

Principles of High
Performance Computing
(ICS 632)

Algorithms on a Ring (II)

Stencil Application (Section
4.3)

 We’ve talked about stencil applications in the
context of shared-memory programs

 We found that we had to cut the matrix in “small”
blocks
 On a ring the same basic idea applies, but let’s do it step-

by-step

0 1

1 2

2 3

3 4

4 5

5 6

2 3

3 4

4 5

5 6

6 7

7 8

4 5

5 6

6 7

7 8

8 9

9 10

6

7

8

9

10

11

6 7 8 9 10 11 12

t+1

t+1 t

new = update(old,W,N)

Stencil Application

 Let us, for now, consider that the domain is of size nxn and
that we have p=n processors
 Classic way to first approach a problem

 Each processor is responsible for computing one row of the
domain (at each iteration)

 Each processor holds one row of the domain and has the
following declaration:

var A: array[0..n-1] of real
 One first simple idea is to have each processor send each

cell value to its neighbor as soon as that cell value is
computed

 Basic principle: do communication as early as possible to
get your “neighbors” started as early as possible
 Remember that one of the goals of a parallel program is to

reduce idle time on the processors
 We call this algorithm the Greedy algorithm, and seek an

evaluation of its performance

The Greedy Algorithm
q = MY_NUM()
p = NUM_PROCS
if (q == 0) then
 A[0] = Update(A[0],nil,nil)

Send(A[0],1)
else

Recv(v,1)
A[0] = Update(A[0],nil,v)

endif
for j = 1 to n-1

if (q == 0) then
A[j] = Update(A[j], A[j-1], nil)
Send(A[j],1)

elsif (q == p-1) then
Recv(v,1)
A[j] = Update(A[j], A[j-1], v)

else
Send(A[j-1], 1) || Recv(v,1)
A[j] = Update(A[j], A[j-1], v)

endif
endfor

First element of the row

Other elements

note the use of “nil”
for borders and corners

Greedy Algorithm

 This is all well and good, but typically we have n > p
 Assuming that p divides n, each processor will hold n/p

rows
 Good for load balancing

 The goal of a greedy algorithm is always to allow
processors to start computing as early as possible

 This suggests a cyclic allocation of rows among processors

 P1 can start computing after P0 has computed its first cell

P0
P1
P2
P0
P1
P2
P0
P1
P2

Greedy Algorithm

 Each processor holds n/p rows of the domain
 Thus it declares:

var A[0..n/p-1,n] of real
 Which is a contiguous array of rows, with these

rows not contiguous in the domain
 Therefore we have a non-trivial mapping

between global indices and local indices, but
we’ll see that they don’t appear in the code

 Let us rewrite the algorithm

The Greedy Algorithm
p = MY_NUM()
q = NUM_PROCS
For i = 0 to n/p -1

if (q == 0) and (i == 0) then
 A[0,0] = Update(A[0,0],nil,nil)

Send(A[0],1)
else

Recv(v,1)
A[i,0] = Update(A[i,0],nil,v)

endif
for j = 1 to n-1

if (q == 0) and (i == 0) then
A[i,j] = Update(A[i,j], A[i,j-1], nil)
Send(A[i,j],1)

elsif (q == p-1) and (i = n/p-1) then
Recv(v,1)
A[i,j] = Update(A[i,j], A[i-1,j], v)

else
Send(A[i,j-1], 1) || Recv(v,1)
A[i,j] = Update(A[i,j], A[i-1,j-1], v)

endif
endfor

endfor

Performance Analysis

 Let T(n,p) denote the computation time of the algorithm for
a nxn domain and with p processors

 A each step a processor does at most three things
 Receive a cell
 Send a cell
 Update a cell

 The algorithm is “clever” because at each step k, the
sending of messages from step k is overlapped with the
receiving of messages at step k+1

 Therefore, the time needed to compute one algorithm step
is the sum of
 Time to send/receive a cell: L + b
 Time to perform a cell update: w

 So, if we can count the number of steps, we can simply
multiply and get the overall execution time

