Communications on
Distributed Architectures

Arnaud LEGRAND, CR CNRS, LIG/INRIA/Mescal
Jean-Louis RocH, MCF ENSIMAG, LIG/INRIA/Moais

Vincent DANJEAN, MCF UJF, LIG/INRIA/Moais
Derick KONDO, CR INRIA, LIG/INRIA/Mescal
Jean-Frangois MEHAUT, PR UJF, LIG/INRIA/Mescal
Bruno RAFFIN, CR INRIA, LIG/INRIA/Moais
Alexandre TERMIER, MCF UJF, LIG/Hadas

October 13th 2008

Goals of this lecture

Understand how communication libraries can efficiently use
high speed networks J

Understand the limitation of such libraries)

Current high speed network characteristics
(Fast|Giga)-Ethernet
Myrinet
SCI

Outlines

0 Current high speed network characteristics
@ (Fast|Giga)-Ethernet
@ Myrinet
@ SCI

Current high speed network characteristics
(Fast|Giga)-Ethernet
Myrinet
SCI

High Speed Networks

High Speed Networks are used in clusters

@ low distance
@ very interesting performance

e low latency: about 1 us

e high bandwidth: about 10 Gb/s
@ specific light protocols

e static routing of messages
@ no required packet fragmentation
e sometimes, no packet required

Myrinet, Quadrics, SCI, . .. J

Current high speed network characteristics

(Fast|Giga)-Ethernet
Myrinet
SCI

(Fast|Giga)-Ethernet

@ Interconnect:
@ Hub or switch
@ Wires:

e Copper or optical
fiber

@ Latency:
e about 10 us
@ Bandwidth:

e From 100 Mb/s to
10 Gb/s

@ Remark:

e compatible with
traditional Ethernet

Current high speed network characteristics

(Fast|Giga)-Ethernet
Myrinet
SCI

Myrinet

Myricom corporate
Interconnect:

e Switch
PCI card with:

e a processor: LANai
e SRAM memory: about 4 MB H“ W W |

Latency:

e about1or2us
Bandwidth:

e 10Gb/s
Remark:

e static, wormhole routing

Current high speed network characteristics

(Fast|Giga)-Ethernet
Myrinet
SCI

@ Scalable Coherent Interface

e |[EEE norm (1993)
e Dolphin corporate

@ Uses remote memory access:
e Address space remotely mapped

| | SCI network | 1

PClbus [I [PClbus

Memory Memory

Machine A Machine B

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

Outlines

9 Classical techniques for efficient communications
@ Interacting with the network card: PIO and DMA
@ Zero-copy communications
@ Handshake Protocol
@ OS Bypass

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

Interacting with the network card: PIO mode

CP U tronsfer time

PIO
memory

NIC

dota size

Programmed Input/Output

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

Interacting with the network card: DMA mode

transfer time CPU

PIO

data size

Direct Memory Access

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

Zero-copy communications

Goals

@ Reduce the communication time
e Copy time cannot be neglected
@ but it can be partially recovered with pipelining
@ Reduce the processor use
e currently, memcpy are executed by processor instructions

Idea

The network card directly read/write data from/to the
application memory

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

Zero-copy communications

m cPU —

Physicgmemory Physicaﬁnemory

Interacting with the network card: PIO and DMA

Classical techniques for efficient communications

Zero-copy communications
Handshake Protocol
OS Bypass

Zero-copy communications

CPU CPU

NIC NIC

Physical memory

Physical memory

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

Zero-copy communications for emission

P1O mode transfers
@ No problem for zero-copy

DMA mode transfers
@ Non contiguous data in physical memory
@ Headers added in the protocol

o linked DMA
e limits on the number of non contiguous segments

Interacting with the network card: PIO and DMA
Zero-copy communications
Handshake Protocol

Classical techniques for efficient communications

OS Bypass

Zero-copy communications for reception

A network card cannot “freeze” the received message on the
physical media

If the receiver posted a “recv” operation before the message
arrives

@ zero-copy OK if the card can filter received messages

@ else, zero-copy allowed with bounded-sized messages
with optimistic heuristics

If the receiver is not ready
@ A handshake protocol must be setup for big messages
@ Small messages can be stored in an internal buffer

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Using a Handshake Protocol

Classical techniques for efficient communications

Node A Network Node B
[[| — |
— \
Message
A
/setup memory
Acknowledgement — ?
DMA

[

B Header
@ Dpata

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

A few more considerations

The receiving side plays an important role
@ Flow-control is mandatory

@ Zero-copy transfers
e the sender has to ensure that the receiver is ready
e a handshake (REQ+ACK) can be used

Communications in user-space introduce some difficulties

@ Direct access to the NIC
e most technologies impose “pinned” memory pages

Network drivers have limitations

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

Communication Protocol Selection

Transfer time

DMA + RdV

DMA + copy

Message size

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

Communication Protocol Selection

Transfer time

Message size

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Operating System Bypass

Classical techniques for efficient communications

@ Initialization
e traditional system

Ca”s Initialisation
e only at session BRI
beg|nn|ng Interfag:

User space

@ Transfers

e direct from user
space

e no system call

o “less” interrupts Networ

@ Humm...And what
about security ?

