Principles of High
Performance Computing

! (ICS 632)

Message Passing with MPI

&M Outline

" Message Passing
= MPI

" Point-to-Point Communication

= Collective Communication

*M Message Passing

= Each processor runs a process

"= Processes communicate by
exchanging messages

= They cannot share memory in
the sense that they cannot
address the same memory cells

= The above is a programming model and things may look
different in the actual implementation (e.g., MPI over
Shared Memory)

= Message Passing is popular because it is general:

" Pretty much any distributed system works by exchanging
messages, at some level

= Distributed- or shared-memory multiprocessors, networks of
workstations, uniprocessors

= |t is not popular because it is easy (it’s not)

&M Code Parallelization

®= Shared-memory programming

= Parallelizing existing code can be very easy
* OpenMP: just add a few pragmas
* Pthreads: wrap work in do_work functions

= Understanding parallel code is easy
" Incremental parallelization is natural

= Distributed-memory programming

= parallelizing existing code can be very difficult

* No shared memory makes it impossible to “just”
reference variables

= Explicit message exchanges can get really tricky

* Understanding parallel code is difficult
= Data structured are split all over different memories

" Incremental parallelization can be challenging

Frogramming NMessage
Passing

Shared-memory programming is simple conceptually
(sort of)

Shared-memory machines are expensive when one
wants a lot of processors

It's cheaper (and more scalable) to build distributed
memory machines

= Distributed memory supercomputers (IBM SP series)

= Commodity clusters

But then how do we program them?

At a basic level, let the user deal with explicit
messages

= difficult

= put provides the most flexibility

&M Message Passing

= [sn’t exchanging messages completely known
and understood?
= That's the basis of the IP idea
= Networked computers running programs that

communicate are very old and common
= DNS, e-mail, Web, ...

= The answer is that, yes it is, we have
“Sockets”

= Software abstraction of a communication between
two Internet hosts

" Provides and API for programmers so that they do
not need to know anything (or almost anything)
about TCP/IP and write code with programs that
communicate over the internet

%W Socket Library in UNIX

= |ntroduced by BSD in 1983
= The “Berkeley Socket API”
= For TCP and UDP on top of IP

= The API is known to not be very intuitive for first-time
programmers

= What one typically does is write a set of “wrappers” that hide
the complexity of the API behind simple function

= Fundamental concepts

= Server side
= Create a socket
= Bind it to a port numbers
= Listen on it
= Accept a connection
= Read/Write data
= Client side
= Create a socket
= Connect it to a (remote) host/port
= Write/Read data

&M Socket: server.cC

int main(int argc, char *argv][])

{
int sockfd, newsockfd, portno, clilen;
char buffer[256];
struct sockaddr in serv_addr, cli_addr;
int n;

sockfd = socket (AF_INET, SOCK_STREAM, O0);

bzero((char *) &serv_addr, sizeof(serv_addr));

portno = 666;

serv_addr.sin family = AF INET;

serv_addr.sin addr.s_addr = INADDR ANY;

serv_addr.sin port = htons (portno) ;

bind (sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr))
listen (sockfd,5) ;

clilen = sizeof(cli_addr);

newsockfd = accept(sockfd, (struct sockaddr *) &cli_ addr, é&clilen);
bzero (buffer,256) ;

n = read(newsockfd,buffer,255) ;

printf ("Here is the message: %s\n",buffer);

n = write (newsockfd,"I got your message",18);

return O;

w Socket: client.c

int main(int argc, char *argv[])

{

int sockfd, portno, n;
struct sockaddr in serv_addr;
struct hostent *server;

char buffer[256];

portno = 666;

sockfd = socket (AF_INET, SOCK_STREAM, O0);
server = gethostbyname (“server host.univ.edu);
bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin family = AF _INET;

bcopy ((char *)server->h addr, (char *)é&serv_addr.sin_addr.s_addr,server->h length);
serv_addr.sin port = htons (portno) ;

connect (sockfd, &serv_addr,sizeof (serv_addr)) ;
printf ("Please enter the message: ");

bzero (buffer, 256) ;

fgets (buffer,255,stdin) ;

write (sockfd,buffer,strlen(buffer)) ;

bzero (buffer, 256) ;

read (sockfd,buffer, 255) ;

printf ("%$s\n" ,buffer) ;

return O;

