

Principles of High
Performance Computing
(ICS 632)

Communication in a
Ring Topology

Ring Topology (Section 3.3)
 Each processor is identified by a

rank
 MY_NUM()

 There is a way to find the total
number of processors
 NUM_PROCS()

 Each processor can send a
message to its successor
 SEND(addr, L)

 And receive a message from its
predecessor
 RECV(addr, L)

 We’ll just use the above pseudo-
code rather than MPI

 Note that this is much simpler than
the example tree topology we saw
in the previous set of slides

P0

P1

P2

P3

Pp-1

Virtual vs. Physical Topology
 Now that we have chosen to consider a Ring

topology we “pretend” our physical topology is a
ring topology

 We can always implement a virtual ring topology
(see previous set of slides)
 And read Section 4.6

 So we can write many “ring algorithms”
 It may be that a better virtual topology is better

suited to our physical topology
 But the ring topology makes for very simple

programs and is known to be reasonably good in
practice

 So it’s a good candidate for our first look at
parallel algorithms

Cost of communication (Sect.
3.2.1)

 It is actually difficult to precisely model the cost
of communication
 E.g., MPI implementations do various optimizations

given the message sizes
 We will be using a simple model

Time = L + m/B
L: start-up cost or latency

 B: bandwidth (b = 1/B)
 m: message size

 We assume that if a message of length m is sent
from P0 to Pq, then the communication cost is q(L
+ m b)

 There are many assumptions in our model, some
not very realistic, but we’ll discuss them later

Assumptions about
Communications

 Several Options
 Both Send() and Recv() are blocking

 Called “rendez-vous”
 Very old-fashioned systems

 Recv() is blocking, but Send() is not
 Pretty standard
 MPI supports it

 Both Recv() and Send() are non-blocking
 Pretty standard as well
 MPI supports it

Assumptions about
Concurrency

 One question that’s important is: can the processor
do multiple things at the same time?

 Typically we will assume that the processor can
send, receive, and compute at the same time
 Call MPI_IRecv() Call MPI_ISend()
 Compute something

 This of course implies that the three operations are
independent
 E.g., you don’t want to send the result of the computation
 E.g., you don’t want to send what you’re receiving

(forwarding)
 When writing parallel algorithms (in pseudo-code),

we’ll simply indicate concurrent activities with a ||
sign

Collective Communications

 To write a parallel algorithm, we will need
collective operations
 Broadcasts, etc.

 Now MPI provide those, and they likely:
 Do not use the ring logical topology
 Utilize the physical resources well

 Let’s still go through the exercise of
writing some collective communication
algorithms

 We will see that for some algorithms we
really want to do these communications
“by hand” on our virtual topology rather
than using the MPI collective
communications!!

Broadcast (Section 3.3.1)

 We want to write a program that has Pk
send the same message of length m to all
other processors

Broadcast(k,addr,m)
 On the ring, we just send to the next

processor, and so on, with no parallel
communications whatsoever

 This is of course not the way one should
implement a broadcast in practice if the
physical topology is not merely a ring
 MPI uses some type of tree topology

Broadcast (Section 3.3.1)

Brodcast(k,addr,m)
 q = MY_NUM()
 p = NUM_PROCS()
 if (q == k)
 SEND(addr,m)
 else
 if (q == k1 mod p)
 RECV(addr,m)
 else
 RECV(addr,m)
 SEND(addr,m)
 endif
 endif

 Assumes a blocking
receive

 Sending may be
non-blocking

 The broadcast time
is

 (p-1)(L+m b)

Scatter (Section 3.2.2)

 Processor k sends a different message to
all other processors (and to itself)
 Pk stores the message destined to Pq at

address addr[q], including a message at
addr[k]

 At the end of the execution, each
processor holds the message it had
received in msg

 The principle is just to pipeline
communication by starting to send the
message destined to Pk-1, the most distant
processor

Scatter (Section 3.3.2)

Scatter(k,msg,addr,m)

 q = MY_NUM()

 p = NUM_PROCS()

 if (q == k)

 for i = 0 to p2

 SEND(addr[k+p1i mod p],m)

 msg ← addr[k]

 else

 RECV(tempR,L)

 for i = 1 to k1q mod p

 tempS ↔ tempR

 SEND(tempS,m) || RECV(tempR,m)

 msg ← tempR

Swapping of send buffer
and receive buffer (pointer)

Sending and
Receiving
in Parallel, with a
non blocking Send

Same execution time as the broadcast

(p-1)(L + m b)

Scatter (Section 3.3.2)
Scatter(k,msg,addr,m)

 q = MY_NUM()

 p = NUM_PROCS()

 if (q == k)

 for i = 0 to p2

 SEND(addr[k+p1i mod p],m)

 msg ← addr[k]

 else

 RECV(tempR,L)

 for i = 1 to k1q mod p

 tempS ↔ tempR

 SEND(tempS,m) || RECV(tempR,m)

 msg ← tempR

k = 2, p = 4

Proc q=2
send addr[2+4-1-0 % 4 = 1]
send addr[2+4-1-1 % 4 = 0]
send addr[2+4-1-2 % 4 = 3]
msg = addr[2]

Proc q=3
recv (addr[1])
// loop 2-1-3 % 4 = 2 times
send (addr[1]) || recv (addr[0])
send (addr[0]) || recv (addr[3])

msg = addr[3]

Proc q=0
recv (addr[1])
 // loop 2-1-2 % 4 = 1 time
send (addr[1]) || recv (addr[0])

msg = addr[0]

Proc q=1
 // loop 2-1-1 % 4 = 0 time
recv (addr[1])

msg = addr[1]

0
1

2

3

All-to-all (Section 3.3.3)
All2All(my_addr, addr, m)
 q = MY_NUM()
 p = NUM_PROCS()
 addr[q] ← my_addr
 for i = 1 to p1
 SEND(addr[qi+1 mod p],m)
 || RECV(addr[qi mod p],m)

Same execution time as the scatter

(p-1)(L + m b)

0
1

2 2

1
0

A faster broadcast?
 How can we improve performance?
 One can cut the message in many small

pieces, say in r pieces where m is divisible by
r.

 The root processor just sends r messages
 The performance is as follows

 Consider the last processor to get the last piece of the
message

 There need to be p-1 steps for the first piece to arrive,
which takes (p-1)(L + m b / r)

 Then the remaining r-1 pieces arrive one after another,
which takes (r-1)(L + m b / r)

 For a total of: (p - 2 + r) (L + mb / r)

A faster broadcast?

 The question is, what is the value of r that minimizes
 (p - 2 + r) (L + m b / r) ?

 One can view the above expression as (c+ar)(d+b/r),
with four constants a, b, c, d

 The non-constant part of the expression is then ad.r +
cb/r, which must be minimized

 It is known that this value is minimized for
 sqrt(cb / ad)

and we have

ropt = sqrt(m(p-2) b / L)
 with the optimal time
 (sqrt((p-2) L) + sqrt(m b))2

 which tends to mb when m is large, which is independent
of p!

Well-known Network Principle

 We have seen that if we cut a (large) message in
many (small) messages, then we can send the
message over multiple hops (in our case p-1)
almost as fast as we can send it over a single hop

 This is a fundamental principle of IP networks
 We cut messages into IP frames
 Send them over many routers
 But really go as fast as the slowest router

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

