
Scheduling
Master 2 Research Lecture: Parallel Systems

Vincent Danjean, MCF UJF, LIG/INRIA/Moais
Derick Kondo, CR INRIA, LIG/INRIA/Mescal

Arnaud Legrand, CR CNRS, LIG/INRIA/Mescal
Jean-François Méhaut, PR UJF, LIG/INRIA/Mescal

Bruno Raffin, CR INRIA, LIG/INRIA/Moais
Jean-Louis Roch, MCF ENSIMAG, LIG/INRIA/Moais

Alexandre Termier, MCF UJF, LIG/Hadas

LIG laboratory, arnaud.legrand@imag.fr

October 20, 2008

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling 1 / 64

arnaud.legrand@imag.fr

Outline

1 Task Graphs and Parallel Tasks From Outer Space

2 Batch Scheduling
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

3 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

4 What about Theory ?
Scheduling Definitions and Notions
Platform Models and Scheduling Problems
Back to job scheduling

5 Conclusion

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling 2 / 64

Outline

1 Task Graphs and Parallel Tasks From Outer Space

2 Batch Scheduling
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

3 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

4 What about Theory ?
Scheduling Definitions and Notions
Platform Models and Scheduling Problems
Back to job scheduling

5 Conclusion

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 3 / 64

Analyzing a Simple Code

Solving A.x = B where A is lower triangular matrix
for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i+ 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

X
A

= B

For a given value 1 6 i 6 n, all tasks Ti,∗ are computations done
during the ith iteration of the outer loop.

<seq is the sequential order :

T1,1<seq T1,2<seq T1,3<seq . . .<seq T1,n<seq T2,2<seq T2,3<seq

. . .<seq Tn,n .

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 4 / 64

Analyzing a Simple Code

Solving A.x = B where A is lower triangular matrix
for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i+ 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

X
A

= B

For a given value 1 6 i 6 n, all tasks Ti,∗ are computations done
during the ith iteration of the outer loop.

<seq is the sequential order :

T1,1<seq T1,2<seq T1,3<seq . . .<seq T1,n<seq T2,2<seq T2,3<seq

. . .<seq Tn,n .

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 4 / 64

Analyzing a Simple Code

Solving A.x = B where A is lower triangular matrix
for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i+ 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

X
A

= B

For a given value 1 6 i 6 n, all tasks Ti,∗ are computations done
during the ith iteration of the outer loop.

<seq is the sequential order :

T1,1<seq T1,2<seq T1,3<seq . . .<seq T1,n<seq T2,2<seq T2,3<seq

. . .<seq Tn,n .

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 4 / 64

Independence

However, some independent tasks could be executed in parallel.
Independent tasks are the ones whose execution order can be changed
without modifying the result of the program.
Two independent tasks may read the value but never write to the
same memory location.

For a given task T , In(T) denotes the set of input variables and
Out(T) the set of output variables.
In the previous example, we have :{
In(Ti,i) = {b(i), a(i, i)}
Out(Ti,i) = {x(i)} and{
In(Ti,j) = {b(j), a(j, i), x(i)}
Out(Ti,j) = {b(j)} for j > i.

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i+ 1 to n do

Task Ti,j : b(j)← b(j)−a(j, i)×
x(i)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 5 / 64

Independence

However, some independent tasks could be executed in parallel.
Independent tasks are the ones whose execution order can be changed
without modifying the result of the program.
Two independent tasks may read the value but never write to the
same memory location.

For a given task T , In(T) denotes the set of input variables and
Out(T) the set of output variables.

In the previous example, we have :{
In(Ti,i) = {b(i), a(i, i)}
Out(Ti,i) = {x(i)} and{
In(Ti,j) = {b(j), a(j, i), x(i)}
Out(Ti,j) = {b(j)} for j > i.

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i+ 1 to n do

Task Ti,j : b(j)← b(j)−a(j, i)×
x(i)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 5 / 64

Independence

However, some independent tasks could be executed in parallel.
Independent tasks are the ones whose execution order can be changed
without modifying the result of the program.
Two independent tasks may read the value but never write to the
same memory location.

For a given task T , In(T) denotes the set of input variables and
Out(T) the set of output variables.
In the previous example, we have :{
In(Ti,i) = {b(i), a(i, i)}
Out(Ti,i) = {x(i)} and{
In(Ti,j) = {b(j), a(j, i), x(i)}
Out(Ti,j) = {b(j)} for j > i.

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i+ 1 to n do

Task Ti,j : b(j)← b(j)−a(j, i)×
x(i)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 5 / 64

Bernstein Conditions

Definition.

Two tasks T and T ′ are not independent (T⊥T ′) whenever they
share a written variable:

T⊥T ′ ⇔


In(T) ∩Out(T ′) 6= ∅

or Out(T) ∩ In(T ′) 6= ∅
or Out(T) ∩Out(T ′) 6= ∅

.

Those conditions are known as Bernstein’s conditions [5].

We can check that:

I Out(T1,1)∩In(T1,2) = {x(1)}
; T1,1⊥T1,2.

I Out(T1,3) ∩Out(T2,3) = {b(3)}
; T1,3⊥T2,3.

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 6 / 64

Bernstein Conditions

Definition.

Two tasks T and T ′ are not independent (T⊥T ′) whenever they
share a written variable:

T⊥T ′ ⇔


In(T) ∩Out(T ′) 6= ∅

or Out(T) ∩ In(T ′) 6= ∅
or Out(T) ∩Out(T ′) 6= ∅

.

Those conditions are known as Bernstein’s conditions [5].

We can check that:

I Out(T1,1)∩In(T1,2) = {x(1)}
; T1,1⊥T1,2.

I Out(T1,3) ∩Out(T2,3) = {b(3)}
; T1,3⊥T2,3.

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 6 / 64

Bernstein Conditions

Definition.

Two tasks T and T ′ are not independent (T⊥T ′) whenever they
share a written variable:

T⊥T ′ ⇔


In(T) ∩Out(T ′) 6= ∅

or Out(T) ∩ In(T ′) 6= ∅
or Out(T) ∩Out(T ′) 6= ∅

.

Those conditions are known as Bernstein’s conditions [5].

We can check that:

I Out(T1,1)∩In(T1,2) = {x(1)}
; T1,1⊥T1,2.

I Out(T1,3) ∩Out(T2,3) = {b(3)}
; T1,3⊥T2,3.

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 6 / 64

Bernstein Conditions

Definition.

Two tasks T and T ′ are not independent (T⊥T ′) whenever they
share a written variable:

T⊥T ′ ⇔


In(T) ∩Out(T ′) 6= ∅

or Out(T) ∩ In(T ′) 6= ∅
or Out(T) ∩Out(T ′) 6= ∅

.

Those conditions are known as Bernstein’s conditions [5].

We can check that:

I Out(T1,1)∩In(T1,2) = {x(1)}
; T1,1⊥T1,2.

I Out(T1,3) ∩Out(T2,3) = {b(3)}
; T1,3⊥T2,3.

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 6 / 64

Precedence

If T⊥T ′, then they should be ordered with the sequential execution
order. T ≺ T ′ if T⊥T ′ and T <seq T

′.
More precisely ≺ is defined as the transitive closure of (<seq ∩ ⊥).

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A dependence graph G is used.

(e : T → T ′) ∈ G means that T ′ can
start only if T has already been finished.
T is a predecessor of T ′.

Transitivity arcs are generally omitted.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 7 / 64

Precedence

If T⊥T ′, then they should be ordered with the sequential execution
order. T ≺ T ′ if T⊥T ′ and T <seq T

′.
More precisely ≺ is defined as the transitive closure of (<seq ∩ ⊥).

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A dependence graph G is used.

(e : T → T ′) ∈ G means that T ′ can
start only if T has already been finished.
T is a predecessor of T ′.

Transitivity arcs are generally omitted.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 7 / 64

Precedence

If T⊥T ′, then they should be ordered with the sequential execution
order. T ≺ T ′ if T⊥T ′ and T <seq T

′.
More precisely ≺ is defined as the transitive closure of (<seq ∩ ⊥).

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A dependence graph G is used.

(e : T → T ′) ∈ G means that T ′ can
start only if T has already been finished.
T is a predecessor of T ′.

Transitivity arcs are generally omitted.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 7 / 64

Precedence

If T⊥T ′, then they should be ordered with the sequential execution
order. T ≺ T ′ if T⊥T ′ and T <seq T

′.
More precisely ≺ is defined as the transitive closure of (<seq ∩ ⊥).

for i = 1 to n do

Task Ti,i: x(i)← b(i)/a(i, i)

for j = i + 1 to n do

Task Ti,j : b(j)← b(j)− a(j, i)× x(i)

A dependence graph G is used.

(e : T → T ′) ∈ G means that T ′ can
start only if T has already been finished.
T is a predecessor of T ′.

Transitivity arcs are generally omitted.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 7 / 64

From Coarse-grain Task Graphs. . .

The previous task graph comes from a low-
level analysis of the code.
It probably makes little sense to do a parallel
implementation with MPI with such a low
task granularity.
Can totally make sense with OpenMP.
Such task graphs can also be used by com-
pilers to do code optimization by exploit-
ing multiple functional units, pipelines func-
tional units, etc.
With blocking these tasks could become
MPI (parallel) tasks.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 8 / 64

From Coarse-grain Task Graphs. . .