&M Socket in C/UNIX

= The API is really not very simple

And note that the previous code does not have
any error checking

Network programming is an area in which you
should check ALL possible error code

In the end, writing a server that receives a
message and sends back another one, with the
corresponding client, can require 100+ lines of C if
one wants to have robust code

This is OK for UNIX programmers, but not for
everyone

However, nowadays, most applications written
require some sort of Internet communication

w Sockets In Java

= Socket class in java.net
= Makes things a bit simpler
= Still the same general idea
= With some Java stuff

= Server

try { serverSocket = new ServerSocket (666) ;
} catch (IOException e) { <something> }
Socket clientSocket = null;

try { clientSocket = serverSocket.accept();
} catch (IOException e) { <something> }
PrintWriter out = new

PrintWriter (clientSocket.getOutputStream ()
, true);
BufferedReader in = new BufferedReader (new

InputStreamReader (clientSocket.getInputStream())) ;
// read from “in”, write to “out”

w Sockets In Java

" Java client

try {socket = new Socket(”server.univ.edu", 666) ;}

catch { <something> }
out = new PrintWriter (socket.getOutputStream(), true);

in = new BufferedReader (new InputStreamReader (
socket.getInputStream())) ;

// write to out, read from in

= Much simpler than the C

" Note that if one writes a client-server program one
typically creates a Thread after an accept, so that
requests can be handled concurrently

Using Sockets for parallel
programming?

= One could thing of writing all parallel code on a
cluster using sockets

= n nodes in the cluster

Each node creates n-1 sockets on n-1 ports

= All nodes can communicate
®= Problems with this approach

Complex code

Only point-to-point communication
No notion of types messages

But

= All this complexity could be “wrapped” under a higher-level API
= And in fact, we’'ll see that's the basic idea

Does not take advantage of fast networking within a cluster/
MPP

= Sockets have “Internet stuff” in them that’s not necessary
= TPC/IP may not even be the right protocol!

Programs

w Message Passing for Parallel

= Although “systems” people are happy
with sockets, people writing parallel
applications need something better

" easier to program to

" able to exploit the hardware better within a
single machine

" This “something better” right now is
MPI

= We will learn how to write MPI programs

= Let's look at the history of message
passing for parallel computing

A Brief History of Message
Passing

dors started building dist-memory machines in the late 80’s

= Each provided a message passing library
= (Caltech’s Hypercube and Crystalline Operating System (CROS) -
1984
= communication channels based on the hypercube topology

= only collective communication at first, moved to an address-based
system

= only 8 byte messages supported by CROS routines!
= good for very regular problems only

= Meiko CS-1 and Occam - circa 1990

= transputer based (32-bit processor with 4 communication links, with fast
multitasking/multithreading)

= Occam: formal language for parallel processing:

chanl ! data sending data (synchronous)
chanl ? data receiving data
par, seq parallel or sequential block

= Easy to write code that deadlocks due to synchronicity
= Still used today to reason about parallel programs (compilers available)

= Lesson: promoting a parallel language is difficult, people have to
embrace it
better to do extensions to an existing (popular) language
better to just design a library

A Brief History of Message
Passing

= The Intel iPSC1, Paragon and NX
= QOriginally close to the Caltech Hypercube and CROS
= IPSC1 had commensurate message passing and computation
performance

* hiding of underlying communication topology (process rank),
multiple processes per node, any-to-any message passing, non-
syn chronous messages, message tags, variable message
lengths

= On the Paragon, NX2 added interrupt-driven communications,
some notion of filtering of messages with wildcards, global
synchronization, arithmetic reduction operations

= ALL of the above are part of modern message passing
= |IBM SPs and EUI
= Meiko CS-2 and CSTools,

* Thinking Machine CM5 and the CMMD Active Message Layer
(AML)

A Brief History of Message
Passing

We went from a highly restrictive system like the Caltech
hypercube to great flexibility that is in fact very close to today’s
state-of-the-art of message passing
The main problem was: impossible to write portable code!

