g Desktop Grids

ICS 691

Desktop Grids

Although clusters are relatively cheap and mainstream,
an even cheaper and easier alternative would be great

How about reusing desktop resources that
= are already purchased
= are distributed so don’t require infrastructure
= Space, power, A/C
We can put them all together in Desktop Grids
Question: where do we find these resources?

Answers:
= In people’s home: “Internet Desktop Grids”
= Question: what is the incentive?
= In corporations: “Enterprise Desktop Grids”
= May use desktop machines AND clusters

Internet vs. Enterprise

= Most well-known projects are for Internet-wide computing
= Humanitarian/Fun/Geeky applications
= Some start-up companies tried to sell a compute service using machines
at people’s home
= Many failed
= Reason: people don’t want to have their idle cycles used just for anything
= Even if one pays their cable bill!
= These companies had to adapt to the Enterprise environment

= Convince a CEO that buying the software will make it possible to get better
return on investment for the thousands of desktop machines purchased

= Main company today: United Devices
= Spin-off of SETI@home
= Academic projects:

= Condor
= BOINC
= XtremWeb

Desktop Grids: The Largest
i Distributed Computing Systems

SH | @) H D M[67 TFlops/sec, 500,000 workers, $700,000

GI MPS 17.5 TFlops/sec, 80,000 workers

FOldmg@ohgme distributed computing 486 TF|ops/sec, 195,000 workers
\

. — | = 9 NS TEINE® w@ ANE
Icllmatepred:cnon.net' b ol STRRCGEERE

High-throughput Computing

= Desktop Grids are typically used for “high-throughput”,
compute-intensive applications
= High-Throughput?
= Many individual, independent tasks

= The performance metric is the task completion rate over “long”
periods of time (e.g., month)

= As opposed to makespan
= Implication: The “waiting for the last task” problem
goes away

= Simple scheduling heuristics such as FCFS can be effective
when there are many tasks

200 hosts

Cumulative Number of Tasks Completed

400

W

&

&
|

FCFS Scheduling

'-'é"‘
.. ':'f o 100 taSkS
! — 200 tasks
----- 400 tasks
40 60

Time (minutes)

80

i Desktop Grid Background

= Simple model

’%@

D load task
I:)\:]I:(I)allzllslll puungs

’ il E (’j, E VRequest a task

Desktop Grid Client

= Implementation
= Embedded in a screen saver
= As a stand-alone daemon

= [he resource owner can typically
= Disable the client

= Set resource consumption limits for the client
= Run only when | am not using more than 10% of the CPU
=« Run only when | am not running any program
= Run only between midnight and 6AM
= efc.

= Note the client/server terminology
= the client performs computation for the server!

| Desktop Grid Resources

s Resources shared: unreserved, volatile

= Variable CPU load
= Variable host availability

<
>
X

/ new task started

task completed
host loaded

CPU Availability

task suspended task killed

A

Time —

i SETI@Home & BOINC

= [he most famous Internet Desktop Grid

application is SETI@Home
= Processes data from the Arecibo Radar Telescope

array
= Attempts to detect “Alien” patterns in the data

= Gathered more than half-million clients
= In fact too many resources for its needs
= Many clients just perform redundant work!

= Has provided the blueprint for how to do

Internet desktop grids
= Was the basis for the “United Device” company

= Was the basis for the BOINC Project

BOINC

BOINC: Berkeley Open Infrastructure for Network
Computing
Supports many applications

= At the server
= At the client

Participants have “low” connectivity
= Applications have large computations
= Applications have small data

Participants’ machines fail or just never come back
Client may be hacked and be malicious

= Denial of service
= Forged results (| found ET!")

BOINC: Centralized

-

Server

i BOINC Security

= Result falsification
= Task replication to achieve consensus

= DoS attacks
= limited upload sizes
= signed results
= failures: exponential back off

= No sandboxing at the client level

= Applications had better be correct and non-
malicious

Sandboxing

Several options to guarantees that a client machine is
safe

Disallow system calls

= Provide own API for “sytem call” type things

= Burden to the application writer

Build and use a Virtual Machine

= XtremWeb does this

= A lot of work but allows best control

Use the JVM as a virtual machine

= But one is restricted to Java applications
System call sandboxing

= Intercept system calls

= Check them or simulate them
= High overhead

Falsified Results

= Here again, there are several possible techniques
s Spot Checking

= once in a while, send out a work unit whose result is known

= Dblacklist clients that send back a wrong answer
= And any past results from that client are discarded