The previous task graph comes from a low-
level analysis of the code.
It probably makes little sense to do a parallel
implementation with MPI with such a low
task granularity.
Can totally make sense with OpenMP.
Such task graphs can also be used by com-
pilers to do code optimization by exploit-
ing multiple functional units, pipelines func-
tional units, etc.
With blocking these tasks could become
MPI (parallel) tasks.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 8 / 64

. . . to Parallel Tasks

Hide applications’ complexity

3 versions:

I Rigid Tasks

I Moldable Tasks

I Malleable Tasks

pi

qi

The execution time generally decreases with the number of proces-
sors but the penalty incurred by communications and synchroniza-
tions increases.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 9 / 64

. . . to Parallel Tasks

Hide applications’ complexity

3 versions:

I Rigid Tasks

I Moldable Tasks

I Malleable Tasks

The execution time generally decreases with the number of proces-
sors but the penalty incurred by communications and synchroniza-
tions increases.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 9 / 64

. . . to Parallel Tasks

Hide applications’ complexity

3 versions:

I Rigid Tasks

I Moldable Tasks

I Malleable Tasks

The execution time generally decreases with the number of proces-
sors but the penalty incurred by communications and synchroniza-
tions increases.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 9 / 64

The BSP model

Bulk Synchronous Parallel is a programming paradigm whose prin-
ciple is a series of independent steps of computations and commu-
nication/synchronization.

SynchronizationComputations

Communications

The cost of a superstep is determined as the sum of three terms:

T = max
i
w(i) + maxh(i)g + l

Scheduling under BSP is about finding a tradeoff between load-
balancing and number of communication/synchronizations.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 10 / 64

Workflow

Task-graph do not necessarily come from instruction-level analysis.

select p.proteinID,

blast(p.sequence)

from proteins p, proteinTerms t

where p.proteinID = t.proteinID and

t.term = GO:0008372

scan(proteinTerms t)

(termGO:0008372)

project

(t.proteinID)

exchange

join

(p.proteinID=t.proteinID)

project

(p.proteinID,blast)

operation call

(blast(p.sequence))

exchange

scan(proteins p)

(termGO:0008372)

project

(p.proteinID,p.sequence)

exchange

I Each task may be parallel, preemptable, divisible, . . .

I Each edge depicts a dependency i.e. most of the times some
data to transfer.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 11 / 64

Workflow

Task-graph do not necessarily come from instruction-level analysis.

select p.proteinID,

blast(p.sequence)

from proteins p, proteinTerms t

where p.proteinID = t.proteinID and

t.term = GO:0008372

scan(proteinTerms t)

(termGO:0008372)

project

(t.proteinID)

exchange

join

(p.proteinID=t.proteinID)

project

(p.proteinID,blast)

operation call

(blast(p.sequence))

exchange

scan(proteins p)

(termGO:0008372)

project

(p.proteinID,p.sequence)

exchange

I Each task may be parallel, preemptable, divisible, . . .

I Each edge depicts a dependency i.e. most of the times some
data to transfer.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 11 / 64

Workflow

Task-graph do not necessarily come from instruction-level analysis.

select p.proteinID,

blast(p.sequence)

from proteins p, proteinTerms t

where p.proteinID = t.proteinID and

t.term = GO:0008372

scan(proteinTerms t)

(termGO:0008372)

project

(t.proteinID)

exchange

join

(p.proteinID=t.proteinID)

project

(p.proteinID,blast)

operation call

(blast(p.sequence))

exchange

scan(proteins p)

(termGO:0008372)

project

(p.proteinID,p.sequence)

exchange

I Each task may be parallel, preemptable, divisible, . . .

I Each edge depicts a dependency i.e. most of the times some
data to transfer.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Parallel Tasks 11 / 64

Outline

1 Task Graphs and Parallel Tasks From Outer Space

2 Batch Scheduling
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

3 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

4 What about Theory ?
Scheduling Definitions and Notions
Platform Models and Scheduling Problems
Back to job scheduling

5 Conclusion

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 12 / 64

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

temps

processeurs

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 13 / 64

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

temps

processeurs

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 13 / 64

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 13 / 64

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 13 / 64

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 13 / 64

Need for Batch Scheduling

I Parallel Tasks from Scientific Computations (simulation, med-
ical)

I When one purchases a cluster, typically many users want to use
it.

I One cannot let them step on each other’s toes
I Every user wants to be on a dedicated machine
I Applications are written assuming some amount of RAM, some

notion that all processors go at the same speed, etc.

The Job Scheduler is the entity that prevents them from step-
ping on each other’s toes

The Job Scheduler gives out nodes to applications

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 13 / 64

Batch Scheduling

Each job is defined as a Number of nodes (qi) and a Time (pi):

I want 6 nodes for 1h

Typically users are “charged” against an “allocation”: e.g. “You
only get 100 CPU hours per week”.
A batch scheduler is a central middleware to manage resources (e.g.
processors) of parallel machines:

I accept jobs (computing tasks) submitted by users
I decide when and where jobs are executed
I start jobs execution

They take into account:
I unavailability of some nodes
I users jobs mutual exclusion
I specific needs for jobs (memory, network, ...)

While trying to :
I maximize resources usage
I be fair among users

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 14 / 64

Batch Scheduling

Typical wanted features:

I Interactive mode

I Batch mode

I Parallel jobs support

I Multi-queues with priori-
ties

I Admission policies (limit
on usage, notions of user
groups, power users)

I Resources matching

I File staging

I Jobs dependences

I Backfilling

I Reservations

I Best effort jobs

I Environment reconfiguration

There are many existing batch schedulers : LSF, PBS/Torque, Maui
scheduler, Sun Grid Engine, EASY, OAR, . . .

These are complex systems with many config options !

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 15 / 64

Main Batch Schedulers Features

OpenPBS SGE Maui Scheduler OAR
(+ OpenPBS)

Interactive mode × × × ×
Batch mode × × × ×
Parallel jobs support × × × ×
Multi-queues with priorities × × × ×
Resources matching × × × ×
Admission policies × × × ×
File staging × × ×
Jobs dependences × × ×
Backfilling × ×
Reservations × ×
Best effort jobs ×
Environment reconfiguration ×
Fair sharing × ×

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 16 / 64

General Principle

TimeNow

Processors

Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 17 / 64

General Principle

TimeNow

Processors

in the queue
(Waiting)

1st job
Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 17 / 64

General Principle

TimeNow

Processors

in the queue
(Waiting)

2nd job

in the queue
(Waiting)

1st job
Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 17 / 64

General Principle

TimeNow

Processors

in the queue
(Waiting)

3rd job

in the queue
(Waiting)

2nd job

in the queue
(Waiting)

1st job
Running

I Jobs arrive one after the other and are scheduled at arrival.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 17 / 64

First Come First Served

TimeNow

Processors

in
job
1st

the
queue

Running

I FCFS = simplest scheduling option

I Fragmentation ; need for backfilling

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 18 / 64

First Come First Served

TimeNow

Processors

in the queue
(Stuck)

2nd job

in the queue
3rd job

(Stuck)in
job
1st

the
queue

Running

I FCFS = simplest scheduling option

I Fragmentation ; need for backfilling

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 18 / 64

First Come First Served

TimeNow

Processors

in the queue
3rd job

(Back-filled)

in the queue
(Back-filled)

2nd job in
job
1st

the
queue

Running

I FCFS = simplest scheduling option

I Fragmentation ; need for backfilling

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 18 / 64

Backfilling: Question

I Which job(s) should be picked for promotion through the queue?

I Many heuristics are possible
I Two have been studied in detail

I EASY
I Conservative Back Filling (CBF)

I In practice EASY (or variants of it) is used, while CBF is not.

I Although, OAR, a recently proposed batch scheduler imple-
ments CBF.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 19 / 64

EASY Backfilling

Extensible Argonne Scheduling System
Maintain only one reservation, for the first job in the queue.
Definitions:

Shadow time time at which the first job in the queue starts execu-
tion

Extra nodes number of nodes idle when the first job in the queue
starts execution

1 Go through the queue in order starting with the 2nd job.

2 Backfill a job if it will terminate by the shadow time, or it needs
less than the extra nodes.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 20 / 64

EASY

TimeNow

Processors

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 21 / 64

EASY

TimeNow

Processors

in the queue
2nd job

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 21 / 64

EASY

TimeNow

Processors

in the queue
2nd job

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 21 / 64

EASY

TimeNow

Processors

3rd job
in the queue

in the queue
2nd job

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 21 / 64

EASY

TimeNow

Processors

3rd job
in the queue

in the queue
2nd job

Running

in
job
1st

the
queue

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 21 / 64

EASY

TimeNow

Processors

3rd job
in the queue

job
in

2nd

the
queue

in the queue
1st job

Running

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 21 / 64

EASY

TimeNow

Processors

job
in

2nd

the
queue

3rd job
in the queue

in the queue
1st job

Running

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 21 / 64

EASY

TimeNow

Processors

4th job
in the queue

job
in

2nd

the
queue

3rd job
in the queue

in the queue
1st job

Running

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 21 / 64

EASY

TimeNow

Processors

4th job
in the queue

job
in

2nd

the
queue

3rd job
in the queue

in the queue
1st job

Running

Shadow Time

Extra Nodes

Property:

I The first job in the queue will never be delayed by backfilled
jobs

I BUT, other jobs may be delayed infinitely!

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 21 / 64

EASY Properties

Unbounded Delay. I The first job in the queue will never be de-
layed by backfilled jobs

I BUT, other jobs may be delayed infinitely!