= programmers became expert of one system

= the systems would die eventually and one had to relearn a new
system

= for instance, | learned NX!

People started writing “portable” message passing libraries

= Tricks with macros, PICL, P4, PVM, PARMACS, CHIMPS, Express, etc.
The main problems was performance

= if | invest millions in an IBM-SP, do | really want to use some library
that uses (slow) sockets??

There was no clear winner for a long time
= although PVM had won in the end

After a few years of intense activity and competition, it was
agreed that a message passing standard should be developed

= Desiagned by committee

w The MPI Standard

MPI Forum setup as early as 1992 to come up with a de facto
standard with the following goals:

= source-code portability
= allow for efficient implementation (e.g., by vendors)
= support for heterogeneous platforms

= MPI is not
= alanguage

= an implementation (although it provides hints for
implementers)

= June 1995: MPI vl.1 (we're now at MPI v1.2)
= http://www-unix.mcs.anl.gov/mpi/
= C and FORTRAN bindings
= We will use MPI v1.1 from C in the class

= |mplementations:
= well-adopted by vendors
" free implementations for clusters: MPICH, LAM, CHIMP/MPI
= research in fault-tolerance: MPICH-V, FT-MPI, MPIFT, etc.

http://www-unix.mcs.anl.gov/mpi/

&W SPMD Programs

= |tis rare for a programmer to write a different program for each
process of a parallel application

"= |n most cases, people write Single Program Multiple Data
(SPMD) programs
the same program runs on all participating processors
= processes can be identified by some rank

= This allows each process to know which piece of the problem to
work on

= This allows the programmer to specify that some process does
something, while all the others do something else (common in
master-worker computations)

main (int argc, char **argv) {
if (my rank == 0) { /* master */
load input and dispatch
} else { /* workers */
wait for data and compute

}

w MP| Concepts

= Fixed number of processors

= When launching the application one must specify the
number of processors to use, which remains unchanged
throughout execution
= Communicator
= Abstraction for a group of processes that can communicate
= A process can belong to multiple communicators

= Makes is easy to partition/organize the application in
multiple layers of communicating processes

= Default and global communicator: MPI_COMM WORLD

= Process Rank
" The index of a process within a communicator

= Typically user maps his/her own virtual topology on top of
just linear ranks

" ring, grid, etc.

ﬂ MPlI Communicators

User-created
Communicator

MPI_COMM_WORLD

User-created
Communicator

Qm A First MPI Program

#include <unistd.h>
#include <mpi.h>

int main(int argc, char **argv) {

int my rank, n;
char hostname 7
MPI init (&argc, &argv);

_Has to be called first, and once

MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, &n) ;
gethostname (hostname, 128) ;
if (my rank == 0) { /* master */

printf(“I am the master: $%s\n”,hostname)

} else { /* worker */

printf(“I am a worker: %s (rank=%d/%d)\n”,

hostname,my rank,n-1);

}
MPI Finalize();

exit (0);

—Has to be called last, and once

w Compiling/Running it

Compile with mpicc
Run with mpirun

$ mpirun —-np 4 my program <args>
|

requests 4 processors for running my program with command-
line arguments

= see the mpirun man page for more information

= in particular the -machinefile option that is used to run on a
network of workstations

Some systems just run all programs as MPI programs and
no explicit call to mpirun is actually needed

Previous example program:

mpirun -np 3 —-machinefile hosts my program
I am the master: somehostl

I am a worker: somehost2 (rank=2/2)

I am a worker: somehost3 (rank=1/2)

(stdout/stderr redirected to the process calling mpirun)

*W MPI on our Cluster

OpenMPI
= [usr/bin/mpirun
= [usr/bin/mpicc
= MPICH
= [opt/mpich/gnu/bin/mpirun
= /opt/mpich/gnu/bin/mpicc
= Your batch script should ask for >=1 nodes and call mpirun
appropriately
= Remember the example we ran in class:
#
#PBS -l nodes=6
#PBS -l walltime=5:00:00

