
An introduction to Docker for reproducible research

Carl Boettiger
Center for Stock Assessment Research,

110 Shaffer Rd, Santa Cruz, CA 95050, USA
cboettig(at)gmail.com

ABSTRACT
As computational work becomes more and more integral
to many aspects of scientific research, computational repro-
ducibility has become an issue of increasing importance to
computer systems researchers and domain scientists alike.
Though computational reproducibility seems more straight
forward than replicating physical experiments, the complex
and rapidly changing nature of computer environments makes
being able to reproduce and extend such work a serious chal-
lenge. In this paper, I explore common reasons that code
developed for one research project cannot be successfully
executed or extended by subsequent researchers. I review
current approaches to these issues, including virtual machines
and workflow systems, and their limitations. I then examine
how the popular emerging technology Docker combines sev-
eral areas from systems research - such as operating system
virtualization, cross-platform portability, modular re-usable
elements, versioning, and a ‘DevOps’ philosophy, to address
these challenges. I illustrate this with several examples of
Docker use with a focus on the R statistical environment.

INTRODUCTION
Reproducible research has received an increasing level of
attention throughout the scientific community [19, 22] and
the public at large [25]. All steps of the scientific process,
from data collection and processing, to analyses, visualiza-
tions and conclusions depend ever more on computation and
algorithms, computational reproducibility has received par-
ticular attention [18]. Though in principle this algorithmic
dependence should make such research easier to reproduce
– computer codes being both more portable and potentially
more precise to exchange and run than experimental methods
– in practice this has led to an ever larger and more complex
black box that stands between what was actually done and
what is described in the literature. Crucial scientific pro-
cesses such as replicating the results, extending the approach
or testing the conclusions in other contexts, or even merely
installing the software used by the original researchers can
become immensely time-consuming if not impossible.

Copyright is held by the author(s)

Systems research & reproducibility
Systems research has long concerned itself with the issues of
computational reproducibility and the technologies that can
facilitate those objectives [6]. Docker is a new but already
very popular open source tool that combines many of these
approaches in a user friendly implementation, including: (1)
performing Linux container (LXC) based operating system
(OS) level virtualization, (2) portable deployment of con-
tainers across platforms, (3) component reuse, (4) sharing,
(5) archiving, and (6) versioning of container images. While
Docker’s market success has largely focused on the needs of
businesses in deploying web applications and the potential for
a lightweight alternative to full virtualization, these features
have potentially important implications for systems research
in the area of scientific reproducibility.

In this paper, I seek to address two audiences. First, that of
the domain scientist, those conducting research in ecology,
bioinformatics, economics, psychology and so many other dis-
ciplines in which computation plays an ever-increasing role. I
seek to help this audience become more aware of the concerns
and challenges in making these computations more repro-
ducible, extensible, and portable to other researchers, and
highlight Docker as platform to address these challenges. The
second audience is that of the computer systems researchers:
readers familiar with both the challenges to reproducibility
(versioning, software dependencies, etc.) and the technical
components underlying Docker (virtualization, LXC contain-
ers, jails, hashes, etc.), but who may be unfamiliar with
Docker software. I hope the domain scientist will be mo-
tivated to try Docker as a tool to address reproducibility.
Meanwhile, I expect the systems researcher to see Docker
technology as an area ripe for further systems research (e.g. to
what extent can differences between Linux kernels frustrate
reproducibility in a Docker image?) rather than as a tool
for their own study (because Docker applies only to software
at the level above the Linux kernel, it will be of little use in
making studies of differences in kernel behavior, hardware
performance, execution times, and so forth reproducible.)

A cultural problem
It is worth observing from the outset that the primary barrier
to computational reproducibility in many domain sciences
has nothing to do with the technological approaches discussed
here, but stems rather from a reluctance to publish the code
used in generating the results in the first place [2]. Despite
extensive evidence to the contrary [14], many researchers and
journals continue to assume that summary descriptions or

71



pseudo-code provide a sufficient description of computational
methods used in data gathering, processing, simulation, visu-
alization, or analysis. Until such code is available in the first
place, one cannot even begin to encounter the problems that
the approaches discussed here set out to solve. As a result,
few domain researchers may be fully aware of the challenges
involved in effectively re-using published code.

A lack of requirements or incentives no doubt plays a crucial
role in discouraging sharing [2, 24]. Nevertheless, it is easy
to underestimate the significant barriers raised by a lack of
familiar, intuitive, and widely adopted tools for addressing
the challenges of computational reproducibility. Surveys
and case studies find that a lack of time, more than innate
opposition to sharing, discourages researchers from providing
code [7, 23].