No Starvation. I Delay of first job is bounded by runtime of cur-
rent jobs

I When the first job finishes, the second job becomes the first
job in the queue

I Once it is the first job, it cannot be delayed further

Other approach. I Conservative Backfilling. EVERY job has a
reservation. A job may be backfilled only if it does not delay
any other job ahead of it in the queue.

I Fixes the unbounded delay problem that EASY has. More
complicated to implement (The algorithm must find holes
in the schedule) though.

I EASY favors small long jobs and harms large short jobs.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 22 / 64

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 23 / 64

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 23 / 64

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 23 / 64

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).

Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 23 / 64

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 23 / 64

When Does Backfilling Happen?

Possibly when

I A new job arrives

I The first job in the queue starts

I When a job finishes early

Users provide job runtime estimates (Jobs are killed if they go over).
Trade-off:

I provide a conservative estimate: you goes through the queue
faster (may be backfilled)

I provide a loose estimate: your job will not be killed

Are estimates accurate?

0

5

10

15

20

25

30

35

40

0 4 8 12 162 02 4 283 2 36 40

Requested runtime (hrs)

A
c

tu
a

l
ru

n
ti

m
e

 (
h

rs
)

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 23 / 64

How Good is the Schedule ?

All of this is great, but how do we know what a “good” schedule
is? FCFS, EASY, CFB, Random?
What we need are metrics to quantify how good a schedule is. It
has to be an aggregate metric over all jobs

1 Turn-around time or flow (Wait time + Run time).
Job 1 needs 1h of compute time and waits 1s
Job 2 needs 1s of compute time and waits 1h

Clearly Job 1 is really happy, and Job 2 is not happy at all
2 Wait time (equivalent to “user happiness”)

Job 1 asks for 1 nodes and waits 1 h
Job 2 asks for 512 nodes and waits 1h

Again, Job 1 is unhappy while Job 2 is probably sort of happy.

We need a metric that represents happiness for small, large,
short, long jobs.

3 Slowdown or Stretch (turn-around time divided by turn- around
time if alone in the system)
Doesn’t really take care of the small/large problem. Could think
of some scaling, but unclear !

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 24 / 64

How Good is the Schedule ?

All of this is great, but how do we know what a “good” schedule
is? FCFS, EASY, CFB, Random?
What we need are metrics to quantify how good a schedule is. It
has to be an aggregate metric over all jobs

1 Turn-around time or flow (Wait time + Run time).
Job 1 needs 1h of compute time and waits 1s
Job 2 needs 1s of compute time and waits 1h

Clearly Job 1 is really happy, and Job 2 is not happy at all

2 Wait time (equivalent to “user happiness”)
Job 1 asks for 1 nodes and waits 1 h
Job 2 asks for 512 nodes and waits 1h

Again, Job 1 is unhappy while Job 2 is probably sort of happy.

We need a metric that represents happiness for small, large,
short, long jobs.

3 Slowdown or Stretch (turn-around time divided by turn- around
time if alone in the system)
Doesn’t really take care of the small/large problem. Could think
of some scaling, but unclear !

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 24 / 64

How Good is the Schedule ?

All of this is great, but how do we know what a “good” schedule
is? FCFS, EASY, CFB, Random?
What we need are metrics to quantify how good a schedule is. It
has to be an aggregate metric over all jobs

1 Turn-around time or flow (Wait time + Run time).
Job 1 needs 1h of compute time and waits 1s
Job 2 needs 1s of compute time and waits 1h

Clearly Job 1 is really happy, and Job 2 is not happy at all
2 Wait time (equivalent to “user happiness”)

Job 1 asks for 1 nodes and waits 1 h
Job 2 asks for 512 nodes and waits 1h

Again, Job 1 is unhappy while Job 2 is probably sort of happy.

We need a metric that represents happiness for small, large,
short, long jobs.

3 Slowdown or Stretch (turn-around time divided by turn- around
time if alone in the system)
Doesn’t really take care of the small/large problem. Could think
of some scaling, but unclear !

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 24 / 64

How Good is the Schedule ?

All of this is great, but how do we know what a “good” schedule
is? FCFS, EASY, CFB, Random?
What we need are metrics to quantify how good a schedule is. It
has to be an aggregate metric over all jobs

1 Turn-around time or flow (Wait time + Run time).
Job 1 needs 1h of compute time and waits 1s
Job 2 needs 1s of compute time and waits 1h

Clearly Job 1 is really happy, and Job 2 is not happy at all
2 Wait time (equivalent to “user happiness”)

Job 1 asks for 1 nodes and waits 1 h
Job 2 asks for 512 nodes and waits 1h

Again, Job 1 is unhappy while Job 2 is probably sort of happy.

We need a metric that represents happiness for small, large,
short, long jobs.

3 Slowdown or Stretch (turn-around time divided by turn- around
time if alone in the system)
Doesn’t really take care of the small/large problem. Could think
of some scaling, but unclear !

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 24 / 64

Now What ?

Now we have a few metrics we can consider
We can run simulations of the scheduling algorithms, and see how
they fare.
We need to test these algorithms in representative scenarios
Supercomputer/cluster traces. Collect the following for long periods
of time:

I Time of submission

I How many nodes asked

I How much time asked

I How much time was actually used

I How much time spent in the queue

Uses of the traces:

1 Drive simulations

2 Come up with models of user behaviors

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 25 / 64

Sample Results

A type of experiments that people have done: replace user estimate
by f times the actual run time
Possible to improve performance by multiplying user estimates by 2!

EASY CBF

Mean Slowdown

KTH -4.8% -23.0%

CTC -7.9% -18.0%

SDSC +4.6% -14.2%

Mean Response time

KTH -3.3% -7.0%

CTC -0.9% -1.6%

SDSC -1.6% -10.9%

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 26 / 64

Message

I These are all heuristics.

I They are not specifically designed to optimize the metrics we
have designed.

I It is difficult to truly understand the reasons for the results.

I But one can derive some empirical wisdom.

I One of the reasons why one is stuck with possibly obscure
heuristics is that we’re dealing with an on-line problem: We
don’t know what happens next.

I We cannot wait for all jobs to be submitted to make a decision.
But we can wait for a while, accumulate jobs, and schedule
them together.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 27 / 64

Summary

Batch Schedulers are what we’re stuck with at the moment.
They are often hated by users.

I I submit to the queue asking for 10 nodes for 1 hour.

I I wait for two days.

I My code finally starts, but doesn’t finish within 1 hour and gets
killed!!

A lot of research, a few things happening “in the field”.
When you go to a company that has clusters (like most of them),
they typically have a job scheduler, so it’s good to have some idea
of what it is.
A completely different approach is gang scheduling, which we discuss
next.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 28 / 64

Summary

Batch Schedulers are what we’re stuck with at the moment.
They are often hated by users.

I I submit to the queue asking for 10 nodes for 1 hour.

I I wait for two days.

I My code finally starts, but doesn’t finish within 1 hour and gets
killed!!

A lot of research, a few things happening “in the field”.
When you go to a company that has clusters (like most of them),
they typically have a job scheduler, so it’s good to have some idea
of what it is.

A completely different approach is gang scheduling, which we discuss
next.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 28 / 64

Summary

Batch Schedulers are what we’re stuck with at the moment.
They are often hated by users.

I I submit to the queue asking for 10 nodes for 1 hour.

I I wait for two days.

I My code finally starts, but doesn’t finish within 1 hour and gets
killed!!

A lot of research, a few things happening “in the field”.
When you go to a company that has clusters (like most of them),
they typically have a job scheduler, so it’s good to have some idea
of what it is.
A completely different approach is gang scheduling, which we discuss
next.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Batch Scheduling 28 / 64

Outline

1 Task Graphs and Parallel Tasks From Outer Space

2 Batch Scheduling
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

3 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

4 What about Theory ?
Scheduling Definitions and Notions
Platform Models and Scheduling Problems
Back to job scheduling

5 Conclusion

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 29 / 64

Gang Scheduling: Basis

I All processes belonging to a job run at the same time (the term
gang denotes all processors within a job).

I Each process runs alone on each processor.

I BUT: there is rapid coordinated context switching.

I It is possible to suspend/preempt jobs arbitrarily

; May allow
more flexibility to optimize some metrics.

I If processing times are not known in advance (or grossly erro-
neous), preemption can help short jobs that would be “stuck”
behind a long job.

I Should improve machine utilization.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 30 / 64

Gang Scheduling: Basis

I All processes belonging to a job run at the same time (the term
gang denotes all processors within a job).

I Each process runs alone on each processor.

I BUT: there is rapid coordinated context switching.

I It is possible to suspend/preempt jobs arbitrarily ; May allow
more flexibility to optimize some metrics.

I If processing times are not known in advance (or grossly erro-
neous), preemption can help short jobs that would be “stuck”
behind a long job.

I Should improve machine utilization.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 30 / 64

Gang Scheduling: Basis

I All processes belonging to a job run at the same time (the term
gang denotes all processors within a job).

I Each process runs alone on each processor.

I BUT: there is rapid coordinated context switching.

I It is possible to suspend/preempt jobs arbitrarily ; May allow
more flexibility to optimize some metrics.

I If processing times are not known in advance (or grossly erro-
neous), preemption can help short jobs that would be “stuck”
behind a long job.

I Should improve machine utilization.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 30 / 64

Gang Scheduling: an Example

I A 128 node cluster.

I A running 64-node job.