Performance Analysis
 It takes p-1 steps before processor Pp-1 can start computing

its first cell
 Thereafter, this processor can compute one cell at every step
 The processor holds n*n/p cells
 Therefore, the whole program takes: p-1+n*n/p steps
 And the overall execution time:

T(n,p) = (p - 1 + n2/p) (w + L + b)
 The sequential time is: n2w
 The Speedup, S(n,p) = n2w / T(n,p)
 When n gets large, T(n,p) ~ n2/p (w + L + b)
 Therefore, Eff(n,p) ~ w / (w + L + b)
 This could be WAY below one

 In practice, and often, L + b >> w
 Therefore, this greedy algorithm is probably not a good idea

at all!

Granularity

 How do we improve on performance?
 What really kills performance is that we have to

do so much communication
 Many bytes of data
 Many individual messages

 So we we want is to augment the granularity of
the algorithm
 Our “tasks” are not going to be “update one

cell” but instead “update multiple cells”
 This will allow us to reduce both the amount of

data communicated and the number of messages
exchanged

Reducing the Granularity

 A simple approach: have a processor compute k
cells in sequence before sending them

 This is in conflict with the “get processors to
compute as early as possible” principle we based
our initial greedy algorithm on
 So we will reduce communication cost, but will

increase idle time
 Let use assume that k divides n
 Each row now consists of n/k segments

 If k does not divide n we have left over cells
and it complicates the program and the
performance analysis and as usual doesn’t
change the asymptotic performance analysis

Reducing the Granularity

0 1 2 3P0

1 2 3 4P1

2 3 4 5P2

3 4 5 6P3

k

 The algorithm computes segment after segment
 The time before P1 can start computing is the

time for P0 to compute a whole segment
 Therefore, it will take longer until Pp-1 can start

computing

4 5 6P0

Reducing the Granularity
More

 So far, we’ve allocated non-contiguous rows of
the domain to each processor

 But we can reduce communication by allocating
processors groups of contiguous rows
 If two contiguous rows are on the same

processors, there is no communication
involved to update the cells of the second row

 Let us use say that we allocate blocks of rows of
size r to each processor
 We assume that r*p divides n

 Processor Pi holds rows j such that
i = floor(j/r) mod p

 This is really a “block cyclic” allocation

Reducing the Granularity

0 1 2 3P0

1 2 3 4P1

2 3 4 5P2

3 4 5 6P3

k

r

4 5 6 7P0

Idle Time?

 One question is: does any processor stay idle?
 Processor P0 computes all values in its first block

of rows in n/k algorithm steps
 After that, processor P0 must wait for cell values

from processor Pp-1

 But Pp-1 cannot start computing before p steps
 Therefore:

 If p >= n/k, P0 is idle

 If p < n/k, P1 is not idle

 If p < n/k, then processors had better be able to
buffer received cells while they are still
computing
 Possible increase in memory consumption

Performance Analysis

 It is actually very simple
 At each step a processor is involved at most in

 Receiving k cells from its predecessor
 Sending k cells to its successor
 Updating k*r cells

 Since sending and receiving are overlapped, the
time to perform a step is L + k b + k r w

 Question: How many steps?
 Answer: It takes p-1 steps before Pp-1 can start

doing any thing. Pp-1 holds n2/(pkr) blocks
 Execution time:

T(n,p,r,k) = (p-1 + n2/(pkr)) (L + kb + k r w)

Performance Analysis

 Our naïve greedy algorithm had asymptotic efficiency equal
to w / (w + L + b)

 This algorithm does better: Assympt. Eff = w / (w + L/rk +
b/r)
 Divide n2w by p T(n,p,r,k)
 And make n large

 In the formula for the efficiency we clearly see the effect of
the granularity increase

 Asymptotic efficiency is higher
 But not equal to 1
 Therefore, this is a “difficult” application to parallelize

 We can try to do the best we can by increasing r and k, but it’s
never going to be perfect

 One can compute the optimal values of r and k using
numerical solving
 See the book for details

Solving Linear Systems of Eq.