#PBS -0 myprogram.out
#PBS -e myprogram.err

cd $PBS_O_WORKDIR
mpirun -np 6 -machinefile $PBS_NODEFILE ./hello_world

&M Outline

= Point-to-Point Communication
= Collective Communication

= MPI| Data Types

= One slide on MPI-2

w Point-to-Point Communication

P P

= Data to be communicated is described by three
things:
= address
= data type of the message
= |length of the message

= |nvolved processes are described by two things
= communicator
" rank

= Message is identified by a “tag” (integer) that
can be chosen by the user

w Point-to-Point Communication

" Two modes of communication:

= Synchronous: Communication does not
complete until the message has been
received

= Asynchronous: Completes as soon as the
message Is “on its way”, and hopefully it
gets to destination

= MPI provides four versions
= synchronous, buffered, standard, ready

Synchronous/Buffered sending in
MPI

= Synchronous with MPIl_Ssend

" The send completes only once the receive has
succeeded
= copy data to the network, wait for an ack
" The sender has to wait for a receive to be posted
= No buffering of data

= Buffered with MPI _Bsend

" The send completes once the message has been
buffered internally by MPI
= Buffering incurs an extra memory copy
= Doe not require a matching receive to be posted

= May cause buffer overflow if many bsends and no
matching receives have been posted yet

w Standard/Ready Send

= Standard with MPI_Send

= Up to MPI to decide whether to do synchronous or
buffered, for performance reasons

" The rationale is that a correct MPI program should
not rely on buffering to ensure correct semantics

= Ready with MPI Rsend

= May be started only if the matching receive has
been posted

= Can be done efficiently on some systems as no
hand-shaking is required

&M MPI RECV

= There is only one MPI_Recv, which returns when the data has
been received.

= only specifies the MAX number of elements to receive
= Why all this junk?
= Performance, performance, performance

= MPI was designed with constructors in mind, who would endlessly
tune code to extract the best out of the platform (LINPACK
benchmark).

= Playing with the different versions of MPI_?send can improve
performance without modifying program semantics

= Playing with the different versions of MPI_?send can modify
program semantics

= Typically parallel codes do not face very complex distributed
system problems and it’'s often more about performance than
correctness.

= You’ll want to play with these to tune the performance of your code
In your assignments

EXample: sending and

Receiving

#include <unistd.h>

#include <mpi.h>

int main(int argc, char **argv) {
int i, my rank, nprocs, x[4];
MPI Init (&argc, &argv);

MPI Comm rank (MPI_COMM WORLD, &my rank);

if (my rank == 0) { /* master */
x[0]=42, x[1]=43;, x[2]=44, x[3]=45;

MPI Comm size (MPI_COMM WORLD, &nproCs);

for (i=1,i<nprocs;i++)
MPI Send(x,4,MPI_INT,
} else { /* worker */
MPI Status status;

1o sz

1m§///,,,,//””///‘ tag
MPI Recv (x,4|MPI_INT| d|0}MPI_coMM WORLD,|sstatus);

destination
and
source

WORLD) ;

| user-defined

S~

}
MPl.'_Finalize (); Max number of Can be examined via calls
exit (0); elements to receive like MPI_Get_count(), etc.

w Example: Deadlock

MPI Ssend() D@C k MPI Ssend()

MPI Recv () MPI Recv ()

MPI Buffer attach() m MPI Buffer attach()
MPI Bsend() MPI Bsend()

MPI Recv () De c k MPI Recv ()

MPI Buffer attach() MPI Ssend()

MPI Bsend() De C k MPI Recv ()

MPI Recv ()

w What about MPIl Send?

- MPI_Send IS either synchronous or
buffered..

= With , running w version of MPICH

MpI_send() Data size > 127999 bytes MPI_Send()
MPI_Recv() Data size < 128000 bytes PT-Recv()

De@ck

= Rationale: a correct MPI program should not rely
on buffering for semantics, just for performance.

= So how do we do this then? ...

