
Desktop Grids

ICS 691

Desktop Grids
 Although clusters are relatively cheap and mainstream,

an even cheaper and easier alternative would be great
 How about reusing desktop resources that

 are already purchased
 are distributed so don’t require infrastructure

 space, power, A/C

 We can put them all together in Desktop Grids
 Question: where do we find these resources?
 Answers:

 In people’s home: “Internet Desktop Grids”
 Question: what is the incentive?

 In corporations: “Enterprise Desktop Grids”
 May use desktop machines AND clusters

Internet vs. Enterprise
 Most well-known projects are for Internet-wide computing

 Humanitarian/Fun/Geeky applications
 Some start-up companies tried to sell a compute service using machines

at people’s home
 Many failed
 Reason: people don’t want to have their idle cycles used just for anything
 Even if one pays their cable bill!

 These companies had to adapt to the Enterprise environment
 Convince a CEO that buying the software will make it possible to get better

return on investment for the thousands of desktop machines purchased
 Main company today: United Devices

 Spin-off of SETI@home
 Academic projects:

 Condor
 BOINC
 XtremWeb

Desktop Grids: The Largest
Distributed Computing Systems

67 TFlops/sec, 500,000 workers, $700,000

17.5 17.5 TFlopsTFlops/sec, 80,000 workers/sec, 80,000 workers

186 186 TFlopsTFlops/sec, 195,000 workers/sec, 195,000 workers

High-throughput Computing
 Desktop Grids are typically used for “high-throughput”,

compute-intensive applications
 High-Throughput?

 Many individual, independent tasks
 The performance metric is the task completion rate over “long”

periods of time (e.g., month)
 As opposed to makespan

 Implication: The “waiting for the last task” problem
goes away
 Simple scheduling heuristics such as FCFS can be effective

when there are many tasks

FCFS Scheduling

200 hosts

Desktop Grid Background

 Simple model

Request a task

Download task

Upload result

Desktop Grid Client
 Implementation

 Embedded in a screen saver
 As a stand-alone daemon

 The resource owner can typically
 Disable the client
 Set resource consumption limits for the client

 Run only when I am not using more than 10% of the CPU
 Run only when I am not running any program
 Run only between midnight and 6AM
 etc.

 Note the client/server terminology
 the client performs computation for the server!

Desktop Grid Resources

 Resources shared: unreserved, volatile
 Variable CPU load
 Variable host availability
CP

U
A

va
ila

bi
lit

y

Time

MAX

task suspended task killed

task completed

new task started

host loaded

SETI@Home & BOINC
 The most famous Internet Desktop Grid

application is SETI@Home
 Processes data from the Arecibo Radar Telescope

array
 Attempts to detect “Alien” patterns in the data
 Gathered more than half-million clients
 In fact too many resources for its needs
 Many clients just perform redundant work!

 Has provided the blueprint for how to do
Internet desktop grids
 Was the basis for the “United Device” company
 Was the basis for the BOINC Project

BOINC
 BOINC: Berkeley Open Infrastructure for Network

Computing
 Supports many applications

 At the server
 At the client

 Participants have “low” connectivity
 Applications have large computations
 Applications have small data

 Participants’ machines fail or just never come back
 Client may be hacked and be malicious

 Denial of service
 Forged results (“I found ET!”)

BOINC: Centralized

Data

Applications

BOINC
Bookkeeping

task server

data server

client

client

client

client

Server

BOINC Security

 Result falsification
 Task replication to achieve consensus

 DoS attacks
 limited upload sizes
 signed results
 failures: exponential back off

 No sandboxing at the client level
 Applications had better be correct and non-

malicious

Sandboxing
 Several options to guarantees that a client machine is

safe
 Disallow system calls

 Provide own API for “sytem call” type things
 Burden to the application writer

 Build and use a Virtual Machine
 XtremWeb does this
 A lot of work but allows best control

 Use the JVM as a virtual machine
 But one is restricted to Java applications

 System call sandboxing
 Intercept system calls
 Check them or simulate them
 High overhead

Falsified Results
 Here again, there are several possible techniques
 Spot Checking

 once in a while, send out a work unit whose result is known
 blacklist clients that send back a wrong answer

 And any past results from that client are discarded
 Minimal redundant computation
 But is blacklisting even possible in an Internet environment?