 Method for solving Linear Systems
 The need to solve linear systems arises in an estimated 75% of all scientific

computing problems [Dahlquist 1974]
 Gaussian Elimination is perhaps the most well-known

method
 based on the fact that the solution of a linear system is

invariant under scaling and under row additions
 One can multiply a row of the matrix by a constant as long as one

multiplies the corresponding element of the right-hand side by the
same constant

 One can add a row of the matrix to another one as long as one
adds the corresponding elements of the right-hand side

 Idea: scale and add equations so as to transform matrix A in
an upper triangular matrix:

?
?

?
?
?

x =

equation n-i has i unknowns, with

?

Gaussian Elimination

-121

2-21

111

2

4

0

x =

-210

1-30

111

2

4

0

x =

-500

1-30

111

1
0

4

0

x =

Subtract row 1 from rows 2 and 3

Multiple row 3 by 3 and add row 2

-5x3 = 10 x3 = -2
-3x2 + x3 = 4 x2 = -2
x1 + x2 + x3 = 0 x1 = 4

Solving equations in
reverse order (backsolving)

Gaussian Elimination

 The algorithm goes through the matrix from the
top-left corner to the bottom-right corner

 the ith step eliminates non-zero sub-diagonal
elements in column i, substracting the ith row
scaled by aji/aii from row j, for j=i+1,..,n.

i

0

values already computed

values yet to be
updated

pivot row i

to
 b

e
 z

e
ro

e
d

Sequential Gaussian
Elimination

Simple sequential algorithm

// for each column i
// zero it out below the diagonal by adding
// multiples of row i to later rows
for i = 1 to n1
 // for each row j below row i
 for j = i+1 to n
 // add a multiple of row i to row j
 for k = i to n
 A(j,k) = A(j,k) (A(j,i)/A(i,i)) * A(i,k)

 Several “tricks” that do not change the spirit of the
algorithm but make implementation easier and/or more
efficient
 Right-hand side is typically kept in column n+1 of the matrix

and one speaks of an augmented matrix
 Compute the A(i,j)/A(i,i) term outside of the loop

Pivoting: Motivation

 A few pathological cases

 Division by small numbers → round-off error in computer
arithmetic

 Consider the following system
0.0001x1 + x2 = 1.000

x1 + x2 = 2.000

 exact solution: x1=1.00010 and x2 = 0.99990

 say we round off after 3 digits after the decimal point
 Multiply the first equation by 104 and subtract it from the second

equation
 (1 - 1)x1 + (1 - 104)x2 = 2 - 104

 But, in finite precision with only 3 digits:
 1 - 104 = -0.9999 E+4 ~ -0.999 E+4
 2 - 104 = -0.9998 E+4 ~ -0.999 E+4

 Therefore, x2 = 1 and x1 = 0 (from the first equation)

 Very far from the real solution!

11

10

Partial Pivoting

 One can just swap rows
x1 + x2 = 2.000

0.0001x1 + x2 = 1.000
 Multiple the first equation my 0.0001 and subtract it from the second

equation gives:
(1 - 0.0001)x2 = 1 - 0.0001
0.9999 x2 = 0.9999 => x2 = 1

and then x1 = 1
 Final solution is closer to the real solution. (Magical?)
 Partial Pivoting

 For numerical stability, one doesn’t go in order, but pick the next row in rows i to
n that has the largest element in row i

 This row is swapped with row i (along with elements of the right hand side)
before the subtractions

 the swap is not done in memory but rather one keeps an indirection array
 Total Pivoting

 Look for the greatest element ANYWHERE in the matrix
 Swap columns
 Swap rows

 Numerical stability is really a difficult field

Parallel Gaussian
Elimination?