Four technical challenges
By restricting ourselves to studies of where code has been
made available, I will sidestep for the moment the cultural
challenges to reproducibility so that I may focus on the tech-
nical ones; in particular, those challenges for which improved
tools and techniques rather than merely norms of behavior
can contribute substantially to improved reproducibility.

Studies focusing on code that has been made available with
scientific publications regularly find the same common issues
that pose substantial barriers to reproducing the original
results or building on that code [4, 8, 10, 16, 27], which I
attempt to summarize as follows.

1. “Dependency Hell”
A recent study by researchers at the University of Arizona
found that less than 50% of software could even be success-
fully built or installed [4]. Though sufficiently knowledgeable
users may be able to overcome the issues in at least some of
these cases,1 similar results are seen in an ongoing effort by
other researchers to replicate that study [27], and has also
been observed in other indepedent studies [8, 16]. Installing
or building software necessary to run the code in question as-
sumes the ability to recreate the computational environment
of the original researchers.

Differences in numerical evaluation, such as arise in floating
point arithmetic or even ambiguities in standardized pro-
gramming languages (“order-of-evaluation” problems) can be
responsible for differing results between or even within the
same computational platform [14]. Such issues make it diffi-
cult to restrict the true dependencies of the code to higher
level environments such as that of a given scripting language,
independent of the underlying OS or even hardware itself.

2. Imprecise documentation
Documentation on how to install and run code associated
with published research is another frequent barrier to replica-
tion. A study by Lapp [16] found this impairs a researcher’s
ability to install and build the software necessary, as even
small holes in the documentation were found to be major
barriers, particularly for “novices” [8] – where novices may be
experts in nearby languages but unfamiliar with the package
1See discussion at https://gist.github.com/pbailis/9629050
and https://gist.github.com/samth/9641364

managers and other tools of the language involved. This
same problem is discussed in [3]. Imprecise documentation
goes well beyond issues of the software environment itself:
incomplete documentation of parameters involved meant as
few as 30% of analyses (n = 34) using the popular software
STRUCTURE could be reproduced in the study of [10].

3. Code rot
Software dependencies are not static elements, but receive
regular updates that may fix bugs, add new features or dep-
recate old features (or even entire dependencies themselves).
Any of these changes can potentially change the results gen-
erated by the code. As some of these changes may indeed
resolve valid bugs or earlier problems with underlying code,
it will often be insufficient to demonstrate that results can
be reproduced when using the original versions, a problem
sometimes known as “code rot.” Researchers will want to
know if the results are robust to the changes. The case
studies in [16] provide examples of these problems.

4. Barriers to adoption and reuse in existing solu-
tions
Technological solutions such as workflow software, virtual
machines, continuous integration services, and best practices
from software development would address many of the issues
frequently frustrating reproducibility. However, researchers
face significant barriers to entry in learning these tools and
approaches which are not part of their typical curriculum,
or lack incentives commensurate with the effort required [7,
15].

Though a wide variety of approaches exists to work around
these challenges, few operate on a low enough level to provide
a general solution. Clark et al. [3] provide an excellent
description of this situation:

In scientific computing the environment was com-
monly managed via Makefiles & Unix-y hacks, or
alternatively with monolithic software like Mat-
lab. More recently, centralized package manage-
ment has provided curated tools that work well
together. But as more and more essential func-
tionality is built out across a variety of systems
and languages, the value – and also the difficulty
– of coordinating multiple tools continues to in-
crease. Whether we are producing research results
or web services, it is becoming increasingly essen-
tial to set up new languages, libraries, databases,
and more.

There are two dominant approaches to this issue of coor-
dinating multiple tools: Workflows and Virtual Machines
(VMs).

CURRENT APPROACHES
Two dominant paradigms have emerged to address these
issues so far: workflow software [1, 13] and virtual machines
[5, 12]. Workflow software provides very elegant technical
solutions to the challenges of communication between di-
verse software tools, capturing provenance in graphically

72



driven interfaces, and handling issues from versioning de-
pendencies to data access. Workflow solutions are often
built by well-funded collaborations between domain scien-
tists and computer scientists, and can be very successful
in the communities within which they receive substantial
adoption. Nonetheless, most workflow systems struggle with
relatively low total adoption overall [5, 9].

Dudley & Butte [5] give several reasons that such compre-
hensive workflow systems have not been more successful:

(i) efforts are not rewarded by the current aca-
demic research and funding environment; (ii)
commercial software vendors tend to protect
their markets through proprietary formats
and interfaces; (iii) investigators naturally
tend to want to ‘own’ and control their re-
search tools; (iv) even the most generalized
software will not be able to meet the needs
of every researcher in a field; and finally
(v) the need to derive and publish results as
quickly as possible precludes the often slower
standards-based development path.