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

OS-bypass + zero-copy

Problem
@ Zero-copy mechanism uses DMA that requires physical
addresses
@ Mapping between virtual and physical address is only
known by:
e the processor (MMU)
e the OS (pages table)
@ We need that

e the library knows this mapping
e this mapping is not modified during the communication

@ ex: swap decided by the OS, copy-on-write, etc.

@ No way to ensure this in user space !

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

OS-bypass + zero-copy

[T}

Locked pages
(marked « DON'T SWAP »)
cPU |

<]
x

N
[T T

|
NIC NIC
L

Physical memory Physical memory

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

OS-bypass + zero-copy

First solution
@ Pages “recorded” in the kernel to avoid swapping
@ Management of a cache for virtual/physical addresses
mapping
@ in user space or on the network card
@ Diversion of system calls that can modify the address
space

Second solution
@ Management of a cache for virtual/physical addresses
mapping on the network card
@ OS patch so that the network card is “advertised” when a
modification occurs
@ Solution chosen by MX/Mvrinet and Elan/Quadrics

Interacting with the network card: PIO and DMA
Zero-copy communications

Handshake Protocol

OS Bypass

Classical techniques for efficient communications

Direct consequences

@ Latency measure can vary whether the memory region
used
e Some pages are “recorded” within the network card
@ Ideal case are ping-pong exchanges
e The same pages are reused hundred of times
@ Worst case are applications using lots of different data
regions. ..

BIP and MX/Myrinet
SiSCI/SCI

VIA

Summary

Some low-level interfaces

Outlines

e Some low-level interfaces
@ BIP and MX/Myrinet
@ SiSCI/SCI
e VIA
@ Summary

BIP and MX/Myrinet
SiSCI/SCI

VIA

Summary

Some low-level interfaces

BIP/Myrinet

@ Basic Interface for Parallelism
o L. Prylli and B. Tourancheau

@ Dedicated to Myrinet networks
@ Characteristics

e Asynchronous communication

e No error detection

e No flow control
@ Small messages are copied into a fixed buffer at reception
@ Big messages are lost if the receiver is not ready

BIP and MX/Myrinet
SiSCI/SCI

VIA

Summary

Some low-level interfaces

MX/Myrinet

@ Myrinet eXpress
e Official driver from Myricom
@ Very simplistic interface to allow easy implementation of
MPI
e Flow control
Reliable communications
Non contiguous messages
Multiplexing

BIP and MX/Myrinet
SiSCI/SCI

VIA

Summary

Some low-level interfaces

SiSCI/SCI

@ Driver for SCI cards

@ Programming model
e Remote memory access
@ Explicit: RDMA
@ Implicit: memory projections
@ Performance
e Explicit use of some operation required:

@ memory “flush”

@ SCI_memcpy
e RDMA

BIP and MX/Myrinet

. SiSCI/SCI
Some low-level interfaces VIA

Summary

@ Virtual Interface Architecture

@ A new standard ?
o Lots of industrials
@ Microsoft, Intel, Compagq, etc.

@ Characteristics
e Virtual interfaces objects
@ Queues of descriptors (for sending and receiving)
e Explicit memory recording
o Remote reads/writes
e RDMA

BIP and MX/Myrinet

. SiSCI/SCI
Some low-level interfaces VIA

Summary

Summary

Very specific programming interfaces
@ dedicated to specific technologies (but VIA)
@ different programming models
@ quasi no portability

It is not reasonable to program a scientific application directly
with such programming interfaces

MPI

R Difficult Poit
High-level Interfaces and Optimizations IR

Outlines

e High-level Interfaces and Optimizations
e MPI
@ Difficult Points

MPI

R Difficult Poit
High-level Interfaces and Optimizations TiCtolttS

Message Passing Interface

Characteristics
@ Interface (not implementation)

@ Different implementations

e MPICH

o LAM-MPI

e OpenMPI

e and all closed-source MPI dedicated to specific hardware

@ MPI 2.0 begins to appear

MPI

High-level Interfaces and Optimizations SR A

Several Ways to Exchange Messages with MPI

MPI_Send (standard)
@ At the end of the call, data can be reused immediately

MPI_Bsend (buffered)

@ The message is locally copied if it cannot be send
immediately

MPI_Rsend (ready)
@ The sender “promises” that the receiver is ready

MPI_Ssend (synchronous)

@ At the end of the call, the reception started
(similar to a synchronization barrier)

MPI
High-level Interfaces and Optimizations SR A

Non Blocking Primitives

MPI_TIsend/MPI_TIrecv (immediate)