I A 32-node job and a 128-node job are queued.

Should the 32-node job be started ?
Space-Sharing Time-Sharing

short
32-node

job

long
32-node

job

More uniform slowdown, better resource usage.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 31 / 64

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 32 / 64

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 32 / 64

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 32 / 64

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 32 / 64

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 32 / 64

Gang Scheduling: Drawbacks

I Overhead for context switching (trade-off between overhead
and fine grain).

I Overhead for coordinating context switching across multiple
processors.

I Reduced cache efficiency(Frequent cache flushing).

I RAM Pressure (more jobs must fit in memory, swapping to disk
causes unacceptable overhead).

I Typically not used in production HPC systems (batch schedul-
ing is preferred).

I Some implementations (MOSIX, Kerighed).

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 32 / 64

Batch Scheduling it is then

So it seems we’re stuck with batch scheduling.
Why don’t we like Batch Scheduling?

Because queue waiting times
are difficult to predict.

I depends on the status of the queue

I depends on the scheduling algorithm used

I depends on all sorts of configuration parameters set by system
administrator

I depends on future job completions!

I etc.

So I submit my job and then it’s in limbo somewhere, which is
eminently annoying to most users.
That is why there is more and more demand for reservation support.
Users build (badly?) the schedule by themselves.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 33 / 64

Batch Scheduling it is then

So it seems we’re stuck with batch scheduling.
Why don’t we like Batch Scheduling? Because queue waiting times
are difficult to predict.

I depends on the status of the queue

I depends on the scheduling algorithm used

I depends on all sorts of configuration parameters set by system
administrator

I depends on future job completions!

I etc.

So I submit my job and then it’s in limbo somewhere, which is
eminently annoying to most users.

That is why there is more and more demand for reservation support.
Users build (badly?) the schedule by themselves.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 33 / 64

Batch Scheduling it is then

So it seems we’re stuck with batch scheduling.
Why don’t we like Batch Scheduling? Because queue waiting times
are difficult to predict.

I depends on the status of the queue

I depends on the scheduling algorithm used

I depends on all sorts of configuration parameters set by system
administrator

I depends on future job completions!

I etc.

So I submit my job and then it’s in limbo somewhere, which is
eminently annoying to most users.
That is why there is more and more demand for reservation support.
Users build (badly?) the schedule by themselves.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 33 / 64

Batch Scheduling and Grids

Grids result from the collaboration of many Universities/Computing
Centers.
Everyone runs its own Batch Scheduler that cannot be bypassed.
How to decide where we should submit our jobs?

When in doubt, a brute-force approach is to:

I Do multiple submissions for different numbers of nodes

I Cancel all submissions but the first one that comes back

I Or possibly make some ad-hoc call regarding whether to keep
a potentially poor request in the hope of getting a better one
through shortly after.

What happens if everybody does this?

Other issues:

I File Staging ?

I Load Balancing between sites ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 34 / 64

Batch Scheduling and Grids

Grids result from the collaboration of many Universities/Computing
Centers.
Everyone runs its own Batch Scheduler that cannot be bypassed.
How to decide where we should submit our jobs?
When in doubt, a brute-force approach is to:

I Do multiple submissions for different numbers of nodes

I Cancel all submissions but the first one that comes back

I Or possibly make some ad-hoc call regarding whether to keep
a potentially poor request in the hope of getting a better one
through shortly after.

What happens if everybody does this?

Other issues:

I File Staging ?

I Load Balancing between sites ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 34 / 64

Batch Scheduling and Grids

Grids result from the collaboration of many Universities/Computing
Centers.
Everyone runs its own Batch Scheduler that cannot be bypassed.
How to decide where we should submit our jobs?
When in doubt, a brute-force approach is to:

I Do multiple submissions for different numbers of nodes

I Cancel all submissions but the first one that comes back

I Or possibly make some ad-hoc call regarding whether to keep
a potentially poor request in the hope of getting a better one
through shortly after.

What happens if everybody does this?

Other issues:

I File Staging ?

I Load Balancing between sites ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 34 / 64

Batch Scheduling and Grids

Grids result from the collaboration of many Universities/Computing
Centers.
Everyone runs its own Batch Scheduler that cannot be bypassed.
How to decide where we should submit our jobs?
When in doubt, a brute-force approach is to:

I Do multiple submissions for different numbers of nodes

I Cancel all submissions but the first one that comes back

I Or possibly make some ad-hoc call regarding whether to keep
a potentially poor request in the hope of getting a better one
through shortly after.

What happens if everybody does this?

Other issues:

I File Staging ?

I Load Balancing between sites ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 34 / 64

Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . ,Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 35 / 64

Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . ,Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 35 / 64

Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . ,Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 35 / 64

Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . ,Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 35 / 64

Sequential Job Scheduling for Grids

A set unrelated processors P1, . . . ,Pn and a set of sequential jobs
J1, . . . , Jn (processing time pi,j).
Let’s try a few natural scheduling strategies. We denote by ai the
time at which Pi is available (at the beginning ai = 0 for all Pi):

Min-Min Compute the minimum completion time Cj = ai + pi,j of
each Jj and choose the one with the smallest Cj . Update the
corresponding ai (its best host) accordingly (ai ← ai + pi,j).

Max-Min Choose Jj with the largest Cj and update the correspond-
ing ai (its best host) accordingly.

Sufferage Sj is the difference between the best completion time of
Jj and its second best completion time. Choose the job with the
largest sufferage and schedule it on its best processor.

Problem: How do you get an estimate of pi,j ?

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 35 / 64

So Where are we ?

I Batch schedulers are complex pieces of software that are used
in practice.

I A lot of experience on how they work and how to use them.

I But ultimately everybody knows they are an imperfect solution.

I Many view the lack of theoretical foundations as a big problem.

I Let’s look at what theoreticians think of job scheduling.

I The first step is to define the scheduling problem (On-line vs.
Off-line, Preemption vs. No preemption).

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Gang Scheduling 36 / 64

Outline

1 Task Graphs and Parallel Tasks From Outer Space

2 Batch Scheduling
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

3 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

4 What about Theory ?
Scheduling Definitions and Notions
Platform Models and Scheduling Problems
Back to job scheduling

5 Conclusion

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 37 / 64

The Job Scheduling Problem

I When do jobs “arrive”?

On-line We know when they arrive (periodic, aperiodic, etc.)
We don’t: batch scheduling, gang scheduling.
We only get upper bounds on the real processing times (kind
of non-clairvoyant).

Off-line more related to application scheduling but should be
studied before everything else.

I Control of the resources
I With preemption: Gang Scheduling
I Without preemption: Batch Scheduling

I The practical implementations (batch and gang) are only heuris-
tics and do not consider the problem at a theoretical level.
In fact, they don’t optimize any metric each individual user
cares about.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 38 / 64

Task system

Definition: Task system.

A task system is an directed graph G = (V,E,w) where :

I V is the set of tasks (V is finite)

I E represent the dependence constraints:

e = (u, v) ∈ E iff u ≺ v
I w : V → N∗ is a time function that give the weight (or dura-

tion) of each task.

We could set w(Ti,j) = 1 but also decide
that performing a division is more expen-
sive than a multiplication followed by an
addition.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 39 / 64

Task system

Definition: Task system.

A task system is an directed graph G = (V,E,w) where :

I V is the set of tasks (V is finite)

I E represent the dependence constraints:

e = (u, v) ∈ E iff u ≺ v
I w : V → N∗ is a time function that give the weight (or dura-

tion) of each task.

We could set w(Ti,j) = 1 but also decide
that performing a division is more expen-
sive than a multiplication followed by an
addition.

T1,2 T1,3 T1,4 T1,5 T1,6

T6,6

T2,3 T2,4 T2,6T2,5

T3,3

T4,5

T3,4 T3,5 T3,6

T5,6

T2,2

T4,4

T5,5

T4,6

T1,1

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 39 / 64

Schedule and Allocation

Definition: Schedule.

A schedule of a task system G = (V,E,w) is a time function σ :
V → N∗ such that:

∀(u, v) ∈ E, σ(u) + w(u) 6 σ(v)

Let us denote by P = {P1, . . . , Pp} the set of processors.

Definition: Allocation.

An allocation of a task system G = (V,E,w) is a function π : V →
P such that:

π(T) = π(T ′)⇔

{
σ(T) + w(T) 6 σ(T ′) or

σ(T ′) + w(T ′) 6 σ(T)

Depending on the application and platform model, much more com-
plex definitions can be proposed.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 40 / 64

Schedule and Allocation

Definition: Schedule.

A schedule of a task system G = (V,E,w) is a time function σ :
V → N∗ such that:

∀(u, v) ∈ E, σ(u) + w(u) 6 σ(v)

Let us denote by P = {P1, . . . , Pp} the set of processors.

Definition: Allocation.

An allocation of a task system G = (V,E,w) is a function π : V →
P such that:

π(T) = π(T ′)⇔

{
σ(T) + w(T) 6 σ(T ′) or

σ(T ′) + w(T ′) 6 σ(T)

Depending on the application and platform model, much more com-
plex definitions can be proposed.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 40 / 64

Schedule and Allocation

Definition: Schedule.

A schedule of a task system G = (V,E,w) is a time function σ :
V → N∗ such that:

∀(u, v) ∈ E, σ(u) + w(u) 6 σ(v)

Let us denote by P = {P1, . . . , Pp} the set of processors.

Definition: Allocation.