NON-DIOCKING
&M commuhnications

= So far we’ve seen blocking communication:

"= The call returns whenever its operation is
complete (MPI_SSEND returns once the message
has been received, MPlI BSEND returns once the
message has been buffered, etc..)

= MPI provides non-blocking communication:
the call returns immediately and there is
another call that can be used to check on
completion.

= Rationale: Non-blocking calls let the
sender/receiver do something useful while
waiting for completion of the operation
(without playing with threads, etc.).

&W Non-blocking Communication

= MPI Issend, MPI_Ibsend, MPI Isend, MPI _Irsend,
MPI Irecv

MPI Request request;,

MPI Isend(&x,1,MPI INT,dest,tag, communicator, &request);
MPI Irecv(&x,1,MPI INT, src,tag,communicator, &request);

" Functions to check on completion: MPI_Wait,
MPI Test, MPI_Waitany, MPI Testany, MPI Waitall,
MPI Testall, MPI_Waitsome, MPI_Testsome.

MPI Status status;
MPI Wait (&§request, &status) /* block */
MPI Test (&request, &status) /* doesn’t block */

*WM Example: Non-blocking comm

#include <unistd.h>
#include <mpi.h>
int main(int argc, char **argv) f{

int i, my rank, x, y;

MPI Status status;

MPI Request request;

MPI Init (&argc, &argv);

MPI Comm rank (MPI_COMM WORLD, &my_rank) ;

if (my _rank == 0) { /* PO */
x=42;
MPI Isend(&x,1,MPI_INT,1,0,MPI_COMM WORLD, &request);
MPI Recv(&y,1,MPI_ INT,1,0,MPI _COMM WORLD, &status);
MPI Wait (&request, &status);

} else if (my rank == 1) { /* P1 */

y=41;
MPI Isend(&y,1,MPI INT,0,0,MPI COMM WORLD, &request);
MPI Recv(&x,1,MPI INT,O0,0,MPI COMM WORLD, &status);
MPI Wait (&request, &status);

}
MPI Finalize(), exit (0);

w Use of non-blocking comms

= |n the previous example, why not just swap one pair
of send and receive?

= Example:

= A logical linear array of N processors, needing to exchange
data with their neighbor at each iteration of an application

"= One would need to orchestrate the communications:
= all odd-numbered processors send first
= all even-numbered processors receive first

= Sort of cumbersome and can lead to complicated patterns
for more complex examples

* In this case: just use MPI_Isend and write much simpler code

= Furthermore, using MPI _Isend makes it possible to
overlap useful work with communication delays:
MPI Isend()

<useful work>
MPI Wait ()

*M Iterative Application Example

for (iterations)
update all cells
send boundary values
receive boundary values

= Would deadlock with MPI_Ssend, and maybe
deadlock with MPI_Send, so must be implemented
with MPI_Isend

= Better version that uses non-blocking
communication to achieve

drin icatiognigomputation overlap (aka latency
P

te sending of boundary values to neighbours;
initiate receipt of boundary values from neighbours;
update non-boundary cells;
wait for completion of sending of boundary values;

wait for completion of receipt of boundary values;
update boundary cells;
= Saves cost of boundary value communication if
hardware/software can overlap comm and comp

NON-DIOCKING
commuhnications

= Almost always better to use non-blocking

= communication can be carried out during blocking system
calls

= communication and communication can overlap
= |ess likely to have annoying deadlocks
= synchronous mode is better than implementing acks by hand
though
= However, everything else being equal, non-blocking
Is slower due to extra data structure bookkeeping
= The solution is just to benchmark

= When you do your programming assignments, you
will play around with different communication types

w More information

" There are many more functions that allow
fine control of point-to-point communication

= Message ordering is guaranteed

= Detailed API descriptions at the MPI site at
ANL.:

= Google “MPI”. First link.
= Note that you should check error codes, etc.