= Minimal redundant computation
= But is blacklisting even possible in an Internet environment?
= Majority voting
= There are theoretical studies on the trade-offs between
redundancy and probability of detecting erroneous results
s Credibility based schemes
= Keep track of how good a client has been in the past

= Not waste redundant/useless computation on good clients all
the time

Enterprise Desktop Grids

= Although Internet-wide desktop grids are interesting
and popular, they have many drawbacks
= That lead to interesting/fun questions
= But that may not be what a company wants to deal with

= In an Enterprise, many issues go away
= Less heterogeneity?
= Fewer security issues?
= Better networks?
= Machines never turned off?
= Better machines?

= More intensive applications
= More data
= More computation

Typical "Enterprise” Desktop Grid
Applications*

Application Task run time Task data size | Server bandwidth
Docking 20 min. 1 MB 6.67 Mbps
Small data, med run 10 min. 1 MB 13.3 Mbps
BLAST S5 min. 10 MB 264 Mbps
Large data, large run 20 min. 20 MB 132 Mbps

"Grid Resource Management, Chapter 26: Resource Management in the Entropia System

Condor

Condor: a Hunter of Idle Workstations
Old project still used today (started in 1985)
= Many “Condor Pools” in many institutions

Targets sets of machines in universities
= Clusters

= Student labs

= Workstations

Provides a job submission mechanisms like a batch scheduler
= No concept of a server that stores specific applications
= resource owners can still specify usage constraints

Users can specify job dependencies
Users can specify job resource requirements
The matchmaker matches jobs with resources

Condor is like its own Grid infrastructure
= Infact, it provides a gateway to Globus

i Checkpointing

= What happens when a task gets killed?

= One option is that the task is lost and must be
restarted from scratch
= An viable option if tasks are short compared to
“availability intervals”
= Another option is to do what's called
“checkpointing”

= Checkpointing: save the task’s state prediodically,
so that if killed, the task can be restarted from the
last checkpoint

= Condor can do this

Checkpointing

Time

Do useful computation

Save application’s state

Checkpointing

Failure

Checkpointing

Time

t

=
@)
39
o O
S
eC
)
£ 2
) fd
L
- g
- Q
n— >
a Y]
L. @)
)
)
s £
i -+
(40)
)
>
(@
=
O
O
©
)
)
)
O
=

Checkpointing

Time

5%;%%%%&%%%%% :E;%:f%%%%%%%%% %??@%s%@%%%% N g;%fé%%% @;%s%@;%g%@;%%ﬁ

R " R "
:] 1 % 5]
R R R R R <i§$< < -: -ci 5’ jmﬁf 5’ jmﬁf <§ ek <i§$< g,-:

@;,%é‘?@s,%%@%% uz%s%@z%é‘f%%%%% :ﬁis%%;;%é‘?%%%%% . . @;,%ﬁ%ﬁ@%

= Given the time to checkpoint, the time to load
from a saved checkpoint, the expected time to
repair, and the expected time to failure, one can
figure out the best (statistically) checkpointing
frequency

Two kinds of checkpointing

= Application-level checkpointing

= the application just periodically opens a file and saves
important state in it

= e.g., save the matrix at the previous iteration as well as the
current iteration number

= the application can be started in “recover from checkpoint
mode”

= €.9., load the matrix and the current iteration number from a file

= System-level checkpointing

= just dump the whole memory of the process to a binary file
= heap, stack, data segment, etc.

= use the O/S to restart from the dumped state

Checkpointing trade-offs

= Application-level Checkpointing

Saves only the data that must be saved

Is portable across architectures
= In case one needs to migrate the application

Can require quite a bit of work to port an application to a desktop grid
Some desktop grid systems provide a checkpointing AP

= System-level Checkpointing

Requires no application code modification
= Wwhich could be cumbersome
Checkpointing can happen at any point in the code
Requires linking to a special “checkpoint” library
= May preclude the use of some system calls
Condor provides such a library
Can only work in heterogeneous environments
= Not good/useful for something like SETI@home

Checkpointing and Desktop Grids

m Application-level checkpointing

= Typically for grids that run only a few registered applications (BOINC)

= Would allow migration even in a heterogeneous grid, but isn’t typically done
= local checkpointing only

= Nno checkpointing server
m System-level checkpointing

= Done by enterprise grids where resources are more or less homogeneous
(Condor)

= Allows migration as long as there is a checkpoint server
= Only feasible for applications that can live without some system calls
s No checkpointing at all
= The desktop grid infrastructure is not aware of any application checkpointing
= Some may occur unbeknownst to the infrastructure
= Simplifies the desktop grid infrastructure
= More common than one would think
= When a task fails, just restart it

i DG or cluster?