 Majority voting
 There are theoretical studies on the trade-offs between

redundancy and probability of detecting erroneous results
 Credibility based schemes

 Keep track of how good a client has been in the past
 Not waste redundant/useless computation on good clients all

the time

Enterprise Desktop Grids
 Although Internet-wide desktop grids are interesting

and popular, they have many drawbacks
 That lead to interesting/fun questions
 But that may not be what a company wants to deal with

 In an Enterprise, many issues go away
 Less heterogeneity?
 Fewer security issues?
 Better networks?
 Machines never turned off?
 Better machines?
 More intensive applications

 More data
 More computation

Typical “Enterprise” Desktop Grid
Applications*

264 Mbps10 MB5 min.BLAST

13.3 Mbps1 MB10 min.Small data, med run

6.67 Mbps1 MB20 min.Docking

132 Mbps20 MB20 min.Large data, large run

Server bandwidthTask data sizeTask run timeApplication

*Grid Resource Management, Chapter 26: Resource Management in the Entropia System

Condor
 Condor: a Hunter of Idle Workstations
 Old project still used today (started in 1985)

 Many “Condor Pools” in many institutions
 Targets sets of machines in universities

 Clusters
 Student labs
 Workstations

 Provides a job submission mechanisms like a batch scheduler
 No concept of a server that stores specific applications
 resource owners can still specify usage constraints

 Users can specify job dependencies
 Users can specify job resource requirements
 The matchmaker matches jobs with resources
 Condor is like its own Grid infrastructure

 In fact, it provides a gateway to Globus

Checkpointing

 What happens when a task gets killed?
 One option is that the task is lost and must be

restarted from scratch
 An viable option if tasks are short compared to

“availability intervals”
 Another option is to do what’s called

“checkpointing”
 Checkpointing: save the task’s state prediodically,

so that if killed, the task can be restarted from the
last checkpoint

 Condor can do this

Checkpointing

Do useful computation

Save application’s state

Time

Checkpointing
Time

X
Failure

Checkpointing
Time

X
Failure

wasted computation

time to “repair”

time to load
the checkpoint

Checkpointing
Time

X
Failure

 Given the time to checkpoint, the time to load
from a saved checkpoint, the expected time to
repair, and the expected time to failure, one can
figure out the best (statistically) checkpointing
frequency

Two kinds of checkpointing
 Application-level checkpointing

 the application just periodically opens a file and saves
important state in it

 e.g., save the matrix at the previous iteration as well as the
current iteration number

 the application can be started in “recover from checkpoint
mode”

 e.g., load the matrix and the current iteration number from a file

 System-level checkpointing
 just dump the whole memory of the process to a binary file

 heap, stack, data segment, etc.
 use the O/S to restart from the dumped state

Checkpointing trade-offs
 Application-level Checkpointing

 Saves only the data that must be saved
 Is portable across architectures

 In case one needs to migrate the application
 Can require quite a bit of work to port an application to a desktop grid
 Some desktop grid systems provide a checkpointing API

 System-level Checkpointing
 Requires no application code modification

 which could be cumbersome
 Checkpointing can happen at any point in the code
 Requires linking to a special “checkpoint” library

 May preclude the use of some system calls
 Condor provides such a library
 Can only work in heterogeneous environments

 Not good/useful for something like SETI@home

Checkpointing and Desktop Grids
 Application-level checkpointing

 Typically for grids that run only a few registered applications (BOINC)
 Would allow migration even in a heterogeneous grid, but isn’t typically done

 local checkpointing only
 no checkpointing server

 System-level checkpointing
 Done by enterprise grids where resources are more or less homogeneous

(Condor)
 Allows migration as long as there is a checkpoint server
 Only feasible for applications that can live without some system calls

 No checkpointing at all
 The desktop grid infrastructure is not aware of any application checkpointing

 Some may occur unbeknownst to the infrastructure
 Simplifies the desktop grid infrastructure
 More common than one would think
 When a task fails, just restart it

DG or cluster?

 Question:
 I have a 200-node desktop grid

 Perhaps in my corporation
 Let us assume no checkpointing

 I have an embarrassingly parallel application
and I care about high throughput

 Would I be better off with a 16-node cluster?
 To answer this question one must find

out what a desktop grid may look like
 Based on desktop grid measurements

Desktop Grid Measurements

 What we need to measure is: how many CPU
cycles per hour are available on a typical
desktop grid

 We want to observe desktop grids and obtain
trace data
 Trace data can be used to drive simulation

experiments
 Useful for developing predictive, generative, or

explanatory models, such as comparing a desktop
grid with a cluster

Previous work in the area
 Host availability [Wolski03, Long95,

Bhagwan03]
 host up / how down
 Hard to relate uptimes to actually CPU availability

 Monitored CPU availability/load [Livny91,
Wolski99, Dinda98, Arpaci95, Bolosky00]
 Network Weather Service (NWS)
 Difficult due to OS idiosyncrasies

 Besides
 these methods ignore keyboard/mouse activity
 these methods ignore the resource owner affecting

the client

Desktop Grid Measurements
 Observe host and CPU availability exactly as any

real desktop grid application would
 Submit infinite series of tasks to a desktop grid

 Task continuously compute a mix of floating
point/integer operations and write number of
completed operation every 10 secs to file

 Tasks do not interfere with desktop user

task #1 task #2 task #3 task #3X

C
PU

 a
va

ila
bi

lit
y

time

Host Clock Rates
 First testbed:

 230 desktops at the San Diego Supercomputer Center
(SDSC) running the Entropia desktop grid software, and 80
desktops at University of Paris-Sud running XtremWeb
software

 Obtained traces for 2 months

Cleaning up the data

 We found gaps in the trace data

 Due to server overhead: 35s

task #1 task #2 task #3 task #3X

C
PU

 a
va

ila
bi

lit
y

time

GAP

CPU availability?