In short, workflow software expects a new approach to compu-
tational research. In contrast, virtual machines (VMs) offer a
more direct approach. Since the computer Operating System
(OS) already provides the software layer responsible for coor-
dinating all the different elements running on the computer,
the VM approach captures the OS and everything running
on it whole-cloth. To make this practical, Dudley & Butte
[5] and Howe [12] both propose using virtual machine images
that will run on the cloud, such as Amazon’s EC2 system,
which is already based upon this kind of virtualization.

Critics of the use of VMs to support reproducibility highlight
that the approach is too much of a black box and thus ill
suited for reproducibility [28]. While the approach sidesteps
the need to either install or even document the dependencies,
this also makes it more difficult for other researchers to
understand, evaluate, or alter those dependencies. Moreover,
other research cannot easily build on the virtual machine in
a consistent and scalable way. If each study provided its own
virtual machine, any pipeline combining the tools of multiple
studies would quickly become impractical or impossible to
implement.

A “DevOps” approach
The problems highlighted here are not unique to academic
software, but impact software development in general. While
the academic research literature has frequently focused on
the development of workflow software dedicated to particular
domains, or otherwise to the use of virtual machines, the
software development community has recently emphasized
a philosophy (rather than a particular tool), known as De-
velopment and Systems Operation, or more frequently just
“DevOps.” The approach is characterized by scripting, rather
than documenting, a description of the necessary dependen-
cies for software to run, usually from the Operating System
(OS) on up. Clark et al. [3] describe the DevOps approach
along with both its relevance to reproducible research and

examples of its use in the academic research context. They
identify the difficulties I have discussed so far in terms of
effective documentation:

Documentation for complex software environ-
ments is stuck between two opposing demands.
To make things easier on novice users, documen-
tation must explain details relevant to factors
like different operating systems. Alternatively, to
save time writing and updating documentation,
developers like to abstract over such details.

The authors contrast this to the DevOps approach, where
dependency documentation is scripted:

A DevOps approach to “documenting” an applica-
tion might consist of providing brief descriptions
of various install paths, along with scripts or
“recipes” that automate setup.

This elegantly addresses both the demand for simplicity of
use (one executes a script instead of manually managing the
environmental setup) and comprehensiveness of implementa-
tion. Clark et al. [3] are careful to note that this is not so
much a technological shift as a philosophical one:

The primary shift that’s required is not one of
new tooling, as most developers already have the
basic tooling they need. Rather, the needed shift
is one of philosophy.

Nevertheless, a growing suite of tools designed explicitly
for this purpose have rapidly replaced the use of general
purpose tools (such as Makefiles, bash scripts) to become
synonymous with the DevOps philosophy. Clark et al. [3]
reviews many of these DevOps tools, their different roles,
and their application in reproducible research.

I focus the remainder of this paper on one of the most recent
and rapidly growing among these, called Docker, and the role
it can play in reproducible research. Docker offers several
promising features for reproducibility that go beyond the
tools highlighted in [3]. Nevertheless, my goal in focusing on
this technology is not to promote a particular solution, but to
anchor the discussion of technical solutions to reproducibility
challenges in concrete examples.

DOCKER
Docker is an open source project that builds on many long-
familiar technologies from operating systems research: LXC
containers, virtualization of the OS, and a hash-based or
git-like versioning and differencing system, among others
(see docs.docker.com/faq for an excellent overview of what
Docker adds to plain LXC). The official documentation
docs.docker.com already provides a thorough introduction in
how to use Docker software; here my focus is on describing
the implications this has for reproducible research. Readers
may also find it helpful to see more detailed examples of

73



using Docker to capture, share, and interact with a specific
computational environments. Some such examples, along
with more detailed documentation on use can be found at
github.com/rocker-org.

I introduce the most relevant concepts from Docker through
the context of the four challenges for reproducible research
I have discussed above. In brief, these challenges can be
addressed by distributing a Dockerfile capable of reconstruct-
ing the researcher’s development environment, ideally along
with depositing the corresponding binary Docker image in
an appropriate repository.

1. Docker images: resolving ‘Dependency Hell’
A Docker based approach works similarly to a virtual machine
image in addressing the dependency problem by providing
other researchers with a binary image in which all the soft-
ware has already been installed, configured and tested. (A
machine image can also include all data files necessary for
the research, which may simplify the distribution of data.)