 Assume that we have one processor per matrix element

Reduction Broadcast Compute

Broadcasts Compute

to find the max aji

max aji needed to compute
the scaling factor Independent computation

of the scaling factor

Every update needs the
scaling factor and the
element from the pivot row

Independent
computations

LU Factorization (Section 4.4)
 Gaussian Elimination is simple but

 What if we have to solve many Ax = b systems for different values of b?
 This happens a LOT in real applications

 Another method is the “LU Factorization”
 Ax = b
 Say we could rewrite A = L U, where L is a lower triangular matrix, and U is

an upper triangular matrix O(n3)
 Then Ax = b is written L U x = b
 Solve L y = b O(n2)
 Solve U x = y O(n2)

?
?
?
?
?
?

x =
?
?
?
?
?
?

x =

equation i has i unknowns equation n-i has i unknowns

triangular system solves are easy

LU Factorization: Principle
 It works just like the Gaussian Elimination, but instead of zeroing

out elements, one “saves” scaling coefficients.

 Magically, A = L x U !
 Should be done with pivoting as well

322

134

-
1

21

322

5-
5

0

-
1

21
gaussian

elimination

save the
scaling
factor

322

5-
5

4

-
1

21 gaussian
elimination

+
save the
scaling
factor

5-
2

2

5-
5

4

-
1

21

gaussian
elimination

+
save the
scaling
factor

32/52

5-54

-121

12/52

014

001

L =
300

5-50

-121

U =

LU Factorization

 We’re going to look at the simplest possible version
 No pivoting:just creates a bunch of indirections that are easy but make

the code look complicated without changing the overall principle

stores the scaling factors

k

k

LUsequential(A,n) {
 for k = 0 to n2 {
 // preparing column k
 for i = k+1 to n1
 aik ← aik / akk

 for j = k+1 to n1
 // Task Tkj: update of column j
 for i=k+1 to n1
 aij ← aij + aik * akj

 }
}

LU Factorization

 We’re going to look at the simplest possible version
 No pivoting:just creates a bunch of indirections that are easy

but make the code look complicated without changing the
overall principle

LUsequential(A,n) {
 for k = 0 to n2 {
 // preparing column k
 for i = k+1 to n1
 aik ← aik / akk

 for j = k+1 to n1
 // Task Tkj: update of column j
 for i=k+1 to n1
 aij ← aij + aik * akj

 }
}

k

i
j

k

update

Parallel LU on a ring

 Since the algorithm operates by columns from left to right,
we should distribute columns to processors

 Principle of the algorithm
 At each step, the processor that owns column k does the

“prepare” task and then broadcasts the bottom part of column
k to all others

 Annoying if the matrix is stored in row-major fashion
 Remember that one is free to store the matrix in anyway one

wants, as long as it’s coherent and that the right output is
generated

 After the broadcast, the other processors can then update
their data.

 Assume there is a function alloc(k) that returns the rank of
the processor that owns column k
 Basically so that we don’t clutter our program with too many

global-to-local index translations
 In fact, we will first write everything in terms of global

indices, as to avoid all annoying index arithmetic

LU-broadcast algorithm

LUbroadcast(A,n) {
 q ← MY_NUM()
 p ← NUM_PROCS()
 for k = 0 to n2 {
 if (alloc(k) == q)
 // preparing column k
 for i = k+1 to n1
 buffer[ik1] ← aik ← aik / akk

 broadcast(alloc(k),buffer,nk1)
 for j = k+1 to n1
 if (alloc(j) == q)
 // update of column j
 for i=k+1 to n1
 aij ← aij + buffer[ik1] * akj

 }
}

Dealing with local indices

 Assume that p divides n
 Each processor needs to store r=n/p columns and

its local indices go from 0 to r-1
 After step k, only columns with indices greater

than k will be used
 Simple idea: use a local index, l, that everyone

initializes to 0
 At step k, processor alloc(k) increases its local

index so that next time it will point to its next
local column

LU-broadcast algorithm

...
 double a[n1][r1];

 q ← MY_NUM()
 p ← NUM_PROCS()
 l ← 0
 for k = 0 to n2 {
 if (alloc(k) == q)
 for i = k+1 to n1
 buffer[ik1] ← a[i,k] ← a[i,l] / a[k,l]
 l ← l+1
 broadcast(alloc(k),buffer,nk1)
 for j = l to r1
 for i=k+1 to n1
 a[i,j] ← a[i,j] + buffer[ik1] * a[k,j]
 }
}

What about the Alloc
function?

