduling

 We will look at:
 2 simple load-balancing algorithms
 application to our 1-D stencil application
 application to the 1-D distributed LU factorization
 discussion of load-balancing for 2-D data distributions

 We assume homogeneous network and heterogeneous 
compute nodes in this lecture



Static task allocation (Sec. 
6.1.1/2)

 Let’s consider p processors
 Let t1,..., tp be the “cycle times” of the processors

 i.e., time to process one elemental unit of computation (work 
units) for the application (Tcomp)

 Let B be the number of (identical) work units
 Let c1,..., cp be the number of work units processed by each 

processor
c1 + ... + cp = B

 Perfect load balancing happens if
ci x ti  is constant

or
computing speed



Static task allocation

 if B is a multiple of

then we can have perfect load balancing
 But in general, the formula for ci does not give an 

integer solution
 There is a simple algorithm that give the optimal 

(integer) allocation of work units to processors in 
O(p2)



Simple Algorithm

// initialize with fractional values

// rounded down

For i = 1 to p

// iteratively increase the ci values

while (c1 + ... + cp < B)

  find k in {1,...,p} such that

    tk(ck + 1) = min {ti(ci + 1)}

  ck = ck + 1



Simple Algorithm

 3 
processors

 10 work 
units

    p1   p2   p3

p1    p2     p3

3
5

8

c1 = 5
c2 = 3
c3 = 2



An incremental algorithm

 Note that the previous algorithm can be modified slightly to 
record the optimal allocation for B=1, B=2, etc... 

 One can write the result as a list of processors
 B=1: P1

 B=2: P1, P2

 B=3: P1, P2, P1

 B=4: P1, P2, P1, P3

 B=5: P1, P2, P1, P3, P1

 B=6: P1, P2, P1, P3, P1, P2

 B=7: P1, P2, P1, P3, P1, P2, P1

 etc.
 We will see how this comes in handy for some load-

balancing problems (e.g., LU factorization)



Stencil Application (Sec. 
6.1.3)
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 4 Processors
 Each processor 

handles many rxk 
blocks

 What if the 
processors are 
heterogeneous?



Simple Load Balancing

k

t+1

t+1 t t

t

 Just give rows to 
processors 
proportionally to their 
speed

 Still in a cyclic pattern
 Should have perfect 

efficiency
 But there could of 

course be the usual 
notions of rounding off
 e.g., what if a 

processor is 1.0001 
faster than another?



LU Decomposition

Reduction Broadcast Compute

Broadcasts Compute

to find the max aji

max aji needed to compute
the scaling factor Independent computation

of the scaling factor

Every update needs the
scaling factor and the 
element from the pivot row

Independent
computations

requires
load-balancing



Load-balancing (Sect. 6.1.4)

 Our original cyclic distribution doesn’t 
work well in a heterogeneous setting

At each step all processors 
have the same amount of work

to do



Rebalancing at each step?
 Start with a non-cyclic distribution
 At each (or every k) steps, rebalance

Redistribution
is expensive
in terms of
communications



Cyclic and non-uniform

 Just do what we did for the stencil application

Ok... But not 
great



Load-balancing

 Use the distribution obtained with the 
incremental algorithm we saw before, reversed
 B=10: P1, P2, P1, P3, P1, P2, P1, P1, P2, P3

optimal load-balancing
for 10 columns

optimal load-balancing
for 7 columns

optimal load-balancing
for 4 columns

. . .