A key difference between Docker images and other virtual
machines is that the Docker images share the Linux kernel
with the host machine. For the end user the primary conse-
quence of this is that any Docker image must be based on a
Linux system with Linux-compatible software, which includes
R, Python, Matlab, and most other scientific programming
needs.2

Sharing the Linux kernel makes Docker more light-weight
and higher performing than complete virtual machines – a
typical desktop computer could run no more than a few
virtual machines at once but would have no trouble running
100’s of Docker containers (a container is simply the term for
running instance of an image). This feature has made Docker
particularly attractive to industry and is largely responsible
for the immense popularity of Docker. For our purposes this
is a nice bonus, but the chief value to reproducible research
lies in other aspects.

2. Dockerfiles: Resolving imprecise documentation
Though Docker images can be created interactively, this
leaves little transparent record3 of what software has been
installed and how. Dockerfiles provide a simple script (similar
to a Makefile) that defines exactly how to build up the image,
consistent with the DevOps approach I mentioned previously.

With a syntax that is simpler than other provisioning tools
(e.g. Chef, Puppet, Ansible) or Continuous Integration (CI)
platforms (e.g. Travis CI, Shippable CI); users need lit-
tle more than a basic familiarity with shell scripts and a
Linux distribution software environment (e.g. Debian-based
apt-get) to get started writing Dockerfiles.

This approach has many advantages:

2Note that re-distribution of an image in which proprietary
software has been installed will be subject to any relevant
licensing agreement.
3The situation is in fact slightly better than the virtual ma-
chine approach because these changes are versioned. Docker
provides tools to inspect differences (diffs) between the im-
ages, and I can also roll back changes to earlier versions.

• While machine images can be very large (many giga-
bytes), a Dockerfile is just a small plain text file that
can be easily stored and shared.

• Small plain text files are ideally suited for use with a
version management system such as subversion or git,
which can track any changes made to the Dockerfile

• the Dockerfile provides a human readable summary
of the necessary software dependencies, environmen-
tal variables and so forth needed to execute the code.
There is little possibility of the kind of holes or impreci-
sion in such a script that so frequently cause difficulty
in manually implemented documentation of dependen-
cies. This approach also avoids the burden of having
to tediously document dependencies at the end of a
project, since they are instead documented as they are
installed by writing the Dockerfile.

• Unlike a Makefile or other script, the Dockerfile
includes all software dependencies down to the level of
the OS, and is built by the Docker build tool, making
it very unlikely that the resulting build will differ when
being built on different machines. This is not to say
that all builds of a Dockerfile are bitwise identical.
In particular, builds executed later will install more
recent versions of the same software, if available, unless
the package managers used are explicitly configured
otherwise. I address this issue in the next section.

• It is possible to add checks and tests following the com-
mands for installing the software environment, which
will verify that the setup has been successful. This can
be important in addressing the issue of code-rot which
I discuss next.

• It is straightforward for other users to extend or cus-
tomize the resulting image by editing the script directly.

3. Tackling code-rot with image versions
As I have discussed above, changes to the dependencies,
whether they are the result of security fixes, new features, or
deprecation of old software, can break otherwise functioning
code. These challenges can be significantly reduced because
Docker defines the software environment to a particular
operating system and suite of libraries, such as the Ubuntu or
Debian distribution. Such distributions use a staged release
model with stable, testing and unstable phases subjected
to extensive testing to catch such potential problems [20],
while also providing regular security updates to software
within each stage. Nonetheless, this cannot completely avoid
the challenge of code-rot, particularly when it is necessary
to install software that is not (yet) available for a given
distribution.

To address this concern, one must archive a binary copy
of the image used at the time the research was first per-
formed. Docker provides a simple utility to save an image
as a portable tarball file that can be read in by any other
Docker installation, providing a robust way to run the exact
versions of all software involved. By testing both the tarball
archive and the image generated by the latest Dockerfile,
Docker provides a simple way to confirm whether or not code
rot has effected the function of a particular piece of code.

74



Binary Docker images can be efficiently shared through the
Docker Hub as well, as I describe later.

4. Barriers to adoption and re-use
A technical solution, no matter how elegant, will be of little
practical use for reproducible research unless it is both easy to
use and adapt to the existing workflow patterns of practicing
domain researchers.

Though most of the concerns I have discussed so far can be
addressed through well-designed workflow software or the
use of a DevOps approach to provisioning virtual machines
by scripts, neither approach has seen widespread adoption by
domain researchers, who work primarily in a local rather than
cloud-based environment using development tools native to
their personal operating system. To gain more widespread
adoption, reproducible research technologies must make it
easier, not harder, for a researcher to perform the tasks they
are already doing (before considering any additional added
benefits).

These issues are reflected both during the original research
or development phase and in any subsequent reuse. Another
researcher may be less likely to build on existing work if it
can only be done by using a particular workflow system or
monolithic software platform with which they are unfamiliar.
Likewise, a user is more likely to make their own computa-
tional environment available for reuse if it does not involve a
significant added effort in packaging and documenting [23].