MPI_request r;

MPI_TIsend(..., data, len, ., &r)

// Calculus that does not modify
"data’

MPI_wait (&r, ...);

These primitives must be used as much as possible J

MPI

R i It Poi
High-level Interfaces and Optimizations SR A

About MPI Implementations

@ MPI is available on nearly all existing networks and
protocols!
o Ethernet, Myrinet, SCI, Quadrics, Infiniband, IP, shared
memory, etc.
@ MPI implementation are really efficient

e low latency (hard), large bandwidth (easy)
e optimized version from hardware manufacturers (IBM, SGI)
e implementations can be based on low-level interfaces

@ MPICH/Myrinet, MPICH/Quadrics

BUT these “good performance” are often measured with
ping-pong programs. . .

High-level Interfaces and Optimizations

MPI
Difficult Points

0 1
Isend %1 Reov ™
| ,ack) i
Calculus 3 ! Ignored message

1 ‘ i
L2 No overlaping

' i

Wait #_ data 3 !
[! |

— L !

— re w

Recv Isend \qs;
. HEa

Calculus | | : |

- i

‘ |

— ‘

! Wait “_ data |

|

t

| S—
Isend ——_req
| S—

' Calcul W

Communicating while Computing

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv () ;

reqgq=MPI_TIsend (next) ;
Work (); /% about 1s =*/
MPI_Wait (req);

if (mynode==0)
MPI_Recv () ;

High-level Interfaces and Optimizations

MPI
Difficult Points

Communicating while Computing

Problem

@ The process does other
things when the ACK
occurs

Solutions
@ Using threads within MPI
(MPICH/Madeleine)
@ Implementing part of the
protocol in the network
card (MPICH/GM)

@ Using remote memory
reads

Token circulation while com-
puting on 4 nodes

if (mynode!=0)
MPI_Recv () ;

reqgq=MPI_TIsend (next) ;
Work (); /% about 1s =*/
MPI_Wait (req);

if (mynode==0)
MPI_Recv () ;

@ expected time: ~ 1s
@ observed time: ~ 4s

MPI

High-level Interfaces and Optimizations e (et

Communicating while Computing

Low-level libraries sometimes prefer using the processor in
order to guaranty low latencies
@ Depending on the message size
e PIO for small messages
o Pipelined copies with DMA for medium messages
e Zero-copy + DMA for large messages
@ Example: limit medium/large is set to 32 KB for MX

e sending messages from 0 to 32 KB cannot overlap
computations

MPI

High-level Interfaces and Optimizations e (et

Independent Communication Progression

Using threads and scrutations

@ difficult to implement

@ some threads library support can help to get guarantee
frequency for scrutation

e independent with respect to the number of threads in the

AT

* E‘é }instead of © éj o

Using specialized firmware on network cards
@ Require a processor on the network card
@ Myrinet, Quadrics

MPI
Difficult Points

High-level Interfaces and Optimizations

Choosing the Optimal Strategy

Transfer time

Message size

MPI
Difficult Points

High-level Interfaces and Optimizations

Choosing the Optimal Strategy

Transfer time

t
t

A three parts message

Chunk 1 N
Chunk 3 I

Message size

MPI

High-level Interfaces and Optimizations e (et

Choosing the Optimal Strategy

Transfer time

The second strategy is better if
t,+t, > t, + k.(sizeof(chunk 1)+sizeof(chunk3))

v

Chunk 1+

Message size

MPI

High-level Interfaces and Optimizations e (et

Choosing the Optimal Strategy

It depends on

@ The underlying network with driver performance
e latency
e PIO and DMA performance
o Gather/Scatter feature
o Remote DMA feature
@ etc.

@ Multiple network cards ?

But also on
@ memory copy performance
@ 1/O bus performance

Efficient AND portable is not easy J

Using Efficient communications is still Difficult

Conclusion

Outlines

e Conclusion
@ Using Efficient communications is still Difficult

Using Efficient communications is still Difficult

Conclusion

Key points

Using high-speed networks require using lots of optimization
techniques

These optimizations, often mono-criteria, are deep inside
communication libraries

It can be needed to use low-level interfaces to keep an absolute
control over communications

Using Efficient communications is still Difficult

Conclusion

The future

Better cooperation between languages and communication
libraries

Better management or hierarchical configurations]

Distribution of network work on large multiprocessors l
architectures

	Current high speed network characteristics
	(Fast|Giga)-Ethernet
	Myrinet
	SCI

	Classical techniques for efficient communications
	Interacting with the network card: PIO and DMA
	Zero-copy communications
	Handshake Protocol
	OS Bypass

	Some low-level interfaces
	BIP and MX/Myrinet
	SiSCI/SCI
	VIA
	Summary

	High-level Interfaces and Optimizations
	MPI
	Difficult Points

	Conclusion
	Using Efficient communications is still Difficult

