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Ring Topology  (Section 3.3)
 Each processor is identified by a 

rank
 MY_NUM()

 There is a way to find the total 
number of processors
 NUM_PROCS()

 Each processor can send a 
message to its successor
 SEND(addr, L)

 And receive a message from its 
predecessor
 RECV(addr, L)

 We’ll just use the above pseudo-
code rather than MPI

 Note that this is much simpler than 
the example tree topology we saw 
in the previous set of slides
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Virtual vs. Physical Topology
 Now that we have chosen to consider a Ring 

topology we “pretend” our physical topology is a 
ring topology

 We can always implement a virtual ring topology 
(see previous set of slides)
 And read Section 4.6

 So we can write many “ring algorithms”
 It may be that a better virtual topology is better 

suited to our physical topology
 But the ring topology makes for very simple 

programs and is known to be reasonably good in 
practice

 So it’s a good candidate for our first look at 
parallel algorithms



Cost of communication (Sect. 
3.2.1)

 It is actually difficult to precisely model the cost 
of communication
 E.g., MPI implementations do various optimizations 

given the message sizes
 We will be using a simple model

Time = L + m/B
L: start-up cost or latency

     B: bandwidth (b = 1/B)
     m: message size

 We assume that if a message of length m is sent 
from P0 to Pq, then the communication cost is q(L 
+ m b)

 There are many assumptions in our model, some 
not very realistic, but we’ll discuss them later



Assumptions about 
Communications

 Several Options
 Both Send() and Recv() are blocking

 Called “rendez-vous”
 Very old-fashioned systems

 Recv() is blocking, but Send() is not
 Pretty standard
 MPI supports it

 Both Recv() and Send() are non-blocking
 Pretty standard as well
 MPI supports it



Assumptions about 
Concurrency

 One question that’s important is: can the processor 
do multiple things at the same time?

 Typically we will assume that the processor can 
send, receive, and compute at the same time
 Call MPI_IRecv()                       Call MPI_ISend()
 Compute something

 This of course implies that the three operations are 
independent
 E.g., you don’t want to send the result of the computation
 E.g., you don’t want to send what you’re receiving 

(forwarding)
 When writing parallel algorithms (in pseudo-code), 

we’ll simply indicate concurrent activities with a || 
sign



Collective Communications

 To write a parallel algorithm, we will need 
collective operations
 Broadcasts, etc.

 Now MPI provide those, and they likely:
 Do not use the ring logical topology
 Utilize the physical resources well

 Let’s still go through the exercise of 
writing some collective communication 
algorithms

 We will see that for some algorithms we 
really want to do these communications 
“by hand” on our virtual topology rather 
than using the MPI collective 
communications!!



Broadcast (Section 3.3.1)

 We want to write a program that has Pk 
send the same message of length m to all 
other processors

Broadcast(k,addr,m)
 On the ring, we just send to the next 

processor, and so on, with no parallel 
communications whatsoever

 This is of course not the way one should 
implement a broadcast in practice if the 
physical topology is not merely a ring
 MPI uses some type of tree topology 



Broadcast (Section 3.3.1)

Brodcast(k,addr,m)
  q = MY_NUM()
  p = NUM_PROCS()
  if (q == k) 
     SEND(addr,m)
  else
     if (q == k­1 mod p) 
        RECV(addr,m)
     else
        RECV(addr,m)
        SEND(addr,m)
     endif
  endif

 Assumes a blocking 
receive

 Sending may be 
non-blocking

 The broadcast time 
is

        (p-1)(L+m b)



Scatter (Section 3.2.2)

 Processor k sends a different message to 
all other processors (and to itself)
 Pk stores the message destined to Pq at 

address addr[q], including a message at 
addr[k]

 At the end of the execution, each 
processor holds the message it had 
received in msg

 The principle is just to pipeline 
communication by starting to send the 
message destined to Pk-1, the most distant 
processor 



Scatter (Section 3.3.2)

Scatter(k,msg,addr,m)

  q = MY_NUM()

  p = NUM_PROCS()

  if (q == k)

   for i = 0 to p­2

      SEND(addr[k+p­1­i mod p],m)

   msg ← addr[k]

  else

   RECV(tempR,L)

   for i = 1 to k­1­q mod p

      tempS ↔ tempR

      SEND(tempS,m) || RECV(tempR,m)

   msg ← tempR

Swapping of send buffer
and receive buffer (pointer)

Sending and 
Receiving
in Parallel, with a 
non blocking Send

Same execution time as the broadcast

(p-1)(L + m b)



Scatter (Section 3.3.2)
Scatter(k,msg,addr,m)

  q = MY_NUM()

  p = NUM_PROCS()

  if (q == k)

     for i = 0 to p­2

        SEND(addr[k+p­1­i mod p],m)

     msg ← addr[k]

  else

     RECV(tempR,L)

     for i = 1 to k­1­q mod p

        tempS ↔ tempR

        SEND(tempS,m) || RECV(tempR,m)

     msg ← tempR

k = 2, p = 4

Proc q=2
send addr[2+4-1-0 % 4 = 1]
send addr[2+4-1-1 % 4 = 0]
send addr[2+4-1-2 % 4 = 3]
msg = addr[2]

Proc q=3
recv  (addr[1])
// loop 2-1-3 % 4 = 2 times
send (addr[1]) || recv (addr[0])
send (addr[0]) || recv (addr[3])

msg = addr[3]

Proc q=0
recv (addr[1])
 // loop 2-1-2 % 4 = 1 time
send (addr[1]) || recv (addr[0])

msg = addr[0]

Proc q=1
 // loop 2-1-1 % 4 = 0 time
recv (addr[1])

msg = addr[1]
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All-to-all (Section 3.3.3)
All2All(my_addr, addr, m)
  q = MY_NUM()
  p = NUM_PROCS()
  addr[q] ← my_addr
  for i = 1 to p­1
      SEND(addr[q­i+1 mod p],m)
   || RECV(addr[q­i mod p],m)
   

Same execution time as the scatter

(p-1)(L + m b)
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A faster broadcast?
 How can we improve performance?
 One can cut the message in many small 

pieces, say in r pieces where m is divisible by 
r. 

 The root processor just sends r messages
 The performance is as follows

 Consider the last processor to get the last piece of the 
message

 There need to be p-1 steps for the first piece to arrive, 
which takes (p-1)(L +  m b / r)

 Then the remaining r-1 pieces arrive one after another, 
which takes (r-1)(L + m b / r)

 For a total of:   (p - 2 + r) (L + mb / r)



A faster broadcast?

 The question is, what is the value of r that minimizes 
                             (p - 2 + r) (L + m b / r) ?

 One can view the above expression as (c+ar)(d+b/r), 
with four constants a, b, c, d

 The non-constant part of the expression is then ad.r + 
cb/r, which must be minimized

 It is known that this value is minimized for
                 sqrt(cb / ad)

and we have  

ropt = sqrt(m(p-2) b / L)
       with the optimal time
                (sqrt((p-2) L) + sqrt(m b))2

          which tends to mb  when m is large, which is independent 
of p!



Well-known Network Principle

 We have seen that if we cut a (large) message in 
many (small) messages, then we can send the 
message over multiple hops (in our case p-1) 
almost as fast as we can send it over a single hop

 This is a fundamental principle of IP networks
 We cut messages into IP frames
 Send them over many routers
 But really go as fast as the slowest router 
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