Though Docker is not immune to these challenges, it offers
an interesting example of a way forward in addressing these
fundamental concerns. Here I highlight these features in
turn:

• Integrating into local development environments
• Modular reuse
• Portable environments
• Public repository for sharing
• Versioning

Integrating into local development environ-

ments
Due in part to the difficulty of moving large VM images
around a network, proponents of virtual machines for repro-
ducible research often propose that these machines would
be available exclusively as cloud computing environments
[5] rather than downloaded to a user’s personal computer.
Though cloud computing offers some advantages such as
scalable resources for computationally intensive tasks, many
researchers prefer to work with tools installed locally on their
personal computer, at least during testing and development.
This can reduce costs, issues of network latency, the ability
to work off-line, and will be most familiar to students and
new developers.

It is possible to run virtual machines locally on most com-
mon laptop and desktop computers, as demonstrated in the
approach now being pioneered at UC Berkeley [3]. This
approach provides users with a pixel-identical environment
whether working locally or on the cloud, which has par-
ticular advantages for student instruction [3]. However, it

remains to be seen if existing researchers will be willing to
forgo native applications for such tasks as file browsing, text
editing, or version management and rely exclusively on this
standardized virtual environment.

In contrast, Docker’s approach is optimized for a more in-
tegrated workflow. Rather than replace a user’s existing
toolchain with a standardized virtual environment, editors
and all, Docker is optimized at the level of single applica-
tions. A developer can thus rely on familiar tools while still
ensuring that the execution of their code always occurs on
the standardized container environment, thus ensuring its
portability and reproducibility. This approach can be ac-
complished either by linking volumes or directories between
the container and the host, or simply by instructing the
Dockerfile to copy the code to the container (As we will see,
modular reuse makes this latter strategy efficient).

Rather than put the burden on the researcher to adopt a
very different workflow, the researcher can thus use their
familiar editors, etc., while immediately benefiting from the
fact their computations can be easily deployed on the cloud
or the machines of collaborators without any further effort
than installing Docker software. The docker approach is
particularly well suited for moving between local and cloud
platforms when a web-based integrated development envi-
ronment is available, such as RStudio Server, or (to lesser
extent) an iPython notebook.

On systems not already based on the Linux kernel (such
as Mac or Windows platforms), Docker is installed (see
see docs.docker.com/installation) through means of a very
small (about 24 MB) VM platform called boot2docker
(github.com/docker/boot2docker),. While this poses an
additional challenge for tight integration with desktop
tools, recent advances in Docker are rapidly bridging this
gap as well. For example, Docker 1.3, released between
drafts of this manuscript, supports shared volumes on Macs
(blog.docker.com).

Portable computation & sharing
A particular advantage of this approach is that the resulting
computational environment is immediately portable. LXC
containers by themselves are unlikely to run in the same
way, if at all, across different machines, due to differences
in networking, storage, logging and so forth. Docker han-
dles the packaging and execution of a container so that it
works identically across different machines, while exposing
the necessary interfaces for networking ports, volumes, and so
forth. This is useful not only for the purposes of reproducible
research, where other users may seek to reconstruct the com-
putational environment necessary to run the code, but is
also of immediate value to the researcher themselves. For
instance, a researcher might want to execute their code on
a cloud server which has more memory or processing power
then their local machine, or would want a co-author to help
debug a particular problem. In either case, the researcher
can export a snapshot of their running container:

docker export container-name > container.tar

and then run this identical environment on the cloud or
collaborators’ machine.

75



Sharing these images is further facilitated by the Docker Hub
technology (hub.docker.com). While Docker images tend to
be much smaller than equivalent virtual machines, moving
around even 100’s of gigabytes can be a challenge. The
Docker Hub provides a convenient distribution service, freely
storing the pre-built images, along with their metadata,
for download and reuse by others. The Docker Hub is a
free service and an open source software product so that
users can run their own private versions of the Hub on
their own servers, for instance, if security of the data or the
longevity of the public platform is a concern. Docker also
supports Automated Builds through the Docker Hub. This
acts as a kind of Continuous Integration (CI) service that
verifies the image builds correctly whenever the Dockerfile
is updated, particularly if the Dockerfile includes checks for
the environment.

One can share a public copy of the image just created by
using the docker push command, followed by the name of
the image using the command:

docker push username/r-recommended

If a Dockerfile is made available on a public code repository
such as Github or Bitbucket, the Hub can automatically
build the image whenever a change is made to the Dockerfile,
making the push command unnecessary. A user can up-
date their local image using the docker pull <imagename>,
which downloads any changes that have since been made to
the copy of the image on the Hub.