= Everything you want to know about deadlocks
iIn MPI communication

http://andrew.ait.iastate.edu/HPC/Papers/mpicheck2/mpicheck2.htm

http://andrew.ait.iastate.edu/HPC/Papers/mpicheck2/mpicheck2.htm
http://andrew.ait.iastate.edu/HPC/Papers/mpicheck2/mpicheck2.htm

ﬁm Outline

= Collective Communication
= MPI| Data Types
" One slide on MPI-2

w Collective Communication

= QOperations that allow more than 2 processes
to communicate simultaneously
" barrier
" broadcast
" reduce

= All these can be built using point-to-point
communications, but typical MPI
Implementations have optimized them, and
it's a good idea to use them

" In all of these, all processes place the same
call (in good SPMD fashion), although
depending on the process, some arguments
may not be used

&W Barrier

= Synchronization of the calling processes

= the call blocks until all of the processes
have placed the call

= No data Is exchanged
= Similar to an OpenMP barrier

MPI Barrier (MPI_COMM WORLD)

&W Broadcast

"= One-to-many communication

= Note that multicast can be
implemented via the use of
communicators (i.e., to create

processor groups)

MPI Bcast (x,

4, MPI INT, |0

MPI COMM WORLD) /

Rank of the root

w Broadcast example

" Let’'s say the master must send the user
input to all workers

int main(int argc,char **argv) ({
int my rank;
int input;
MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank) ;
if (argc '= 2) exit(1l);
if (sscanf (argv[l],”%d”,&input) != 1) exit(1l);
MPI Bcast (&input,1l,MPI_INT,0,MPI_COMM WORLD) ;

*M Scatter

= One-to-many communication
= Not sending the same message to all

m Yt
Coe destinations

MPI Scatter(x, |100, MPI_INT,|y} HO00} MPI_INT,|O,
MPI COMM-WORL / \

'Send buffer

Receive buffer Rank of the root

Data to send to each || pata to receive

*M This is actually a bit tricky

= The root sends data to itself!

master node

work node work node

= Arguments #1, #2, and #3 are only
meaningful at the root

Scatter Example

= Partitioning an array of input among
workers

int main(int argc,char **argv) ({
int *a;
double *revbuffer;

MPI Comm size (MPI COMM WORLD, &n) ;
<allocate array recvbuffer of size N/n>

if (my rank == 0) { /* master */
<allocate array a of size N>

}

MPI Scatter(a, N/n, MPI INT,
recvbuffer, N/n, MPI INT,
0, MPI COMM WORLD) ;

Scatter Example

= Without redundant sending at the root

int main(int argc,char **argv) ({
int *a;
double *revbuffer;

MPI Comm size (MPI_COMM WORLD, &n) ;
if (my rank == 0) { /* master */
<allocate array a of size N>
<allocate array recvbuffer of size N/n>
MPI Scatter(a, N/n, MPI INT,
MPI IN PLACE, N/n, MPI INT,
0, MPI_COMM WORLD)
} else { /* worker */
<allocate array recvbuffer of size N/n>
MPI Scatter (NULL, 0, MPI INT,
recvbuffer, N/n, MPI INT,
0, MPI COMM WORLD) ;

*M Gather

= Many-to-one communication

*= Not sending the same message to the root

—

D@I_G‘iﬂ‘ 00,| MPI_INT, g, 1|00,

Send buffer

Receive buffer

MPI INT,

{

),

\

sources

root

MPI COMM WORLD)

Rank of the root

Data to send from each I Data to receive

%M Gather-to-all

= Many-to-many communication
= Each process sends the same message to all
= Different Processes send different messages

MPI Allgather|(x}|10d, MPI INT,| v IWCOD@LWORLD)

Send buffer Data to receive

Data to send to each | [Receive buffer

*M All-to-all

= Many-to-many communication

= Each process sends a different message to each other
process

MPI Alltoall (x,| 100, MPI INT,|y,| {00 MPI_ INT, MPI COMM WORLD)

Send buffer Data to receive

Data to send to each | [Receive buffer

&W Reduction Operations

®= Used to compute a result from data that is
distributed among processors

= often what a user wants to do anyway
" e.g., compute the sum of a distributed array

= so why not provide the functionality as a single API
call rather than having people keep re-
iImplementing the same things

*" Predefined operations:
= MPI_MAX, MPI_MIN, MPI SUM, etc.