An allocation of a task system G = (V,E,w) is a function π : V →
P such that:

π(T) = π(T ′)⇔

{
σ(T) + w(T) 6 σ(T ′) or

σ(T ′) + w(T ′) 6 σ(T)

Depending on the application and platform model, much more com-
plex definitions can be proposed.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 40 / 64

Gantt-chart

Manipulating functions is generally not very convenient. That is
why Gantt-chart are used to depict schedules and allocations.

P1

P2

P3

Processors

Time

T1

T2

T5

T3 T4

T6 T7

T8

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 41 / 64

Basic Feasibility Condition

Theorem 1.

Let G = (V,E,w) be a task system. There exists a valid schedule
of G iff G has no cycle.

Sketch of the proof.

⇒ Assume that G has a cycle v1 → v2 → . . . → vk → v1. Then
v1 ≺ v1 and a valid schedule σ should hold σ(v1) + w(v1) 6
σ(v1) true, which is impossible because w(v1) > 0.

⇐ If G is acyclic, then some tasks have no predecessor. They can
be scheduled first.
More precisely, we sort topologically the vertexes and schedule
them one after the other on the same processor. Dependences
are then fulfilled.

Therefore all task systems we will be considering in the following are
Directed Acyclic Graphs.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 42 / 64

Basic Feasibility Condition

Theorem 1.

Let G = (V,E,w) be a task system. There exists a valid schedule
of G iff G has no cycle.

Sketch of the proof.

⇒ Assume that G has a cycle v1 → v2 → . . . → vk → v1. Then
v1 ≺ v1 and a valid schedule σ should hold σ(v1) + w(v1) 6
σ(v1) true, which is impossible because w(v1) > 0.

⇐ If G is acyclic, then some tasks have no predecessor. They can
be scheduled first.
More precisely, we sort topologically the vertexes and schedule
them one after the other on the same processor. Dependences
are then fulfilled.

Therefore all task systems we will be considering in the following are
Directed Acyclic Graphs.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 42 / 64

Basic Feasibility Condition

Theorem 1.

Let G = (V,E,w) be a task system. There exists a valid schedule
of G iff G has no cycle.

Sketch of the proof.

⇒ Assume that G has a cycle v1 → v2 → . . . → vk → v1. Then
v1 ≺ v1 and a valid schedule σ should hold σ(v1) + w(v1) 6
σ(v1) true, which is impossible because w(v1) > 0.

⇐ If G is acyclic, then some tasks have no predecessor. They can
be scheduled first.
More precisely, we sort topologically the vertexes and schedule
them one after the other on the same processor. Dependences
are then fulfilled.

Therefore all task systems we will be considering in the following are
Directed Acyclic Graphs.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 42 / 64

Makespan

Definition: Makespan.

The makespan of a schedule is the total execution time :

MS(σ) = max
v∈V
{σ(v) + w(v)} −min

v∈V
{σ(v)} .

P1

P2

P3

Processors

Time

The makespan is also often re-
ferred as Cmax in the literature.

Cmax = max
v∈V

Cv

I Pb(p): find a schedule with the smallest possible makespan,
using at most p processors. MSopt(p) denotes the optimal
makespan using only p processors.

I Pb(∞): find a schedule with the smallest makespan when the
number of processors that can be used is not bounded.
We note MSopt(∞) the corresponding makespan.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 43 / 64

Makespan

Definition: Makespan.

The makespan of a schedule is the total execution time :

MS(σ) = max
v∈V
{σ(v) + w(v)} −min

v∈V
{σ(v)} .

P1

P2

P3

Processors

Time

The makespan is also often re-
ferred as Cmax in the literature.

Cmax = max
v∈V

Cv

I Pb(p): find a schedule with the smallest possible makespan,
using at most p processors. MSopt(p) denotes the optimal
makespan using only p processors.

I Pb(∞): find a schedule with the smallest makespan when the
number of processors that can be used is not bounded.
We note MSopt(∞) the corresponding makespan.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 43 / 64

Makespan

Definition: Makespan.

The makespan of a schedule is the total execution time :

MS(σ) = max
v∈V
{σ(v) + w(v)} −min

v∈V
{σ(v)} .

P1

P2

P3

Processors

Time

The makespan is also often re-
ferred as Cmax in the literature.

Cmax = max
v∈V

Cv

I Pb(p): find a schedule with the smallest possible makespan,
using at most p processors. MSopt(p) denotes the optimal
makespan using only p processors.

I Pb(∞): find a schedule with the smallest makespan when the
number of processors that can be used is not bounded.
We note MSopt(∞) the corresponding makespan.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 43 / 64

Critical path

Let Φ = (T1, T2, . . . , Tn) be a path in G. w can be extended to
paths in the following way :

w(Φ) =
∑n

i=1w(Ti)

Lemma 1.

Let G = (V,E,w) be a DAG and σp a schedule of G using p
processors. For any path Φ in G, we have MS(σp) > w(Φ).

Proof.

Let Φ = (T1, T2, . . . , Tn) be a path in G: (Ti, Ti+1) ∈ E for 1 6
i < n. Therefore we have σp(Ti)+w(Ti) 6 σp(Ti+1) for 1 6 i < n,
hence

MS(σp) > w(Tn) + σp(Tn)− σp(T1) >
n∑

i=1

w(Ti) = w(Φ) .

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 44 / 64

Critical path

Let Φ = (T1, T2, . . . , Tn) be a path in G. w can be extended to
paths in the following way :

w(Φ) =
∑n

i=1w(Ti)

Lemma 1.

Let G = (V,E,w) be a DAG and σp a schedule of G using p
processors. For any path Φ in G, we have MS(σp) > w(Φ).

Proof.

Let Φ = (T1, T2, . . . , Tn) be a path in G: (Ti, Ti+1) ∈ E for 1 6
i < n. Therefore we have σp(Ti)+w(Ti) 6 σp(Ti+1) for 1 6 i < n,
hence

MS(σp) > w(Tn) + σp(Tn)− σp(T1) >
n∑

i=1

w(Ti) = w(Φ) .

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 44 / 64

Critical path

Let Φ = (T1, T2, . . . , Tn) be a path in G. w can be extended to
paths in the following way :

w(Φ) =
∑n

i=1w(Ti)

Lemma 1.

Let G = (V,E,w) be a DAG and σp a schedule of G using p
processors. For any path Φ in G, we have MS(σp) > w(Φ).

Proof.

Let Φ = (T1, T2, . . . , Tn) be a path in G: (Ti, Ti+1) ∈ E for 1 6
i < n. Therefore we have σp(Ti)+w(Ti) 6 σp(Ti+1) for 1 6 i < n,
hence

MS(σp) > w(Tn) + σp(Tn)− σp(T1) >
n∑

i=1

w(Ti) = w(Φ) .

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 44 / 64

Work, Cost, Speed-up and Efficiency

Definition.

Let G = (V,E,w) be a DAG and σp a schedule of G using only p processors:

I Work: W (σp) =
∑
v∈V

w(v).

On such DAGs, the work does not change with the schedule and
communications are not taken into account. However, when the tasks
are parallel (rigid, moldable, malleable), their work depends on the
number of processors they are alloted!
Indeed, parallel algorithms generally do not do the same operations as
the sequential ones. They often have to do more.

I Cost: C(σp) = p.MS(σp).
The cost accounts for the idle time of the processing units.

I Speed-up: s(σp) =
Seq

MS(σp)
, where Seq = MSopt(1) =

∑
v∈V

w(v).

I Efficiency: e(σp) =
s(σp)
p

=
Seq

p×MS(σp)
.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 45 / 64

Work, Cost, Speed-up and Efficiency

Definition.

Let G = (V,E,w) be a DAG and σp a schedule of G using only p processors:

I Work: W (σp) =
∑
v∈V

w(v).

On such DAGs, the work does not change with the schedule and
communications are not taken into account. However, when the tasks
are parallel (rigid, moldable, malleable), their work depends on the
number of processors they are alloted!
Indeed, parallel algorithms generally do not do the same operations as
the sequential ones. They often have to do more.

I Cost: C(σp) = p.MS(σp).
The cost accounts for the idle time of the processing units.

I Speed-up: s(σp) =
Seq

MS(σp)
, where Seq = MSopt(1) =

∑
v∈V

w(v).

I Efficiency: e(σp) =
s(σp)
p

=
Seq

p×MS(σp)
.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 45 / 64

Work, Cost, Speed-up and Efficiency

Definition.

Let G = (V,E,w) be a DAG and σp a schedule of G using only p processors:

I Work: W (σp) =
∑
v∈V

w(v).

On such DAGs, the work does not change with the schedule and
communications are not taken into account. However, when the tasks
are parallel (rigid, moldable, malleable), their work depends on the
number of processors they are alloted!
Indeed, parallel algorithms generally do not do the same operations as
the sequential ones. They often have to do more.

I Cost: C(σp) = p.MS(σp).
The cost accounts for the idle time of the processing units.

I Speed-up: s(σp) =
Seq

MS(σp)
, where Seq = MSopt(1) =

∑
v∈V

w(v).

I Efficiency: e(σp) =
s(σp)
p

=
Seq

p×MS(σp)
.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 45 / 64

Work, Cost, Speed-up and Efficiency

Definition.

Let G = (V,E,w) be a DAG and σp a schedule of G using only p processors:

I Work: W (σp) =
∑
v∈V

w(v).