Re-usable modules
The approach of Docker offers a technical solution to what is
frequently seen as the primary weakness of the standard VM
approach to reproducibility - reusing and remixing elements.
To some extent this is already addressed by the DevOps
approach of Dockerfiles, providing a scripted description of
the environment that can be tweaked and altered, but also
includes something much more fundamental to Docker.

The challenge to reusing VMs can be summarized as “you
can’t install an image for every pipeline you want. . . ” [28].
While providing a VM may make it easy for other researchers
to run a particular piece of software, it becomes very difficult
to combine multiple software components in future research
if each must run inside it’s own VM. The lack of reusable,
scalable modules in the VM model poses a major barrier
to future reuse. In contrast, (as the analogy to shipping
containers in the name might imply) Docker containers are
optimized for this kind of stacking and modular reuse. There
are at least three ways in which Docker supports this kind
of extensibility.

Most primitively, because Dockerfile itself provides a
script for creating the computational environment, future
researchers can extend or modify the resulting machine
image by simply editing the Dockerfile. This same approach
is also possible for VM approaches that rely on DevOps tools
[3]. In contrast to VMs, however, Docker is also modular by
design: both in how Dockerfiles are defined and how Docker
containers can be linked.

First, Docker facilitates modular reuse by building one con-
tainer on top of another through the use of FROM directive in
Dockerfiles. This acts like a software dependency; but unlike
other software, a Dockerfile must have exactly one depen-
dency (one FROM line). Particular version of the dependency
can be specified using the : notation, or omitted to default
to the latest version. To install software, Dockerfiles leverage
existing package managers on common Linux distributions
such as apt on Debian. These also permit installing either
specific or only the latest version.

While a Dockerfile can have only a single FROM line, sometimes
it may be necessary to build on the computational environ-
ment provided by more than one container. To address
this, Docker defines a syntax for linking multiple containers
together. This allows each container to act as a building
block providing just what is necessary to run one particular
service or element, and exposing just what is needed to link
it together with other blocks. For instance, one could have
one container running a PostgreSQL database which serves
data to another container running a python environment to
analyze the data:

docker run -d --name db training/postgres
docker run -d -P --link db:db training/webapp \

python app.py

This separates the task for running the database (first line)
from the application used to analyze the data (second line), al-
lowing a more modular approach to reuse: another researcher
could use the same database container while connecting it
to different scripts.

Unlike the much more heavyweight virtual machine approach,
a single computer can easily run 100s of such services each
in their own container. A rapidly expanding ecosystem of
software around Docker, such as fig (github.com/docker/fig)
facilitates the complexity of running multiple containers.
This feature making it easy to break computational elements
down into logically reusable chunks that come, batteries
included, with everything they need to run reproducibly.

Versioning
In addition to version managing the Dockerfile, the im-
ages themselves are versioned using a git-like hash sys-
tem (e.g. see docker commit, docker push/docker pull,
docker history, docker diff). Docker images and con-
tainers have dedicated metadata specifying the date, author,
parent image, and other details (see docker inspect). One
can roll back an image through the layers of history of its
construction, then build off an earlier layer, or roll back
changes made interactively in a container. For instance, here
I inspect recent changes made to the ubuntu:14.04 image:

docker history ubuntu:14.04

One can identify an earlier version, and roll back to that
version just by adjusting the Docker tag to match the hash
of that version. For instance:

76



docker tag 25f ubuntu:14.04

If one now inspects the history, which shows that it now
begins from this earlier point:

docker history ubuntu:14.04

This same feature also means that Docker can perform incre-
mental uploads and downloads that send only the differences
between images, (just like git push or git pull for git
repositories), rather than transfer the full image each time.

CONCLUSIONS
Best Practices
The effectiveness of this approach for supporting reproducible
research nonetheless depends on how each of these features
are adopted and implemented by individual researchers. I
summarize a few of these practices here:

• Use Docker containers during development. A key fea-
ture of the Docker approach is the ability to mimic
as closely as possible the current workflow and devel-
opment practices of the user. Code executing inside
a container on a local machine can appear identical
to code running natively, but with the added benefit
that one can simply recreate or snapshot and share the
entire computational environment with a few simple
commands. This works best if researchers set up their
computational environment in a container from the
outset of the project.

• Write Dockerfiles instead of installing interactive ses-
sions. As we have noted already, Docker can be used
in a purely interactive manner to record and distribute
changes to a computational environment. However,
the approach is most useful for reproducible research
when researchers begin by defining their environment
explicitly in the DevOps fashion by writing a Dockerfile.