= Possibility to have user-defined operations

w MPI_Reduce, MPI Allreduce

= MPI_Reduce: result is sent out to the root

= the operation is applied element-wise for each
element of the input arrays on each processor

= An output array is returned
= MPI_Allreduce: result is sent out to

everyone
MPI Reduce tx, I{MQD@I_M, MPI COMM WORLD)
input array | output array | array size root

mI_Allrﬁl r,| |10, MPI INT, MPI MAX, MPI COMM WORLD)

ﬂ MPI_Reduce example

MPI Reduce (sbuf, rbuf, 6, MPT_INT, MPI SUM, 0, MPI COMM WORLD)

sbuf
PO 31412181 @2I1]

P1 [57[27 5T 1T 77 (1T
P2 [271 4141 10l 47 51

P3 [56 9 31 11 1]

rbuf

‘ PO [[16] (201 [22] [24] [18]

w MPI_Scan: Prefix reduction

" Process | recelves data reduced on

PO

P1

P2

P3

process 0 to I.

sbuf
(314 1[2][8]112][1]

—

rbuf
PO 31412181 @2I1]

P1 [81 6T 77 97 [19] [12]
P2 [10/(10][11][19][23][17!

P3 [11l[16l [12][22][24] [18]

MPI Scan (sbuf, rbuf, 6, MPT _INT,MPI SUM, MPI COMM WORLD)

&W And more...

®= Most broadcast operations come with a
version that allows for a stride (so that blocks
do not need to be contiguous)
= MPI_Gatherv(), MPIl_Scatterv(), MPI_Allgatherv(),

MPI_Alltoallv()

= MPI_Reduce scatter(): functionality

equivalent to a reduce followed by a scatter

= All the above have been created as they are
common in scientific applications and save
code

= All details on the MPI Webpage

Example: computing TT

| 3.5} e
= f : dx f T
l + .-*Yz 23y h-h‘""--:

0 N e

int n; /* Number of rectangles */

int nproc, myrank;

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my_rank);
MPI Comm Size (MPI_COMM WORLD, &nproc) ;
if (my _rank == 0) read from keyboard(&n);
/* broadcast number of rectangles from root
process to everybody else */
MPI Bcast (&n, 1, MPI INT, 0, MPI COMM WORLD);
mypi = integral ((n/nproc) * my rank, (n/nproc) * (l+my_ rank) - 1)
/* sum mypi across all processes, storing
result as pi on root process */
MPI Reduce (émypi, &pi, 1, MPI_DOUBLE, MPI _SUM, 0, MPI COMM WORLD);

w Using MPI to increase memory

" One of the reasons to use MPI is to
increase the available memory

= | want to sort an array
" The array is 10GB
= | can use 10 computers with each 1GB of
memory
= Question: how do | write the code?

= | cannot declare
#define SIZE (10*1024*1024*1024)
char array[SIZE]

w Global vs. Local Indices

" Since each node gets only 1/10th of the
array, each node declares only an array on
1/10th of the size
= processor 0: char array[SIZE/10];
= processor 1: char array[SIZE/10];

= processor p: char array[SIZE/10];

= When processor O references array[0] it
means the first element of the global array

= \When processor i references array[0] it
means the (SIZE/10*i) element of the global
array

w Global vs. Local Indices

®= There is a mapping from/to local indices and
global indices

" |t can be a mental gymnastic

" requires some potentially complex arithmetic expressions
for indices

= One can actually write functions to do this
" e.g. global2local()

= When you would write “ali] * b[k]” for the sequential
version of the code, you should write
“alglobal2local(i)]*b[global2local(k)]”

* This may become necessary when index computations
become too complicated

= More on this when we see actual algorithms

ﬁm Outline

= Collective Communication
= MPI Data Types
= One slide on MPI-2

w More Advanced Messages

= Regularly strided data

Blocks/Elements of a matrix

= Data structure

struct {
int a;
double b;
}

= A set of variables

int a; double b; int x[12];

w Problems with current messages

= Packing strided data into temporary
arrays wastes memory

= Placing individual MPI_Send calls for
individual variables of possibly different
types wastes time