 One thing we have left completely unspecified is
how to write the alloc function: how are columns
distributed among processors

 There are two complications:
 The amount of data to process varies throughout the

algorithm’s execution
 At step k, columns k+1 to n-1 are updated
 Fewer and fewer columns to update

 The amount of computation varies among columns
 e.g., column n-1 is updated more often than column 2
 Holding columns on the right of the matrix leads to much

more work
 There is a strong need for load balancing

 All processes should do the same amount of work

Bad load balancing
P1 P2 P3 P4

already
done

already
done working

on it

Good Load Balancing?

working
on it

already
done

already
done

Cyclic distribution

Proof that load balancing is
good

 The computation consists of two types of operations
 column preparations
 matrix element updates

 There are many more updates than preparations, so we really
care about good balancing of the preparations

 Consider column j
 Let’s count the number of updates performed by the processor

holding column j
 Column j is updated at steps k=0, ..., j-1
 At step k, elements i=k+1, ..., n-1 are updates

 indices start at 0
 Therefore, at step k, the update of column j entails n-k-1 updates
 The total number of updates for column j in the execution is:

Proof that load balancing is
good

 Consider processor Pi, which holds columns lp+i for l=0, ... , n/p -1
 Processor Pi needs to perform this many updates:

 Turns out this can be computed
 separate terms
 use formulas for sums of integers and sums of squares

 What it all boils down to is:

 This does not depend on i !!
 Therefore it is (asymptotically) the same for all Pi processors
 Therefore we have (asymptotically) perfect load balancing!

Load-balanced program

...
 double a[n1][r1];

 q ← MY_NUM()
 p ← NUM_PROCS()
 l ← 0
 for k = 0 to n2 {
 if (k mod p == q)
 for i = k+1 to n1
 buffer[ik1] ← a[i,k] ← a[i,l] / a[k,l]
 l ← l+1
 broadcast(alloc(k),buffer,nk1)
 for j = l to r1
 for i=k+1 to n1
 a[i,j] ← a[i,j] + buffer[ik1] * a[k,j]
 }
}

Performance Analysis

 How long does this code take to run?
 This is not an easy question because there are

many tasks and many communications
 A little bit of analysis shows that the execution

time is the sum of three terms
 n-1 communications: n L + (n2/2) b + O(1)
 n-1 column preparations: (n2/2) w’ + O(1)
 column updates: (n3/3p) w + O(n2)

 Therefore, the execution time is ~ (n3/3p) w
 Note that the sequential time is: (n3 /3) w
 Therefore, we have perfect asymptotic efficiency!
 This is good, but isn’t always the best in practice
 How can we improve this algorithm?

Pipelining on the Ring

 So far, the algorithm we’ve used a simple
broadcast

 Nothing was specific to being on a ring of
processors and it’s portable
 in fact you could just write raw MPI that just looks like

our pseudo-code and have a very limited, inefficient for
small n, LU factorization that works only for some
number of processors

 But it’s not efficient
 The n-1 communication steps are not overlapped with

computations
 Therefore Amdahl’s law, etc.

 Turns out that on a ring, with a cyclic distribution
of the columns, one can interleave pieces of the
broadcast with the computation
 It almost looks like inserting the source code from the

broadcast code we saw at the very beginning
throughout the LU code

Previous program

...
 double a[n1][r1];

 q ← MY_NUM()
 p ← NUM_PROCS()
 l ← 0
 for k = 0 to n2 {
 if (k == q mod p)
 for i = k+1 to n1
 buffer[ik1] ← a[i,k] ← a[i,l] / a[k,l]
 l ← l+1
 broadcast(alloc(k),buffer,nk1)
 for j = l to r1
 for i=k+1 to n1
 a[i,j] ← a[i,j] + buffer[ik1] * a[k,j]
 }
}

LU-pipeline algorithm
 double a[n1][r1];

 q ← MY_NUM()
 p ← NUM_PROCS()
 l ← 0
 for k = 0 to n2 {
 if (k == q mod p)
 for i = k+1 to n1
 buffer[ik1] ← a[i,k] ← a[i,l] / a[k,l]
 l ← l+1
 send(buffer,nk1)
 else
 recv(buffer,nk1)
 if (q ≠ k1 mod p) send(buffer, nk1)
 for j = l to r1
 for i=k+1 to n1
 a[i,j] ← a[i,j] + buffer[ik1] * a[k,j]
 }
}

Why is it better?