• Adding tests or checks to the Dockerfile. Dockerfile
commands need not be limited to installing software,
but can also include execution. This can help verify that
an image has build successfully with all the software
necessary to run the research code of interest.

• Use and provide appropriate base images. Though
Docker supports modular design, it remains up to the
researchers to take advantage of it. An appropriate
workflow might involve one Dockerfile that includes
all the software dependencies a researcher usually uses
in the course of their development, which can then
be extended by separate Docker images for particular
projects. Re-using existing images reduces the effort
required to set up an environment, contributes to the
standardization of computational environments within
a field, and best leverages the ability of Docker’s distri-
bution system to download only differences.

• Share Docker images and Dockerfiles. The Docker Hub
significantly reduces the barriers for making even large
images (which can exceed the file size limits of journals
common scientific data repositories such as Dryad and
Figshare) readily available to other researchers.

• Archive tarball snapshots. Despite similar semantics to
git, Docker’s versioning system works rather differently
than version management of code. Docker can roll
back layers4 that have been added to an image, but
not revert to the earlier state of a particular layer. In
consequence, to preserve a bitwise identical snapshot
of a container used to generate a given set of results,
it is necessary to archive the image tarball itself – one
can not simply rely on the Docker history to recover
an earlier state.

Limitations and future developments
Docker has the potential to address shortcomings of certain
existing approaches to reproducible research challenges that
stem from recreating complex computational environments.
Docker also provides a promising case study in other issues.
Its versioning, modular design, portable containers, and
simple interface have proven successful in industry and could
have promising implications for reproducible research in
scientific communities. Nonetheless, these advances raise
questions and challenges of their own.

• Docker does not provide complete virtualization but
relies on the Linux kernel provided by the host. Systems
research can provide insight on what limitations to
reproducibility this introduces [11].

• Docker is limited to 64 bit host machines, making it
impossible to run on older hardware (at this time).

• On Mac and Windows machines Docker must still be
run in a fully virtualized environment. Though the
boot2docker tool streamlines this process, it remains
to be seen if the performance and integration with the
host machine’s OS is sufficiently seamless or creates a
barrier to adoption by users on of these systems.

• Potential computer security issues may still need to be
evaluated. Among other changes, future support for
digitally signing Docker images may make it easier to
build off of only trusted binaries.

• Most importantly, it remains to be seen if Docker will
be significantly adopted by any scientific research or
teaching community.

Further considerations

Combining virtualization with other reproducible-
research tools
Using Docker containers to distribute reproducible research
should be seen as an approach that is synergistic with, rather
than an alternative to, other technical tools for ensuring
computational reproducibility. Existing tools for manag-
ing dependencies for a particular language [21] can easily
be employed within a Docker-based approach, allowing the
operating-systems level virtualization to sidestep potential
issues such as external library dependencies or conflicts with
existing user libraries. Other approaches that facilitate repro-
ducible research also introduce additional software dependen-
cies and possible points of failure [7]. One example includes
4Technically AUFS (advanced multi layered unification
filesystem ) layers, see wikipedia.org/wiki/aufs

77



dynamic documents [17, 22, 26] which embed the code re-
quired to re-generate the results within the manuscript. As a
result, it is necessary to package the appropriate typesetting
libraries (e.g. LATEX) along with the code libraries such that
the document executes successfully for different researchers
and platforms.

Impacting cultural norms?
I noted at the outset that cultural expectations responsible for
a lack of code sharing practices in many fields are a far more
extensive primary barrier to reproducibility than the techni-
cal barriers discussed here. Nevertheless, it may be worth
considering how solutions to these technical barriers can
influence the cultural landscape as well. Many researchers
may be reluctant to publish code today because they fear a
it will be primarily a one-way street: more technical savvy
researchers than themselves can benefit from their hard work,
while they may not benefit from the work produced by others.
Lowering the technical barriers to reuse provides immediate
practical benefits that make this exchange into a more bal-
anced, two-way street. Another concern is that the difficulty
imposed in preparing code to be shared, such as providing
even semi-adequate documentation or support for other users
to be able to install and run it in the first place is too high
[23]. Thus, lowering these barriers to re-use through the
appropriate infrastructure may also reduce certain cultural
barriers to sharing.

ACKNOWLEDGEMENTS
CB acknowledges support from NSF grant DBI-1306697, and
also from the Sloan Foundation support through the rOpen-
Sci project. CB also wishes to thank Scott Chamberlain,
Dirk Eddelbuettel, Rich FitzJohn, Yihui Xie, Titus Brown,
John Stanton-Geddes and many others for helpful discussions
about reproducibility, virtualization, and Docker that have
helped shape this manuscript.