On such DAGs, the work does not change with the schedule and
communications are not taken into account. However, when the tasks
are parallel (rigid, moldable, malleable), their work depends on the
number of processors they are alloted!
Indeed, parallel algorithms generally do not do the same operations as
the sequential ones. They often have to do more.

I Cost: C(σp) = p.MS(σp).
The cost accounts for the idle time of the processing units.

I Speed-up: s(σp) =
Seq

MS(σp)
, where Seq = MSopt(1) =

∑
v∈V

w(v).

I Efficiency: e(σp) =
s(σp)
p

=
Seq

p×MS(σp)
.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 45 / 64

Speed-up and Efficiency (Cont’d)

Theorem 2.

Let G = (V,E,w) be a DAG. For any schedule σp using p processors:

0 6 e(σp) 6 1 .

Proof.

P4

P3

P2

P1

Processors

Time

idle

active

Let Idle denote the total idle time.
Seq + Idle is then equal to the to-
tal surface of the rectangle, i.e. p ×
MS(σp).

Therefore e(σp) =
Seq

p×MS(σp)
6 1.

The speed-up is thus bounded by the number of processors. No
supra-linear speed-up in our model!

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 46 / 64

A Trivial Result

Theorem 3.

Let G = (V,E,w) be a DAG. We have

Seq = MSopt(1) > . . . > MSopt(p) > MSopt(p+ 1) > . . . > MSopt(∞) .

Allowing to use more processors cannot hurt.

However, using more processors may hurt, especially in a model
where communications are taken into account.

If we define MS′(p) as the smallest makespan of schedules using
exactly p processors, we may have MS′(p) > MS′(p′) with p < p′.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 47 / 64

A Trivial Result

Theorem 3.

Let G = (V,E,w) be a DAG. We have

Seq = MSopt(1) > . . . > MSopt(p) > MSopt(p+ 1) > . . . > MSopt(∞) .

Allowing to use more processors cannot hurt.

However, using more processors may hurt, especially in a model
where communications are taken into account.

If we define MS′(p) as the smallest makespan of schedules using
exactly p processors, we may have MS′(p) > MS′(p′) with p < p′.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 47 / 64

A Trivial Result

Theorem 3.

Let G = (V,E,w) be a DAG. We have

Seq = MSopt(1) > . . . > MSopt(p) > MSopt(p+ 1) > . . . > MSopt(∞) .

Allowing to use more processors cannot hurt.

However, using more processors may hurt, especially in a model
where communications are taken into account.

If we define MS′(p) as the smallest makespan of schedules using
exactly p processors, we may have MS′(p) > MS′(p′) with p < p′.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 47 / 64

Graham Notation

Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : 〈α|β|γ〉 [6]

I α is the processor environment (a few examples):
I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):
I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):
I Cmax: makespan;
I
∑
Ci: average completion

time;
I
∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(maxCi − di);

I . . .

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 48 / 64

Graham Notation

Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : 〈α|β|γ〉 [6]

I α is the processor environment (a few examples):
I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):
I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):
I Cmax: makespan;
I
∑
Ci: average completion

time;
I
∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(maxCi − di);

I . . .

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 48 / 64

Graham Notation

Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : 〈α|β|γ〉 [6]

I α is the processor environment (a few examples):
I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):
I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):
I Cmax: makespan;
I
∑
Ci: average completion

time;
I
∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(maxCi − di);

I . . .

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 48 / 64

Graham Notation

Many parameter can change in a scheduling problem. Graham has then
proposed the following classification : 〈α|β|γ〉 [6]

I α is the processor environment (a few examples):
I ∅: single processor;
I P : identical processors;

I Q: uniform processors;
I R: unrelated processors;

I β describe task and resource characteristics (a few examples):
I pmtn: preemption;
I prec, tree or chains: general

precedence constraints, tree
constraints, set of chain con-
straints and independent tasks
otherwise;

I rj : tasks have release dates;

I pj = p or p 6 pj 6 p: all task
have processing time equal to
p, or comprised between p and
p, or have arbitrary processing
times otherwise;

I d̃: deadlines;

I γ denotes the optimization criterion (a few examples):
I Cmax: makespan;
I
∑
Ci: average completion

time;
I
∑
wiCi: weighted A.C.T;

I Lmax: maximum lateness
(maxCi − di);

I . . .

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 48 / 64

Complexity Results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I 〈P, 2||Cmax〉 is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a?

p = 2, G = (V,E,w) with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai,∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I 〈P, 3|prec|Cmax〉 is strongly NP-complete (3DM);

I 〈P |prec, pj = 1|Cmax〉 is strongly NP-complete (max-clique);

I 〈P, p > 3|prec, pj = 1|Cmax〉 is open;

I 〈P, 2|prec, 1 6 pj 6 2|Cmax〉 is strongly NP-complete;

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 49 / 64

Complexity Results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I 〈P, 2||Cmax〉 is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a?

p = 2, G = (V,E,w) with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai,∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I 〈P, 3|prec|Cmax〉 is strongly NP-complete (3DM);

I 〈P |prec, pj = 1|Cmax〉 is strongly NP-complete (max-clique);

I 〈P, p > 3|prec, pj = 1|Cmax〉 is open;

I 〈P, 2|prec, 1 6 pj 6 2|Cmax〉 is strongly NP-complete;

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 49 / 64

Complexity Results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I 〈P, 2||Cmax〉 is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a?

p = 2, G = (V,E,w) with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai, ∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I 〈P, 3|prec|Cmax〉 is strongly NP-complete (3DM);

I 〈P |prec, pj = 1|Cmax〉 is strongly NP-complete (max-clique);

I 〈P, p > 3|prec, pj = 1|Cmax〉 is open;

I 〈P, 2|prec, 1 6 pj 6 2|Cmax〉 is strongly NP-complete;

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 49 / 64

Complexity Results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I 〈P, 2||Cmax〉 is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a?

p = 2, G = (V,E,w) with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai, ∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I 〈P, 3|prec|Cmax〉 is strongly NP-complete (3DM);

I 〈P |prec, pj = 1|Cmax〉 is strongly NP-complete (max-clique);

I 〈P, p > 3|prec, pj = 1|Cmax〉 is open;

I 〈P, 2|prec, 1 6 pj 6 2|Cmax〉 is strongly NP-complete;

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 49 / 64

Complexity Results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I 〈P, 2||Cmax〉 is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a?

p = 2, G = (V,E,w) with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai, ∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I 〈P, 3|prec|Cmax〉 is strongly NP-complete (3DM);

I 〈P |prec, pj = 1|Cmax〉 is strongly NP-complete (max-clique);

I 〈P, p > 3|prec, pj = 1|Cmax〉 is open;

I 〈P, 2|prec, 1 6 pj 6 2|Cmax〉 is strongly NP-complete;

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 49 / 64

Complexity Results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I 〈P, 2||Cmax〉 is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a?

p = 2, G = (V,E,w) with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai, ∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I 〈P, 3|prec|Cmax〉 is strongly NP-complete (3DM);

I 〈P |prec, pj = 1|Cmax〉 is strongly NP-complete (max-clique);

I 〈P, p > 3|prec, pj = 1|Cmax〉 is open;

I 〈P, 2|prec, 1 6 pj 6 2|Cmax〉 is strongly NP-complete;

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 49 / 64

Complexity Results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I 〈P, 2||Cmax〉 is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a?

p = 2, G = (V,E,w) with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai, ∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I 〈P, 3|prec|Cmax〉 is strongly NP-complete (3DM);

I 〈P |prec, pj = 1|Cmax〉 is strongly NP-complete (max-clique);

I 〈P, p > 3|prec, pj = 1|Cmax〉 is open;

I 〈P, 2|prec, 1 6 pj 6 2|Cmax〉 is strongly NP-complete;

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 49 / 64

Complexity Results

If we have an infinite number of processors, the “as-soon-as-possible”
schedule is optimal. MSopt(∞) = max

Φ path in G
w(Φ).

I 〈P, 2||Cmax〉 is weakly NP-complete (2-Partition);

Proof.

By reduction to 2-Partition: can A = {a1, . . . , an} be partitioned
into two sets A1, A2 such

∑
a∈A1

a =
∑

a∈A2
a?

p = 2, G = (V,E,w) with V = {v1, . . . , vn}, E = ∅ and w(vi) =
ai, ∀1 6 i 6 n.
Finding a schedule of makespan smaller or equal to 1

2

∑
i ai is equiv-

alent to solve the instance of 2-Partition.

I 〈P, 3|prec|Cmax〉 is strongly NP-complete (3DM);

I 〈P |prec, pj = 1|Cmax〉 is strongly NP-complete (max-clique);

I 〈P, p > 3|prec, pj = 1|Cmax〉 is open;

I 〈P, 2|prec, 1 6 pj 6 2|Cmax〉 is strongly NP-complete;

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 49 / 64

List Scheduling

When simple problems are hard, we should try to find good approx-
imation heuristics. A ρ-approximation is an algorithm whose output
is never more than a factor ρ times the optimum solution.
Natural idea: using greedy strategy like trying to allocate the most
possible task at a given time-step. However at some point we may
face a choice (when there is more ready tasks than available proces-
sors).

Any strategy that does not let on purpose a processor idle is effi-
cient [7]. Such a schedule is called list-schedule.

Theorem 4: Coffman.

Let G = (V,E,w) be a DAG, p the number of processors, and σp a
list-schedule of G.

MS(σp) 6
(

2− 1
p

)
MSopt(p) .