 During a broadcast the root’s successor just sits
idle while the message goes along the ring

 This is because of the way we have implemented
broadcast, partially
 With a better broadcast on a general topology the wait

may be smaller
 But there is still a wait

 What we have done is allow each processor to
move on to other business after receiving and
forwarding the message

 Possible by writing the code with just sends and
receive
 More complicated, more efficient: usual trade-off

 Let’s look at a (idealized) time-line

Prep(0)
Send(0)

Update(0,4)
Update(0,8)
Update(0,12)

Recv(0)
Send(0)

Update(0,1)
Update(0,5)
Update(0,9)
Update(0,13)

Recv(0)
Send(0)

Update(0,2)
Update(0,6)
Update(0,10)
Update(0,14)

Recv(0)
Update(0,3)
Update(0,7)
Update(0,11)
Update(0,15)Prep(1)

Send(1)
Update(1,5)
Update(1,9)
Update(1,13)

Recv(1)
Send(1)

Update(1,2)
Update(1,6)
Update(1,10)
Update(1,14)

Recv(1)
Send(1)

Update(1,3)
Update(1,7)
Update(1,11)
Update(1,15)

Recv(1)
Update(1,4)
Update(1,8)
Update(1,12)

Prep(2)
Send(2)

Update(2,6)
Update(2,10)
Update(2,14)

Recv(2)
Send(2)

Update(2,3)
Update(2,7)
Update(2,11)
Update(2,15)

Recv(2)
Send(2)

Update(2,4)
Update(2,8)
Update(2,12)

Recv(2)
Update(2,5)
Update(2,9)
Update(2,13)

Prep(3)
Send(3)

Update(3,7)
Update(3,11)
Update(3,15)

Recv(3)
Send(3)

Update(3,4)
Update(3,8)
Update(3,12)

Recv(3)
Send(3)

Update(3,5)
Update(3,9)
Update(3,13)

Recv(3)
Update(3,6)
Update(3,10)
Update(3,14)

First four
stages

Some communication
occurs in parallel
with computation

A processor sends out
data as soon as it
receives it

Can we do better?
 In the previous algorithm, a processor does all its updates before

doing a Prep() computation that then leads to a communication
 But in fact, some of these updates can be done later
 Idea: Send out pivot as soon as possible
 Example:

 In the previous algorithm
 P1: Receive(0), Send(0)
 P1: Update(0,1), Update(0,5), Update(0,9), Update(0,13)
 P1: Prep(1)
 P1: Send(1)
 ...

 In the new algorithm (see page 130)
 P1: Receive(0), Send(0)
 P1: Update(0,1)
 P1: Prep(1)
 P1: Send(1)
 P1: Update(0,5), Update(0,9), Update(0,13)
 ...

Prep(0)
Send(0)

Update(0,4)
Update(0,8)
Update(0,12)

Recv(0)
Send(0)

Update(0,1)

Update(0,5)
Update(0,9)
Update(0,13)

Recv(0)
Send(0)

Update(0,2)

Update(0,6)
Update(0,10)
Update(0,14)

Recv(0)
Update(0,3)
Update(0,7)

Update(0,11)
Update(0,15)

Prep(1)
Send(1)

Update(1,5)
Update(1,9)

Update(1,13)

Recv(1)
Send(1)

Update(1,2)

Update(1,6)
Update(1,10)

Update(1,14)

Recv(1)
Send(1)

Update(1,3)

Update(1,7)
Update(1,11)
Update(1,15)

Recv(1)
Update(1,4)
Update(1,8)

Update(1,12)

Prep(2)
Send(2)

Update(2,6)
Update(2,10)
Update(2,14)