REFERENCES
[1]Altintas, I. et al. 2004. Kepler: an extensible system for
design and execution of scientific workflows. Proceedings.
16th international conference on scientific and statistical
database management, 2004. (2004).

[2]Barnes, N. 2010. Publish your computer code: it is good
enough. Nature. 467, 7317 (Oct. 2010), 753–753.

[3]Clark, D. et al. 2014. BCE: Berkeley’s Common Scientific
Compute Environment for Research and Education. Proceed-
ings of the 13th Python in Science Conference (SciPy 2014).
(2014).

[4]Collberg, C. et al. 2014. Measuring Reproducibility in
Computer Systems Research.

[5]Dudley, J.T. and Butte, A.J. 2010. In silico research in
the era of cloud computing. Nat Biotechnol. 28, 11 (Nov.
2010), 1181–1185.

[6]Eide, E. 2010. Toward Replayable Research in Networking
and Systems. Archive ’10, the nSF workshop on archiving
experiments to raise scientific standards (2010).

[7]FitzJohn, R. et al. 2014. Reproducible research is
still a challenge. http://ropensci.org/blog/2014/06/09/
reproducibility/.

[8]Garijo, D. et al. 2013. Quantifying reproducibility in
computational biology: The case of the tuberculosis drugome.
{PLoS} {ONE}. 8, 11 (Nov. 2013), e80278.

[9]Gil, Y. et al. 2007. Examining the challenges of scientific
workflows. Computer. 40, 12 (2007), 24–32.

[10]Gilbert, K.J. et al. 2012. Recommendations for utilizing
and reporting population genetic analyses: the reproducibil-
ity of genetic clustering using the program structure. Mol
Ecol. 21, 20 (Sep. 2012), 4925–4930.

[11]Harji, A.S. et al. 2013. Our Troubles with Linux Ker-
nel Upgrades and Why You Should Care. ACM SIGOPS
Operating Systems Review. 47, 2 (2013), 66–72.

[12]Howe, B. 2012. Virtual appliances, cloud computing, and
reproducible research. Computing in Science & Engineering.
14, 4 (Jul. 2012), 36–41.

[13]Hull, D. et al. 2006. Taverna: a tool for building and
running workflows of services. Nucleic Acids Research. 34,
Web Server (Jul. 2006), W729–W732.

[14]Ince, D.C. et al. 2012. The case for open computer
programs. Nature. 482, 7386 (Feb. 2012), 485–488.

[15]Joppa, L.N. et al. 2013. Troubling Trends in Scientific
Software Use. Science (New York, N.Y.). 340, 6134 (May
2013), 814–815.

[16]Lapp, Hilmar 2014. Reproducibility / repeatability big-
Think (with tweets) @hlapp. Storify. http://storify.com/
hlapp/reproducibility-repeatability-bigthink.

[17]Leisch, F. 2002. Sweave: Dynamic Generation of Statis-
tical Reports Using Literate Data Analysis. Compstat. W.
Härdle and B. Rönz, eds. Physica-Verlag HD.

[18]Merali, Z. 2010. Computational science: ...Error. Nature.
467, 7317 (Oct. 2010), 775–777.

[19]Nature Editors 2012. Must try harder. Nature. 483, 7391
(Mar. 2012), 509–509.

[20]Ooms, J. 2013. Possible directions for improving depen-
dency versioning in r. arXiv.org. http://arxiv.org/abs/1303.
2140v2.

[21]Ooms, J. 2014. The openCPU system: Towards a uni-
versal interface for scientific computing through separation
of concerns. arXiv.org. http://arxiv.org/abs/1406.4806.

[22]Peng, R.D. 2011. Reproducible research in computational
science. Science. 334, 6060 (Dec. 2011), 1226–1227.

[23]Stodden, V. 2010. The scientific method in practice: Re-
producibility in the computational sciences. SSRN Journal.
(2010).

78



[24]Stodden, V. et al. 2013. Setting the Default to Repro-
ducible. (2013), 1–19.

[25]The Economist 2013. How science goes wrong. The
Economist. http://www.economist.com/news/leaders/
21588069-scientific-research-has-changed-world-now-it-
needs-change-itself-how-science-goes-wrong.

[26]Xie, Y. 2013. Dynamic documents with R and knitr.
Chapman; Hall/CRC.

[27]2014. Examining reproducibility in computer sci-
ence. http://cs.brown.edu/~sk/Memos/Examining-
Reproducibility/.

[28]2012. Mick Watson on Twitter: @ewanbirney
@pathogenomenick @ctitusbrown you can’t install an
image for every pipeline you want... https://twitter.com/
BioMickWatson/status/265037994526928896.

79




