

Principles of High
Performance Computing
(ICS 632)

Communication in a
Ring Topology

Ring Topology (Section 3.3)
 Each processor is identified by a

rank
 MY_NUM()

 There is a way to find the total
number of processors
 NUM_PROCS()

 Each processor can send a
message to its successor
 SEND(addr, L)

 And receive a message from its
predecessor
 RECV(addr, L)

 We’ll just use the above pseudo-
code rather than MPI

 Note that this is much simpler than
the example tree topology we saw
in the previous set of slides

P0

P1

P2

P3

Pp-1

Virtual vs. Physical Topology
 Now that we have chosen to consider a Ring

topology we “pretend” our physical topology is a
ring topology

 We can always implement a virtual ring topology
(see previous set of slides)
 And read Section 4.6

 So we can write many “ring algorithms”
 It may be that a better virtual topology is better

suited to our physical topology
 But the ring topology makes for very simple

programs and is known to be reasonably good in
practice

 So it’s a good candidate for our first look at
parallel algorithms

Cost of communication (Sect.
3.2.1)

 It is actually difficult to precisely model the cost
of communication
 E.g., MPI implementations do various optimizations

given the message sizes
 We will be using a simple model

Time = L + m/B
L: start-up cost or latency

 B: bandwidth (b = 1/B)
 m: message size

 We assume that if a message of length m is sent
from P0 to Pq, then the communication cost is q(L
+ m b)

 There are many assumptions in our model, some
not very realistic, but we’ll discuss them later

Assumptions about
Communications

 Several Options
 Both Send() and Recv() are blocking

 Called “rendez-vous”
 Very old-fashioned systems

 Recv() is blocking, but Send() is not
 Pretty standard
 MPI supports it

 Both Recv() and Send() are non-blocking
 Pretty standard as well
 MPI supports it

Assumptions about
Concurrency

 One question that’s important is: can the processor
do multiple things at the same time?

 Typically we will assume that the processor can
send, receive, and compute at the same time
 Call MPI_IRecv() Call MPI_ISend()
 Compute something

 This of course implies that the three operations are
independent
 E.g., you don’t want to send the result of the computation
 E.g., you don’t want to send what you’re receiving

(forwarding)
 When writing parallel algorithms (in pseudo-code),

we’ll simply indicate concurrent activities with a ||
sign

Collective Communications

 To write a parallel algorithm, we will need
collective operations
 Broadcasts, etc.

 Now MPI provide those, and they likely:
 Do not use the ring logical topology
 Utilize the physical resources well

 Let’s still go through the exercise of
writing some collective communication
algorithms

 We will see that for some algorithms we
really want to do these communications
“by hand” on our virtual topology rather
than using the MPI collective
communications!!

Broadcast (Section 3.3.1)

 We want to write a program that has Pk
send the same message of length m to all
other processors

Broadcast(k,addr,m)
 On the ring, we just send to the next

processor, and so on, with no parallel
communications whatsoever

 This is of course not the way one should
implement a broadcast in practice if the
physical topology is not merely a ring
 MPI uses some type of tree topology

Broadcast (Section 3.3.1)

Brodcast(k,addr,m)
 q = MY_NUM()
 p = NUM_PROCS()
 if (q == k)
 SEND(addr,m)
 else
 if (q == k­1 mod p)
 RECV(addr,m)
 else
 RECV(addr,m)
 SEND(addr,m)
 endif
 endif

 Assumes a blocking
receive

 Sending may be
non-blocking

 The broadcast time
is

 (p-1)(L+m b)

Scatter (Section 3.2.2)

 Processor k sends a different message to
all other processors (and to itself)
 Pk stores the message destined to Pq at

address addr[q], including a message at
addr[k]

 At the end of the execution, each
processor holds the message it had
received in msg

 The principle is just to pipeline
communication by starting to send the
message destined to Pk-1, the most distant
processor

Scatter (Section 3.3.2)

Scatter(k,msg,addr,m)

 q = MY_NUM()

 p = NUM_PROCS()

 if (q == k)

 for i = 0 to p­2

 SEND(addr[k+p­1­i mod p],m)

 msg ← addr[k]

 else

 RECV(tempR,L)

 for i = 1 to k­1­q mod p

 tempS ↔ tempR

 SEND(tempS,m) || RECV(tempR,m)

 msg ← tempR

Swapping of send buffer
and receive buffer (pointer)

Sending and
Receiving
in Parallel, with a
non blocking Send

Same execution time as the broadcast

(p-1)(L + m b)

Scatter (Section 3.3.2)
Scatter(k,msg,addr,m)

 q = MY_NUM()

 p = NUM_PROCS()

 if (q == k)

 for i = 0 to p­2

 SEND(addr[k+p­1­i mod p],m)

 msg ← addr[k]

 else

 RECV(tempR,L)

 for i = 1 to k­1­q mod p

 tempS ↔ tempR

 SEND(tempS,m) || RECV(tempR,m)

 msg ← tempR

k = 2, p = 4

Proc q=2
send addr[2+4-1-0 % 4 = 1]
send addr[2+4-1-1 % 4 = 0]
send addr[2+4-1-2 % 4 = 3]
msg = addr[2]

Proc q=3
recv (addr[1])
// loop 2-1-3 % 4 = 2 times
send (addr[1]) || recv (addr[0])
send (addr[0]) || recv (addr[3])

msg = addr[3]

Proc q=0
recv (addr[1])
 // loop 2-1-2 % 4 = 1 time
send (addr[1]) || recv (addr[0])

msg = addr[0]

Proc q=1
 // loop 2-1-1 % 4 = 0 time
recv (addr[1])

msg = addr[1]

0
1

2

3

All-to-all (Section 3.3.3)
All2All(my_addr, addr, m)
 q = MY_NUM()
 p = NUM_PROCS()
 addr[q] ← my_addr
 for i = 1 to p­1
 SEND(addr[q­i+1 mod p],m)
 || RECV(addr[q­i mod p],m)

Same execution time as the scatter

(p-1)(L + m b)

0
1

2 2

1
0

A faster broadcast?
 How can we improve performance?
 One can cut the message in many small

pieces, say in r pieces where m is divisible by
r.

 The root processor just sends r messages
 The performance is as follows

 Consider the last processor to get the last piece of the
message

 There need to be p-1 steps for the first piece to arrive,
which takes (p-1)(L + m b / r)

 Then the remaining r-1 pieces arrive one after another,
which takes (r-1)(L + m b / r)

 For a total of: (p - 2 + r) (L + mb / r)

A faster broadcast?

 The question is, what is the value of r that minimizes
 (p - 2 + r) (L + m b / r) ?

 One can view the above expression as (c+ar)(d+b/r),
with four constants a, b, c, d

 The non-constant part of the expression is then ad.r +
cb/r, which must be minimized

 It is known that this value is minimized for
 sqrt(cb / ad)

and we have

ropt = sqrt(m(p-2) b / L)
 with the optimal time
 (sqrt((p-2) L) + sqrt(m b))2

 which tends to mb when m is large, which is independent
of p!

Well-known Network Principle

 We have seen that if we cut a (large) message in
many (small) messages, then we can send the
message over multiple hops (in our case p-1)
almost as fast as we can send it over a single hop

 This is a fundamental principle of IP networks
 We cut messages into IP frames
 Send them over many routers
 But really go as fast as the slowest router

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