 SETI@home uses an all/nothing model
 If the machine is idle: then use it
 otherwise: don’t use it

 Entropia uses a sophisticated virtual
machine
 monitors machine activity
 makes sure that the desktop grid application

as insignificant interference with the user’s
job

 sophisticated but...

Resource/Task Management

 What happens if a resource gets “reclaimed”?
 suspend the task and wait?

 but this may last a long time

 kill immediately?
 but then restart from scratch (unless migration is

possible?)
 and perhaps the interruption is only short-lived

 Entropia (and other similar systems) for X
minutes, and then give up and kill the task
 No checkpointing

An Interesting Results

over all hosts

Conclusion from the graph

 Most machines are either totally busy or
more than 80% available

 Therefore one may wonder why it’s so
important to have a fancy virtual
machine...

 Of course there are different trends
between weekends and weekdays

Availability Intervals

 From the trace data we can compute
“availability intervals”
 Intervals of time during which a task can

complete successfully
 The task may be suspended multiple times

during that interval
 We can compute:

 interval duration in seconds
 interval duration in terms of number of

operations performed

Availability intervals (sec)

Availability intervals (ops)

Total Compute Power

Conclusion from the graph

 Even slow resources are still useful
 perhaps there are not as busy because

people don’t want to use them?

 Other interesting things
 how about correlation of availability
 important for scheduling applications

Cluster Equivalence
 Cluster of X-nodes with the median compute speed
 Equivalence vs. Task size

So where are we now?
 Message from the previous results (if we assume it generalizes):

 If I have an embarrassingly parallel applications
 If the only thing I care about is throughput
 If I have a 200 node desktop grid
 If I can tune the task size
 I can have the illusion of a 150-node cluster with clock rates at the

median of the hosts in the desktop grid
 Better on weekends

 So this is great, but on a cluster one can do MANY mode things
than on a desktop grids
 i.e., run non-embarrassingly parallel, high-throughput applications

 Question: Could we run less ideal applications effectively?
 Maybe I only have a few tasks
 Maybe these tasks communicate

Fewer tasks than hosts

Fewer tasks than hosts

 When the number of tasks is small, and when
one cares about makespan, the performance
of a desktop grid is disappointing
 Long waiting time for the last task

 The problem is that the issue of resource
selection arises
 Not all hosts are useful
 All of a sudden the desktop grid must be more

complicated
 Get information about what the hosts are about
 Use that information to select “good” ones

Resource Selection Techniques

 Resource Prioritization
 When I have a choice of multiple hosts, I pick the one with

 the highest clock rate
 the one that delivered the most CPU cycles in the past X hours
 the one that has been the available the longest
 ...

 Resource Exclusion
 I decide never to use hosts with clock rates below X
 I decide never to use hosts that haven’t delivered more than X

CPU cycles to the desktop grid in the last Y hours
 ...

 Task Duplication
 I send each task to X hosts

 wasteful if done too much
 but effective to deal with the “wait for the last task” problem

Some Results
 Researchers have investigated these possibilities (using

simulation)
 Some results

 Prioritization by clock rate works great
 past history may not be too useful!

 Resource exclusion by clock rate work ok but not consistently over
desktop grids

 depends too much on the distribution of clock rates
 Resource exclusion by use of an “artificial deadline” works better but

is may be thrown off by one or two very poor predictions
 Task redundancy is key to deal with poor predictions: twofold

replication seems fine
 By combining all of the above, empirically one can get below a factor

2 of the optimal (assuming a prescient scheduler)
 And a factor ~3 better than a naive FCFS approach

 Requires improvements to desktop grid infrastructure software

Running MPI on a Desktop Grid?

 To take things further, and to truly replace a cluster by
a desktop grid, one needs to run MPI on volatile nodes
 Clearly not good for all applications
 But if the goal is to aggregate memory, perhaps performance

is not so critical

 Clearly checkpointing must be used
 Main question: what happens to messages when a

node goes down
 either because of faults
 or because it is reclaimed

 Note that this is a big issue on large clusters anyway
 The probability of node failure is high

The MPICH-V Project

 One idea: Use addition processes to
store all communication information
 Message sources/destinations
 Message sequences
 Message payload

 Problem:
 These processes must

be up
 These processes must

use resources

The MPICH-V Project

 Some protocols can work without these
additional processes

 Idea: relay on “replaying” processes so
that messages are “resent”
 quite complicated

Conclusion

 Desktop grids are interesting platforms
 Few companies have made a living out

of them
 Many companies have made a living out of

clusters
 Researchers are pushing them to do

more than they’ve done in the past
 The future is uncertain

 Only thin clients and no real exploitable
power in the desktop?