= Both the above would make the code
bloated

> Motivation for MPIl's “derived data
types”

&W Derived Data Types

= A data type is defined by a “type map”
= set of <type, displacement> pairs

*" Created at runtime in two phases
= Construct the data type from existing types
= Commit the data type before it can be used

= Simplest constructor: contiguous type

int MPI Type contiguous (int count,
MPI Datatype oldtype,
MPI Datatype *newtype)

MPI Type vector()

int MPI Type vector (int count,

int blocklength, int stride
MPI Datatype oldtype,

MPI Datatype *newtype)

block length stride

“:_:_I

*M MPI Type indexed()

int MPI Type indexed(int count,
int *array of blocklengths,
int *array of displacements,
MPI Datatype oldtype,
MPI Datatype *newtype)

MPI Type struct()

int MPI Type struct (int count,
int *array of blocklengths,
MPI Aint *array of displacements,
MPI Datatype *array of types,

MPI Datatype *newtype)

w Derived Data Types: Example

= Sending the 5th column of a 2-D matrix:

double results[IMAX] [JMAX]

MPI Datatype newtype;

MPI Type vector (IMAX, 1, JMAX, MPI DOUBLE, &newtype);
MPI Type Commit (&newtype);,

MPI Send (& (results[0][4]), 1, newtype, dest, tag, comm);

JMAX JMAX
/—H
LT TP PP P T

IMAX * JMAX

IMAX

*M Outline

" One slide on MPI-2

w MP]-2

= MPI-2 provides for:

Remote Memory
* put and get primitives, weak synchronization
* makes it possible to take advantage of fast hardware (e.g., shared memory)
= gives a shared memory twist to MPI
Parallel 1/O
= we'll talk about it later in the class
Dynamic Processes
" create processes during application execution to grow the pool of resources

= as opposed to “everybody is in MPI_ COMM_WORLD at startup and that’s the
end of it”

* as opposed to “if a process fails everything collapses”
* a MPI_Comm_spawn() call has been added (akin to PVM)

Thread Support
* multi-threaded MPI processes that play nicely with MPI

Extended Collective Communications
Inter-language operation, C++ bindings
Socket-style communication: open_port, accept, connect (client-server)

= MPI-2 implementations are now available

	Principles of High Performance Computing (ICS 632)
	Outline
	Message Passing
	Code Parallelization
	Programming Message Passing
	Message Passing
	Socket Library in UNIX
	Socket: server.c
	Socket: client.c
	Socket in C/UNIX
	Sockets in Java
	Page 12
	Using Sockets for parallel programming?
	Message Passing for Parallel Programs
	A Brief History of Message Passing
	Page 16
	Page 17
	The MPI Standard
	SPMD Programs
	MPI Concepts
	MPI Communicators
	A First MPI Program
	Compiling/Running it
	MPI on our Cluster
	Page 25
	Point-to-Point Communication
	Page 27
	Synchronous/Buffered sending in MPI
	Standard/Ready Send
	MPI_RECV
	Example: Sending and Receiving
	Example: Deadlock
	What about MPI_Send?
	Non-blocking communications
	Non-blocking Communication
	Example: Non-blocking comm
	Use of non-blocking comms
	Iterative Application Example
	Page 39
	More information
	Page 41
	Collective Communication
	Barrier
	Broadcast
	Broadcast example
	Scatter
	This is actually a bit tricky
	Scatter Example
	Page 49
	Gather
	Gather-to-all
	All-to-all
	Reduction Operations
	MPI_Reduce, MPI_Allreduce
	MPI_Reduce example
	MPI_Scan: Prefix reduction
	And more...
	Example: computing 
	Using MPI to increase memory
	Global vs. Local Indices
	Page 61
	Page 62
	More Advanced Messages
	Problems with current messages
	Derived Data Types
	MPI_Type_vector()
	MPI_Type_indexed()
	MPI_Type_struct()
	Derived Data Types: Example
	Page 70
	MPI-2