= Question:

= | have a 200-node desktop grid
« Perhaps in my corporation
= Let us assume no checkpointing

« | have an embarrassingly parallel application
and | care about high throughput

= Would | be better off with a 16-node cluster?

= To answer this question one must find
out what a desktop grid may look like

= Based on desktop grid measurements

i Desktop Grid Measurements

= What we need to measure is: how many CPU
cycles per hour are available on a typical
desktop grid

= We want to observe desktop grids and obtain
trace data

= |race data can be used to drive simulation
experiments

= Useful for developing predictive, generative, or
explanatory models, such as comparing a desktop
grid with a cluster

i Previous work in the area

= Host availability [WolskiO3, Long95,
Bhagwan03]

= host up / how down
= Hard to relate uptimes to actually CPU availability
= Monitored CPU availability/load [Livhy91,
Wolski99, Dinda98, Arpaci95, Bolosky00]
= Network Weather Service (NWS)
= Difficult due to OS idiosyncrasies

s Besides

= these methods ignore keyboard/mouse activity

=« these methods ignore the resource owner affecting
the client

i Desktop Grid Measurements

= Observe host and CPU availability exactly as any
real desktop grid application would
= Submit infinite series of tasks to a desktop grid

= Task continuously compute a mix of floating
point/integer operations and write number of
completed operation every 10 secs to file

= Tasks do not interfere with desktop user

task #1 task #2 - X - time

CPU availability

Host Clock Rates

= First testbed:

= 230 desktops at the San Diego Supercomputer Center
(SDSC) running the Entropia desktop grid software, and 80
desktops at University of Paris-Sud running XtremWeb

software
= Obtained traces for 2 months

3| .

ﬁ .

N |

[4) :

© .

ﬁ :

O /_d_,—/_/
0 | | | |
0 50 100 150 200

Hosts sorted by clock rate

i Cleaning up the data

= We found gaps in the trace data

&

5

=

S

2 —

T [task# task #2 N < . -
GAP

s Due to server overhead: 35s

Number of Gaps

O 20 40 60 80 100 120
Gap length (sec)

i CPU availability”?

= SETI@home uses an all/nothing model
= |f the machine is idle: then use it
= otherwise: don’t use it

= Entropia uses a sophisticated virtual
machine
= monitors machine activity

= makes sure that the desktop grid application
as insignificant interference with the user’s
job

= sophisticated but...

i Resource/Task Management

= What happens if a resource gets “reclaimed”™?

= suspend the task and wait?
= but this may last a long time

= Kill immediately?
= but then restart from scratch (unless migration is
possible?)
=« and perhaps the interruption is only short-lived
= Entropia (and other similar systems) for X

minutes, and then give up and kill the task
= No checkpointing

An Interesting Results

100

90

70

% of Time Above Threshold
=)

40+ — weekdays
- - weekends
30
20
10
G 1]
0 20 40 60

Availability Threshold (%)
over all hosts

i Conclusion from the graph

= Most machines are either totally busy or
more than 80% available

= Therefore one may wonder why it's so
important to have a fancy virtual
machine...

= Of course there are different trends
between weekends and weekdays

i Avallability Intervals

= From the trace data we can compute
“availability intervals”

= Intervals of time during which a task can
complete successfully

= The task may be suspended multiple times
during that interval

= \We can compute:
= Interval duration in seconds

= interval duration in terms of number of
operations performed

$ Availability intervals (sec)

90

801

- weekday mean: 2.81 hours

Pecentage
-,_l
=
e, TR -

weekend mean: 5.95 hours

— weekdays |
- - weekends |

1 1 |
0 10 20 30 40 50 60 70
Interval length in hours

Availability intervals (ops)

8

weekday mean: 3.91 trillion opsfsec

weekend mean: 8.48 trillion ops/sec

S

Cumulative percentage
S

— weekdays
- = weekends

0 5 10
Interval length in number of operations (trillion)

15

Total Compute Power

100
90
Bﬂ.

70;

Cumulative 2% of Total Fower
2

g0 -
3{] |
20 . ey b S
e — Sorted by clock rates
10: = = Sorted by delivered power
ok 1 I
0 20 40 60 80

Top % of sorted hosts

100

i Conclusion from the graph

s Even slow resources are still useful

= perhaps there are not as busy because
people don’'t want to use them?