Load-balancing

 Of course, this should be done for blocks of 
columns, and not individual columns

 Also, should be done in a “motif” that spans 
some number of columns (B=10 in our example) 
and is repeated cyclically throughout the matrix
 provided that B is large enough, we get a good 

approximation of the optimal load-balance



2-D Data Distributions (Sec 
6.2)

 What we’ve seen so far works well for 1-D data 
distributions
 use the simple algorithm
 use the allocation pattern over block in a cyclic 

fashion
 We have seen that a 2-D distribution is what’s 

most appropriate, for instance for matrix 
multiplication

 We use matrix multiplication as our driving 
example



2-D Matrix Multiplication

 C = A x B
 Let us assume that we have a pxp processor grid, and that 

p=q=n
 all 3 matrices are distributed identically

P3,3P3,2P3,1

P2,3P2,2P2,1

P1,3P1,2P1,1

Processor Grid A3,3A3,2A3,1

A2,3A2,2A2,1

A1,3A1,2A1,1



2-D Matrix Multiplication

 We have seen 3 algorithms to do a matrix 
multiplication (Cannon, Fox, Snyder)
 Pretty difficult to generalize them for a 

heterogeneous platform
 The outer product is much simpler, and 

thus easier to adapt and modify
 Let’s look at the outer product algorithm 

on a heterogeneous 2-D distribution



Outer-product Algorithm

 Proceeds in k=1,...,n steps
 Horizontal broadcasts: Pi,k, for all i=1,...,p, 

broadcasts aik to processors in its processor row

 Vertical broadcasts: Pk,j, for all j=1,...,q, 
broadcasts akj to processors in its processor 
column

 Independent computations: processor Pi,j can 
update cij = cij + aik x akj



Outer-product Algorithm



Load-balancing

 Let ti,j be the cycle time of processor Pi,j

 We assign to processor Pi,j a rectangle of size ri x 
cj

P3,3P3,2P3,1

P2,3P2,2P2,1

P1,3P1,2P1,1

c1       c2         c3

r1

r2

r3



Load-balancing

 First, let us note that it is not always possible to 
achieve perfect load-balacing
 There are some theorems that show that it’s 

only possible if the processor grid matrix, with 
processor cycle times, tij, put in their spot is of 
rank 1

 Each processor computes for ri x cj x tij time
 Therefore, the total execution time is

T = maxi,j {ri x cj x tij}



Load-balancing as 
optimization

 Load-balancing can be expressed as 
a constrained minimization problem

 minimize maxi,j {ri x cj x tij}
 with the constraints



Load-balancing as 
optimization

 The load-balancing problem is in fact much more 
complex
 One can place processors in any place of the processor 

grid
 One must look for the optimal given all possible 

arrangements of processors in the grid (and thus solve 
an exponential number of the the optimization problem 
defined on the previous slide)

 The load-balancing problem is NP-hard
 Complex proof
 A few (non-guaranteed) heuristics have been 

developed
 they are quite complex



“Free” 2-D distribution

 So far we’ve looked at things that looked like this

 But how about?



Free 2-D distribution

 Each rectangle must have a surface that’s 
proportional to the processor speed

 One can “play” with the width and the height of 
the rectangles to try to minimize communication 
costs
 A communication involves sending/receiving rectangles’ 

half-perimeters
 One must minimize the sum of the half-perimeters if 

communications happen sequentially
 One must minimize the maximum of the half-perimeters 

if communications happen in parallel



Problem Formulation

 Let us consider p numbers s1, ..., sp such that 
s1+...+sp = 1
 we just normalize the sum of the processors’ 

cycle times so that they all sum to 1
 Find a partition of the unit square in p rectangles 

with area si, and with shape hixvi such that

h1+v1 + h2+v2 + ... + hp+vp 

   is minimized.
 This problem is NP-hard



Guaranteed Heuristic

 There is a guaranteed heuristic (that is within some fixed 
factor of the optimal)
 non-trivial  (look in the Section 6.3 if you’re curious)

 It only works with processor columns



Heterogeneous Load-
Balancing

 This all we’re going to say about heterogeneous 
load balancing

 We’ll talk more about heterogeneity when we talk 
about scheduling

 The terms “scheduling” and “load balancing” are 
often confused

 In the class, when we say “load-balancing” we 
mean a static data distribution that matches 
amount of work to processors capabilities

 When we say “scheduling” we mean that there is 
a notion of timing, sequencing when assigning 
work to processors (as we shall see in an 
upcoming lecture)
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