Most of the time, list-heuristics are based on the critical path.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 50 / 64

List Scheduling

When simple problems are hard, we should try to find good approx-
imation heuristics. A ρ-approximation is an algorithm whose output
is never more than a factor ρ times the optimum solution.
Natural idea: using greedy strategy like trying to allocate the most
possible task at a given time-step. However at some point we may
face a choice (when there is more ready tasks than available proces-
sors).
Any strategy that does not let on purpose a processor idle is effi-
cient [7]. Such a schedule is called list-schedule.

Theorem 4: Coffman.

Let G = (V,E,w) be a DAG, p the number of processors, and σp a
list-schedule of G.

MS(σp) 6
(

2− 1
p

)
MSopt(p) .

Most of the time, list-heuristics are based on the critical path.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 50 / 64

List Scheduling

When simple problems are hard, we should try to find good approx-
imation heuristics. A ρ-approximation is an algorithm whose output
is never more than a factor ρ times the optimum solution.
Natural idea: using greedy strategy like trying to allocate the most
possible task at a given time-step. However at some point we may
face a choice (when there is more ready tasks than available proces-
sors).
Any strategy that does not let on purpose a processor idle is effi-
cient [7]. Such a schedule is called list-schedule.

Theorem 4: Coffman.

Let G = (V,E,w) be a DAG, p the number of processors, and σp a
list-schedule of G.

MS(σp) 6
(

2− 1
p

)
MSopt(p) .

Most of the time, list-heuristics are based on the critical path.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 50 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ

Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List Scheduling: proving the Coffman result

p

MS(σp)

Therefore, Idle 6 (p− 1).w(Φ) for some Φ
Hence,

p.MS(σp) = Idle+ Seq 6 (p− 1)w(Φ) + Seq

6 (p− 1)MSopt(p) + p.MSopt(p) = (2p− 1)MSopt(p)

One can actually prove that this bound cannot be improved.
A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 51 / 64

List scheduling Anomalies

10

10

5

5

4

2 2

1
2 3 5 7

4 6

MS = 19

T1

T4

T5

T2

T6

T7T3

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 52 / 64

List scheduling Anomalies

9

9

4

4

3

1 1

1
32 7

4 65

MS = 20

T1

T4

T5

T2

T6

T7T3

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 52 / 64

List Scheduling for Parallel Rigid Tasks

Let us assume we have n independent rigid jobs J1 = (p1, q1), . . . , Jn =
(pn, qn) and m machines.
Let us denote by T ∗ the optimal makespan for this instance.

Let us consider a list schedule of makespan T . Let us denote by q(t)
the number of active processors at time t.
We have ∀t1, t2 ∈ [0, T] : t1 6 t2 − T ∗ ⇒ q(t1) + q(t2) > m
(otherwise, the tasks running at time t2 could have been run at
time t1).
Let us assume that T > 2T ∗. Then we have:

mT ∗ >
∑

i

qipi =
∫ T

0
q(t) =

∫ 2T ∗

0
q(t) +

∫ T

2T ∗
q(t)

>
∫ T ∗

0
q(t) + q(t+ T ∗)︸ ︷︷ ︸

>mT ∗

+
∫ T

2T ∗
q(t)︸ ︷︷ ︸

>0

,which is absurd.
Theorem 5.

List-scheduling has a approximation factor of 2 for minimizing the
Cmax of Parallel Rigid Tasks.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 53 / 64

List Scheduling for Parallel Rigid Tasks

Let us assume we have n independent rigid jobs J1 = (p1, q1), . . . , Jn =
(pn, qn) and m machines.
Let us denote by T ∗ the optimal makespan for this instance.
Let us consider a list schedule of makespan T . Let us denote by q(t)
the number of active processors at time t.
We have ∀t1, t2 ∈ [0, T] : t1 6 t2 − T ∗ ⇒ q(t1) + q(t2) > m
(otherwise, the tasks running at time t2 could have been run at
time t1).

Let us assume that T > 2T ∗. Then we have:

mT ∗ >
∑

i

qipi =
∫ T

0
q(t) =

∫ 2T ∗

0
q(t) +

∫ T

2T ∗
q(t)

>
∫ T ∗

0
q(t) + q(t+ T ∗)︸ ︷︷ ︸

>mT ∗

+
∫ T

2T ∗
q(t)︸ ︷︷ ︸

>0

,which is absurd.
Theorem 5.

List-scheduling has a approximation factor of 2 for minimizing the
Cmax of Parallel Rigid Tasks.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 53 / 64

List Scheduling for Parallel Rigid Tasks

Let us assume we have n independent rigid jobs J1 = (p1, q1), . . . , Jn =
(pn, qn) and m machines.
Let us denote by T ∗ the optimal makespan for this instance.
Let us consider a list schedule of makespan T . Let us denote by q(t)
the number of active processors at time t.
We have ∀t1, t2 ∈ [0, T] : t1 6 t2 − T ∗ ⇒ q(t1) + q(t2) > m
(otherwise, the tasks running at time t2 could have been run at
time t1).
Let us assume that T > 2T ∗. Then we have:

mT ∗ >
∑

i

qipi =
∫ T

0
q(t) =

∫ 2T ∗

0
q(t) +

∫ T

2T ∗
q(t)

>
∫ T ∗

0
q(t) + q(t+ T ∗)︸ ︷︷ ︸

>mT ∗

+
∫ T

2T ∗
q(t)︸ ︷︷ ︸

>0

,which is absurd.

Theorem 5.

List-scheduling has a approximation factor of 2 for minimizing the
Cmax of Parallel Rigid Tasks.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 53 / 64

List Scheduling for Parallel Rigid Tasks

Let us assume we have n independent rigid jobs J1 = (p1, q1), . . . , Jn =
(pn, qn) and m machines.
Let us denote by T ∗ the optimal makespan for this instance.
Let us consider a list schedule of makespan T . Let us denote by q(t)
the number of active processors at time t.
We have ∀t1, t2 ∈ [0, T] : t1 6 t2 − T ∗ ⇒ q(t1) + q(t2) > m
(otherwise, the tasks running at time t2 could have been run at
time t1).
Let us assume that T > 2T ∗. Then we have:

mT ∗ >
∑

i

qipi =
∫ T

0
q(t) =

∫ 2T ∗

0
q(t) +

∫ T

2T ∗
q(t)

>
∫ T ∗

0
q(t) + q(t+ T ∗)︸ ︷︷ ︸

>mT ∗

+
∫ T

2T ∗
q(t)︸ ︷︷ ︸

>0

,which is absurd.
Theorem 5.

List-scheduling has a approximation factor of 2 for minimizing the
Cmax of Parallel Rigid Tasks.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 53 / 64

Taking Communications into Account
A very simple model (things are already complicated enough): the
macro-data flow model. If there is some data-dependence between
T and T ′, the communication cost is

c(T, T ′) =

{
0 if alloc(T) = alloc(T ′)
c(T, T ′) otherwise

Definition.

A DAG with communication cost (say cDAG) is a directed acyclic
graph G = (V,E,w, c) where vertexes represent tasks and edges
represent dependence constraints. w : V → N∗ is the computation
time function and c : E → N∗ is the communication time function.
Any valid schedule has to respect the dependence constraints.

∀e = (v, v′) ∈ E,{
σ(v) + w(v) 6 σ(v′) if alloc(v) = alloc(v′)
σ(v) + w(v) + c(v; v′) 6 σ(v′) otherwise.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 54 / 64

Taking Communications into Account
A very simple model (things are already complicated enough): the
macro-data flow model. If there is some data-dependence between
T and T ′, the communication cost is

c(T, T ′) =

{
0 if alloc(T) = alloc(T ′)
c(T, T ′) otherwise

Definition.

A DAG with communication cost (say cDAG) is a directed acyclic
graph G = (V,E,w, c) where vertexes represent tasks and edges
represent dependence constraints. w : V → N∗ is the computation
time function and c : E → N∗ is the communication time function.
Any valid schedule has to respect the dependence constraints.

∀e = (v, v′) ∈ E,{
σ(v) + w(v) 6 σ(v′) if alloc(v) = alloc(v′)
σ(v) + w(v) + c(v; v′) 6 σ(v′) otherwise.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 54 / 64

Taking Communications into Account (cont’d)

Even Pb(∞) is NP-complete !!!

You constantly have to figure out whether you should use more
processor (but then pay more fore communications) or not. Finding
the good trade-off is a real challenge.
4/3-approximation if all communication times are smaller than com-
putation times.
Finding guaranteed approximations for other settings is really hard,
but really useful (file staging).

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 55 / 64

Results More Related to Job Scheduling

model = ∅ model = pmtn

〈1|rj ;model|maxwjFj〉 NP ([3]) ↓
〈P |rj ;model|maxwjFj〉 ↑ ↓
〈Q|rj ;model|maxwjFj〉 ↑ ↓
〈R|rj ;model|maxwjFj〉 ↑ P (Lin. Prog)

〈1|rj ;model|
∑
Fj〉 NP ([9]) P (SRPT [1])

〈P |rj ;model|
∑
Fj〉 ↑ NP (Numerical-3DM [2])

〈Q|rj ;model|
∑
Fj〉 ↑ ↑

〈R|rj ;model|
∑
Fj〉 ↑ ↑

〈1|rj ;model|
∑
Sj〉 NP ?

〈P |rj ;model|
∑
Sj〉 ↑ ?

〈Q|rj ;model|
∑
Sj〉 ↑ ?

〈R|rj ;model|
∑
Sj〉 ↑ ?