= Other interesting things
=« how about correlation of availability
= important for scheduling applications

Cluster Equivalence

= Cluster of X-nodes with the median compute speed
= Equivalence vs. Task size

r s | | ; _ ; 220
0050 _:-__--_-,-;..i-;-.i-a;-.;-a-a..-a-a..-a-;..-;;..-;;..--;.-.-__--;_-j_;;;__--.210

el | | 200
190
-180
4170
160
150

-140

Cluster Equivalence Ratio

1130

Equivalent Number of Cluster Nodes

0.55¢ — weekdays [1120
' ; _ f : === waekends

i I | I | | T 110
5 10 15 20 25 30 35 40 45 50
Task size (minutes on a 1.5GHz machine)

So where are we now?

= Message from the previous results (if we assume it generalizes):

If | have an embarrassingly parallel applications
If the only thing | care about is throughput

If | have a 200 node desktop grid

If | can tune the task size

| can have the illusion of a 150-node cluster with clock rates at the
median of the hosts in the desktop grid

Better on weekends

= So this is great, but on a cluster one can do MANY mode things
than on a desktop grids

i.e., run non-embarrassingly parallel, high-throughput applications

= Question: Could we run less ideal applications effectively?

Maybe | only have a few tasks
Maybe these tasks communicate

Fewer tasks than hosts

Cumulative Number of Tasks Completed

400

Y]

&

~
I

Time (minutes)

o"'é’.‘
... .:" o 100 taSks
— 200 tasks
----- 400 tasks
40 60

80

i Fewer tasks than hosts

= When the number of tasks is small, and when
one cares about makespan, the performance
of a desktop grid is disappointing

= Long waiting time for the last task

= [he problem is that the issue of resource
selection arises

= Not all hosts are useful

= All of a sudden the desktop grid must be more
complicated
= Get information about what the hosts are about
= Use that information to select “good” ones

Resource Selection Techniques

s Resource Prioritization

= When | have a choice of multiple hosts, | pick the one with
= the highest clock rate
= the one that delivered the most CPU cycles in the past X hours
=« the one that has been the available the longest

s Resource Exclusion

= | decide never to use hosts with clock rates below X

= | decide never to use hosts that haven't delivered more than X
CPU cycles to the desktop grid in the last Y hours

= [ask Duplication

= | send each task to X hosts
= wasteful if done too much
= but effective to deal with the “wait for the last task” problem

Some Results

= Researchers have investigated these possibilities (using
simulation)

= Some results

Prioritization by clock rate works great

= past history may not be too useful!
Resource exclusion by clock rate work ok but not consistently over
desktop grids

= depends too much on the distribution of clock rates

Resource exclusion by use of an “artificial deadline” works better but
is may be thrown off by one or two very poor predictions

Task redundancy is key to deal with poor predictions: twofold
replication seems fine

By combining all of the above, empirically one can get below a factor
2 of the optimal (assuming a prescient scheduler)

= And a factor ~3 better than a naive FCFS approach

= Requires improvements to desktop grid infrastructure software

Running MPI on a Desktop Grid?

= To take things further, and to truly replace a cluster by
a desktop grid, one needs to run MPI on volatile nodes
= Clearly not good for all applications

= Butif the goal is to aggregate memory, perhaps performance
IS not so critical

= Clearly checkpointing must be used

= Main question: what happens to messages when a
node goes down

= either because of faults
= Or because it is reclaimed

= Note that this is a big issue on large clusters anyway
= The probability of node failure is high

i The MPICH-V Project

= One idea: Use addition processes to
store all communication information

= Message sources/destinations

O Message sequences MPICH-V1
Channel Memories
- Message payload lllll
= Problem: \\\‘

= These processes mus

""_"" Network
e N
= These processes mus i

usSe resources OOOOOOOOO o

Computing Nodes

i The MPICH-V Project

= Some protocols can work without these
additional processes

= Idea: relay on “replaying” processes so
that messages are “resent”

= quite complicated MPICH-V2

Event Loggers
Checkpoint Scheduler

7
),
N

Servers

Computing Nodes + Communication daemons

i Conclusion

= Desktop grids are interesting platforms
= Few companies have made a living out
of them

« Many companies have made a living out of
clusters

= Researchers are pushing them to do
more than they've done in the past
= The future is uncertain

= Only thin clients and no real exploitable
power in the desktop?