Recv(2)
Send(2)

Update(2,3)

Update(2,7)
Update(2,11)
Update(2,15)

Recv(2)
Send(2)

Update(2,4)
Update(2,8)
Update(2,12)

Recv(2)

Update(2,5)

Update(2,9)
Update(2,13)

Prep(3)
Send(3)

Update(3,7)
Update(3,11)
Update(3,15)

Recv(3)
Send(3)

Update(3,4)
Update(3,8)
Update(3,12)

Recv(3)
Send(3)

Update(3,5)
Update(3,9)
Update(3,13)

Recv(3)

Update(3,6)
Update(3,10)
Update(3,14)

First four
stages

Many communications
occur in parallel
with computation

A processor sends out
data as soon as it
receives it

Further improving
performance

 One can use local overlap of communication and
computation
 multi-threading, good MPI non-blocking implementation,

etc.
 There is much more to be said about parallel LU

factorization
 Many research articles
 Many libraries available

 It’s a good example of an application for which
one can think hard about operation orderings and
try to find improved sequences
 The basic principle is always the same: sends things as

early as possible

Another Stencil Application

 Let us consider a simple stencil:
 Cnew = Update(Cold,Wold,Eold,Nold,Sold)

 To implement this stencil (in sequential or in parallel), one
need to keep two arrays around:
 The original one: A
 The new one: B

 To run multiple iterations on can just swap these pointers
 The simples way to partition the domain among processors

on the ring is to give a block of r = n/p consecutive rows to
each processor

 Declaration: var A,B: array[0..r-1, 0..n-1] of real;
 Each processor can update rows 1..r-2 easily, but for its top

row and its bottom row, it needs to receive elements from
its neighbors

 For simplicity we assume that P0 and Pp-1 exchange rows
 We have a “wrap-around domain”

Another Stencil Application

P0

P1

P2

P3

Communication Pattern

 To “swap” rows with a neighbor is a bit
complicated

 Sending to a Successor is easy
 Sending to a predecessor requires p-1 hops

 The structure of the algorithm is:
1. send/recv border rows || compute green cells
2. compute red cells

 We assume that each processor declares
two “buffer” arrays

var fromPred, fromSucc: array[0..n-1] of real
 Let us write the communication part

 See full algorithm on page 132

Communication Pattern

 Each processor does:

tempS = &(A[0,0])
for k = 1 to p-2:

Send(tempS, n) || Recv(tempR, n)
swap(tempS, tempR)

endfor
Send(tempS, n) || Recv(fromSucc, n)
Send(&(A[r-1,0]), n) || Recv(fromPred,n)

 At this point, every processor has the fromPred
and fromSucc arrays filled with the needed cell
values

Performance Analysis

 The communication phase consists in a sequence
of p concurrent sends and receives of a row of n
cells
 It takes time pL + pnb

 It occurs concurrently with a computation phase
that computes r-2 rows
 It takes time (r-2)nw = (n/p - 2)nw

 Then, we have a computation phase that
computes 2 rows:
 It takes time 2nw

 The overall execution time is:
T(n,p) = max{pL + pnb, (n/p - 2)nw} + 2nw

 When n becomes large: T(n,p) ~ n2w/p
 Therefore we have perfect asymptotic efficiency

Another virtual topology?

 The previous code is asymptotical optimal, so
we’re essentially done
 There is not really way to reduce communication

overhead when n isn’t very large
 But the communication phase is a bit

cumbersome
 How about using a bidirectional ring?
 Again, we can choose whatever we want really

 As long as the physical platform “supports” it
 With a bidirectional ring, the comunication phase

is written as:
Send(pred, &(A[0,0],n) || Recv(succ, fromSucc,n)
Send(succ, &(A[r-1,0], n) || Recv(pred, fromPred,
n)

 Much simpler, much more readable

Conclusion

 We can do a lot of things with a ring
 We saw our first example that a

modification to the virtual topology can
make the code much simpler (albeit in a
trivial case)

 Next, we’ll look at a 2-D grid
topology, which induces 2-D data
distributions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