〈1|rj ;model|
∑
wjFj〉 NP ([9]) NP (Numerical-3DM [8])

〈P |rj ;model|
∑
wjFj〉 ↑ ↑

〈Q|rj ;model|
∑
wjFj〉 ↑ ↑

〈R|rj ;model|
∑
wjFj〉 ↑ ↑

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 56 / 64

Significance of These Results

I In the previous table we saw that with preemption many prob-
lems become “easier”.
This is probably a good indication that the only hope to opti-
mize a “user centric” performance metric is to allow preemp-
tion.
Gang scheduling does preemption! Perhaps one can do just a
little bit of preemption and be ok?

I Also, all the previous results are for off-line situations, when we
know EVERYTHING about the stream of tasks/jobs.
What about the on-line case?
Competitive ratio: How close does an on-line scheduling algo-
rithm come to the optimal offline algorithm in the worst case.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 57 / 64

Flow Minimization (Sum Flow)

〈1|rj ; pmtn|
∑
Fj〉 One processor, preemption is allowed, release

dates, minimize average flow-time.

Shortest Remaining Processing Time is optimal: Upon job arrival/
departure, ensure that the job with the shortest remaining pro-
cessing time has the processor (; use preemption).

Decision CA CB

NP-complete for multiple processors or with no preemption.

Approximation Algorithm with logarithmic competitive ratio on mul-
tiple processors exists.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 58 / 64

Flow Minimization (Sum Flow)

〈1|rj ; pmtn|
∑
Fj〉 One processor, preemption is allowed, release

dates, minimize average flow-time.

Shortest Remaining Processing Time is optimal: Upon job arrival/
departure, ensure that the job with the shortest remaining pro-
cessing time has the processor (; use preemption).

Decision CB CA

NP-complete for multiple processors or with no preemption.

Approximation Algorithm with logarithmic competitive ratio on mul-
tiple processors exists.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 58 / 64

Flow Minimization (Max Flow)

〈1|rj ; pmtn|Fmax〉 One processor, preemption is allowed, release dates,
minimize maximum flow-time.

First Come First Served is optimal (; preemption is not needed).

rB rA CA CB

NP-complete for multiple processors when preemption is not al-
lowed.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 59 / 64

Flow Minimization (Max Flow)

〈1|rj ; pmtn|Fmax〉 One processor, preemption is allowed, release dates,
minimize maximum flow-time.

First Come First Served is optimal (; preemption is not needed).

rB rA CACB

NP-complete for multiple processors when preemption is not al-
lowed.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 59 / 64

Stretch Minimization (Max Stretch)

〈1|rj ; pmtn|Smax〉 One processor, preemption is allowed, release dates,
minimize maximum slowdown.

Offline algorithm based on linear programming and/or deadlines (pre-
emption is needed).

Online algorithm There is no 1
2∆
√

2−1-competitive algorithms for
max-stretch (where ∆ is the ratio between largest processing
time and the smallest processing time).
There are deadline-based online algorithms that are O(

√
∆)-

competitive for max-stretch [3, 4].

FCFS is ∆ competitive for Smax

Two job-sizes then the best known competitive ratio is 1+
√

5
2 and√

2 is an upper bound on the competitive ratio.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 60 / 64

Stretch Minimization (Sum Stretch)

〈1|rj ; pmtn|Smax〉 One processor, preemption is allowed, release dates,
minimize average slowdown.

Complexity is open (offline)

SRPT is 2-competitive.

FCFS is ∆2-competitive.

NP-complete when preemption is not allowed.

On a single processor minimizing sum-flow is easier than minimiz-
ing sum-stretch.

On multiple processors SRPT is 14-competitive.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 61 / 64

And so on. . .

A large literature with results here and there. Max-stretch/Max-flow
is kind of about “fairness”, Sum- stretch/Sum-flow is kind of about
“performance” ; It would be nice to sort of optimize both.

Depressing result:

Theorem 6.

Any ρ(∆)-competitive algorithm for AF such that ρ(∆) < ∆ (i.e.
more clever than FCFS) leads to starvation.

Theorem 7.

Any ρ(∆)-competitive algorithm for AS such that ρ(∆) < ∆2 (i.e.
more clever than FCFS) leads to starvation.

In Practice

Being good for a sum-based metric is easy (smaller or weighted
smaller first).
Relaxed deadline-based approaches are good for max-based metrics.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 62 / 64

And so on. . .

A large literature with results here and there. Max-stretch/Max-flow
is kind of about “fairness”, Sum- stretch/Sum-flow is kind of about
“performance” ; It would be nice to sort of optimize both.
Depressing result:

Theorem 6.

Any ρ(∆)-competitive algorithm for AF such that ρ(∆) < ∆ (i.e.
more clever than FCFS) leads to starvation.

Theorem 7.

Any ρ(∆)-competitive algorithm for AS such that ρ(∆) < ∆2 (i.e.
more clever than FCFS) leads to starvation.

In Practice

Being good for a sum-based metric is easy (smaller or weighted
smaller first).
Relaxed deadline-based approaches are good for max-based metrics.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 62 / 64

And so on. . .

A large literature with results here and there. Max-stretch/Max-flow
is kind of about “fairness”, Sum- stretch/Sum-flow is kind of about
“performance” ; It would be nice to sort of optimize both.
Depressing result:

Theorem 6.

Any ρ(∆)-competitive algorithm for AF such that ρ(∆) < ∆ (i.e.
more clever than FCFS) leads to starvation.

Theorem 7.

Any ρ(∆)-competitive algorithm for AS such that ρ(∆) < ∆2 (i.e.
more clever than FCFS) leads to starvation.

In Practice

Being good for a sum-based metric is easy (smaller or weighted
smaller first).
Relaxed deadline-based approaches are good for max-based metrics.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Theoretical Scheduling 62 / 64

Outline

1 Task Graphs and Parallel Tasks From Outer Space

2 Batch Scheduling
Basic idea: FCFS + Backfilling
EASY
How Good is the Schedule?

3 Gang Scheduling as an Alternative
Principles
Drawbacks
Batch Scheduling it is then
Batch Scheduling and Grids?

4 What about Theory ?
Scheduling Definitions and Notions
Platform Models and Scheduling Problems
Back to job scheduling

5 Conclusion

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Conclusion 63 / 64

Conclusion

Theory Most of the time, the only thing we can do is to compare
heuristics. There are three ways of doing that:

I Theory: being able to guarantee your heuristic;
I Experiment: Generating random graphs and/or typical ap-

plication graphs along with platform graphs to compare your
heuristics.

I Smart: proving that your heuristic is optimal for a particular
class of graphs (fork, join, fork-join, bounded degree, . . .).

However, remember that the first thing to do is to look whether
your problem is NP-complete or not. Who knows? You may be
lucky...

Practice We do batch scheduling, which completely disregards all
this. But theory says that preemption is key.

As usual there is a major disconnect. Only a few authors have read
both types of work.

Great opportunity for research is there anything from the theory that
should guide the practice?

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Conclusion 64 / 64

K. Baker.
Introduction to Sequencing and Scheduling.
Wiley, New York, 1974.

P. Baptiste, P. Brucker, M. Chrobak, C. Durr, S. A. Kravchenko,
and F. Sourd.
The complexity of mean flow time scheduling problems with
release times, 2006.
Available at http://arxiv.org/abs/cs/0605078.

M. A. Bender, S. Chakrabarti, and S. Muthukrishnan.
Flow and stretch metrics for scheduling continuous job streams.

In Proceedings of the 9th Annual ACM-SIAM Symposium On
Discrete Algorithms (SODA’98), pages 270–279. Society for In-
dustrial and Applied Mathematics, 1998.
Available at http://citeseer.nj.nec.com/bender98flow.html.

M. A. Bender, S. Muthukrishnan, and R. Rajaraman.
Improved algorithms for stretch scheduling.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Conclusion 64 / 64

http://arxiv.org/abs/cs/0605078
http://citeseer.nj.nec.com/bender98flow.html

In SODA ’02: Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 762–771, Philadel-
phia, PA, USA, 2002. Society for Industrial and Applied Math-
ematics.

A. Bernstein.
Analysis of programs for parallel processing.
IEEE Transactions on Electronic Computers, 15:757–762, Oct.
1966.

P. Brucker.
Scheduling Algorithms.
Springer, Heidelberg, 2 edition, 1998.

E. G. Coffman.
Computer and job-shop scheduling theory.
John Wiley & Sons, 1976.

J. Labetoulle, E. L. Lawler, J. Lenstra, and A. Rinnooy Kan.
Preemptive scheduling of uniform machines subject to release
dates.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Conclusion 64 / 64

In W. R. Pulleyblank, editor, Progress in Combinatorial Opti-
mization, pages 245–261. Academic Press, 1984.

J. Lenstra, A. Rinnooy Kan, and P. Brucker.
Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1:343–362, 1977.

A. Legrand (CNRS-LIG) INRIA-MESCAL Scheduling Conclusion 64 / 64

	Task Graphs and Parallel Tasks From Outer Space
	Batch Scheduling
	Basic idea: FCFS + Backfilling
	EASY
	How Good is the Schedule?

	Gang Scheduling as an Alternative
	Principles
	Drawbacks
	Batch Scheduling it is then
	Batch Scheduling and Grids?

	What about Theory ?
	Scheduling Definitions and Notions
	Platform Models and Scheduling Problems
	Back to job scheduling

	Conclusion

